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Tubular Modular Permanent-Magnet Machines
Equipped With Quasi-Halbach Magnetized

Magnets—Part II: Armature Reaction
and Design Optimization
Jiabin Wang, Senior Member, IEEE, and David Howe

Department of Electronic and Electrical Engineering, the University of Sheffield, Sheffield, S1 3JD, U.K.

Using the analytical formulas derived in Part I for predicting the magnetic field distribution, thrust force, and electromotive force
of a three-phase tubular modular permanent-magnet machine equipped with quasi-Halbach magnetized magnets, this paper analyzes
the armature reaction field, and addresses issues that are pertinent to the design optimization of the machine. It shows that optimal
values of the ratio of the axial length of the radially magnetized magnets to the pole pitch exist for both maximum force capability and
minimum force ripple. The utility and accuracy of the analytical predictions and design optimization technique are demonstrated on a
9-slot/10-pole machine.

Index Terms—Design optimization, linear machines, permanent-magnet machines.

I. INTRODUCTION

I
N Part I of this paper, analytical expressions for predicting
the open-circuit flux density components in the air gap of a

three-phase tubular modular permanent-magnet (PM) machine
have been derived. By integrating the radial flux density com-
ponent at the stator bore over a tooth pitch, the fluxes in the
stator teeth and yoke can be evaluated, using the techniques de-
scribed in [1]. Thus, for specified values of no-load flux densi-
ties in the teeth and yoke, as design inputs, the dimensions of
the teeth and yoke can be determined. To account for the effect
of core saturation, a fictitious radial air gap, , may be intro-
duced between the inner bore of the stator and the outer surface
of the magnets, as described in [1]. Subsequently, the no-load
iron loss of the machine can be calculated analytically, using
the method reported in [2]. To facilitate performance evaluation
and design optimization, it is essential to determine the armature
reaction field and winding inductance, to facilitate the design of
the winding for operation from a given supply voltage.

Analytical expressions for predicting the armature reaction
field and the self- and mutual inductances of conventional
tubular machines have been reported in [1], [3]. In tubular
modular machines, however, the fundamental of the stator
magnetomotive force (MMF) has fewer poles than that of the
permanent-magnet armature, the force being developed by the
interaction between a higher order MMF harmonic with the
permanent-magnet field. Although a method for predicting the
armature reaction field and the self- and mutual inductances of a
9-slot/10-pole tubular modular PM machine has been described
[4], a general methodology, which is applicable to all feasible
slot/pole number combinations and winding configurations for
tubular modular machines, has yet to be reported.

In this paper, generic formulas for evaluating the armature
reaction field and inductances of a three-phase tubular modular
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PM machine are presented, and issues that are pertinent to the
design optimization of a machine equipped with quasi-Halbach
magnetized magnets are discussed. Detailed finite-element anal-
ysis is undertaken to verify the analytical predictions. It is shown
that an optimal ratio of the axial length of the radially magne-
tized magnets to the pole pitch exists which yields either max-
imum force capability or minimum force ripple. The utility and
accuracy of the analytical predictions and design optimization
technique are demonstrated on a 9-slot/10-pole machine.

II. ARMATURE REACTION FIELD AND INDUCTANCES

A. Current Distribution in Modular Permanent-Magnet

Machines

Although there are various possible stator winding config-
urations for three-phase tubular modular PM machines based
on the feasible slot/pole number combinations given in Table II
in Part I of the paper, for a given slot/pole number combina-
tion the most appropriate configuration is that which yields the
maximum winding factor for the working space-harmonic MMF
and results in no dc MMF component. This winding configura-
tion can be determined as follows. Letting and denote the
number of slots and the number of pole pairs, respectively, of a
feasible slot/pole number combination, and be the largest
common factor of and , the three-phase modular winding
may be deployed within repeated modular pitches given by

, where is the pole pitch. Each modular pitch
contains slots in which to accommodate the three-phase
winding. If the number of slots per phase within a modular pitch
is even, then the coils which belong to one phase can be fur-
ther disposed in two separate sections displaced by half a mod-
ular pitch and having opposite polarity. By way of example,
for a 10-pole (5 pole pair), 9-slot modular machine, the largest
common factor between and is 1, and the number of slots
per phase is 3. Thus, the three-phase winding is deployed within
one modular pitch of 10 or 9 , where is the slot pitch,

0018-9464/$20.00 © 2005 IEEE
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Fig. 1. Winding distributions for three-phase tubular modular PM machines. (a) 10-pole/9-slot machine. (b) 10-pole/12-slot machine. (c) 7-pole/6-slot machine.

which is also equal to the coil pitch, and each phase winding oc-
cupies three slots, but has to be accommodated in two full slots
and two half slots, as shown in Fig. 1(a), in order to eliminate the
dc MMF component. For a 10-pole, 12-slot modular machine,
on the other hand, although the largest common factor between

and is also 1, the number of slots per phase is an even
number, viz. 4. In order to maximize the winding factor for the
working space-harmonic MMF, the phase winding can be sub-
divided into two sections, each having two slots and displaced
from each other by five pole pitches, as shown in Fig. 1(b). For
the slot/pole number combinations given in Table III in Part I of
the paper, in which the number of active poles, , is odd, the
winding configuration, can be similarly determined. However,
the modular pitch is now given by , and
the coils which belong to one phase have to be arranged adja-
cent to each other irrespective of whether the number of slots
per phase is odd or even. By way of example, Fig. 1(c) shows
the winding configuration for a 7-pole, 6-slot modular machine.

Thus, in total there are four possible winding configurations
for modular machines over a modular pitch, viz.: (i) in which
the number of slots per phase is odd and the coils which
belong to one phase are distributed in consecutive
full slots and in two half slots as is the case in Fig. 1(a); (ii) in
which the number of slots per phase is even and the coils which
belong to one phase are distributed in two separate winding sec-
tions displaced by a half modular pitch and each section has an

even number of slots, (i.e., is an even number), as is
the case in Fig. 1(b); (iii) similar to (i) but in which the number
of slots per phase is even, as is the case in Fig. 1(c); and (iv),
similar to (ii), but in which each of the two separate winding
sections has an odd number of slots.

The current distribution in a slotted stator may be represented
by an equivalent current sheet model [5]. Assuming that the
yoke and teeth are infinitely permeable, then according to Am-
pere’s law, the Ampere-conductors 2 in a slot may be rep-
resented by an equivalent current sheet 2 distributed
over the width of the slot opening , where 2 is the number
of turns of a coil in a full slot. Hence, the MMF distributions
which result with the four possible winding configurations for
a three-phase tubular modular PM machine are as illustrated in
Fig. 2.

It should be noted that in all cases, the reference position of
the current sheet distribution is chosen as the center of the phase
winding. This allows the current distributions to be expanded
into a simple Fourier series of the following form:

Fig. 2(a)–(b)

Fig. 2(c)–(d)

(1)
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where and can be evaluated by

Fig. 2(a)–(b)

Fig. 2(c)–(d)

(2)

which yields (3)–(5), shown at the bottom of the page.

B. Armature Reaction Field

For a tubular modular machine in which the magnets are
mounted on a ferromagnetic supporting tube, the armature reac-
tion field and the self- and mutual inductances can be predicted
using the techniques and expressions reported in [4] based on
the current sheet model established in (1), and (2)–(5). The fol-
lowing derivation is therefore aimed at establishing a framework
for predicting the armature reaction field and inductances of the
machines in which the magnets are mounted on a nonmagnetic
supporting tube.

The effect of slotting can be taken into account by assuming
an equivalent stator bore radius , as has been shown in [1].
If for simplicity, the relative recoil permeability of the magnets
is assumed to be 1, i.e., , the armature reaction field may
be deduced from the model shown in Fig. 3. The governing field
equation, in terms of the vector magnetic potential , is given
by

(6)

The boundary conditions to be satisfied by (6) are

(7)

Solving (6) subject to the boundary conditions of (7) yields the
following expressions for and the flux density components:

Fig. 2(a)–(b)

Fig. 2(c)–(d)

(8)

Fig. 2(a)–(b)

Fig. 2(c)–(d)

Fig. 2(a)–(b)

Fig. 2(c)–(d)
(9)

where and are modified Bessel functions of the
first kind of order 0 and 1, respectively. The harmonic field co-
efficient is given by

(10)

(3)

(4)

Fig. 2(a)

Fig.2(b)

Fig. 2(c)

Fig. 2(d)

(5)
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Fig. 2. Equivalent current distributions due to one phase winding over a modular pitch. (a) N = odd number. (b) N = even number. (c) N =2 =
odd number. (d) N =2 = even number.

Fig. 3. Armature reaction field model.

C. Self- and Mutual Inductances

The air-gap self-inductance, , and the mutual inductance,
, between phases and separated by an axial

displacement can be obtained by evaluating the flux-linkage
due to the armature reaction field [4], and are given by

(11)

(12)

For a slotted armature, however, slot-leakage flux will also
contribute to the self- and mutual inductances. The self- and
mutual slot-leakage inductances, and , can be evaluated
using the formulas given in [1], and the total self-and mutual
inductances are given by

(13)

It should be noted that the synchronous inductance of the ma-
chine is given by , which is an essential parameter in
a – axis model for dynamic simulations and current control
loop design, as well as for evaluating the power factor of the
machine and the associated converter loss.

D. Demagnetization Field

The demagnetizing field results from the combined effect of
the balanced three-phase winding currents. Further, in order to
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Fig. 4. Schematic of three-phase, 10-pole, 9-slot tubular modular PM
machine.

produce a continuous thrust force, the angular frequency of the
stator currents must be synchronized with the armature velocity

, i.e., . If the relative velocity between the perma-
nent-magnet armature and the stator is , the axial position
referred to the stationary reference frame may be transformed
into the moving reference frame by . Thus, the flux
density components in the moving reference frame for the cur-
rent distributions shown in Fig. 2(a)–(b) become

(14)

where is the peak phase current. Equation (14) can be used to
determine the extent, if any, of partial irreversible demagnetiza-
tion of the magnets under any specified operating condition. A
similar expression can be obtained for the current distributions
shown in Fig. 2(c)–(d).

III. COMPARISON WITH FINITE-ELEMENT ANALYSIS

Analytical predictions have been obtained for a

10-pole/9-slot, three-phase tubular modular PM machine with

quasi-Halbach magnetized magnets mounted on a mild steel

supporting tube (Fig. 4), for which the main design parameters

are given in Table I. The stator extends over five active pole

pairs, and the magnets are sintered NdFeB with a remanence

T and . Predictions from the derived

analytical expressions for the electromotive force (EMF),

TABLE I
LEADING DESIGN PARAMETERS OF TUBULAR MACHINE

Fig. 5. Finite-element model.

Fig. 6. Open-circuit flux distributions for two axial displacements. (a) z = 0.
(b) z = � =2.

thrust force, and armature reaction field have been validated by

finite-element analysis of the machine using the model shown

in Fig. 5.

A periodic boundary condition is applied at the axial bound-

aries and the natural Dirichlet boundary condi-

tion is imposed at the other boundary surfaces. Saturation of the

stator core and the armature supporting tube was accounted for

by using the – curves for the relevant ferromagnetic ma-

terials. Thus, the finite-element model takes account of all key

effects, such as nonlinearity and slotting, which a practical ma-

chine may exhibit.

Fig. 6 shows FE predicted open-circuit flux distributions for

two armature displacements, viz. and , while
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Fig. 7. Comparison of EMF waveforms at v = 4 m/s.

Fig. 8. Variation of thrust force as a function of armature position at rated rms
current of 4.35 A.

Fig. 7 compares analytically predicted and finite-element-calcu-

lated EMF waveforms for a constant armature velocity of 4 m/s.

As will be seen, excellent agreement is achieved. It is also evi-

dent from Fig. 6 that the axially magnetized magnets essentially

provide a return path for the radial air-gap flux. Hence, the flux

in the inner supporting tube is relatively small. The analytically

predicted and finite-element-calculated thrust force, at rated cur-

rent, are compared in Fig. 8. Again, good agreement is achieved

in both the amplitude and the waveform. It will be noted that

both models predict a very small force ripple. In the analytical

prediction, this ripple is due mainly to the presence of fifth and

seventh harmonics in the EMF waveform. However, the FE cal-

culation includes two additional effects, viz. a tooth ripple cog-

ging force and localized saturation, which are not accounted for

in the analytical model. It follows, however, that since the total

peak-to-peak force ripple is less than 2.5%, the tooth ripple cog-

ging force component is extremely low.

Fig. 9 shows the space-harmonic MMF distribution which

results from the three-phase stator winding, normalized to the

Ampere-turns per slot divided by the width of the slot open-

ings . When the stator winding is excited with bal-

anced three-phase currents, the resultant stator MMF produces

forward traveling harmonics of order , backward

traveling harmonics for , and zero triple har-

monics. For a 10-pole machine, the thrust force is developed by

the interaction of the fifth space harmonic MMF with the field

Fig. 9. Normalized space-harmonic MMF distribution for the 10-pole, 9-slot
modular machine.

Fig. 10. Flux plot when phase B excited with rated current.

Fig. 11. Variation of air-gap flux density components with axial position at
r = 0:025 m when phase B excited with rated current.

of the permanent magnets. Fig. 10 shows the armature reaction

field distribution when phase is excited with rated current,

while Fig. 11 compares analytically and FE predicted flux den-

sity components in the middle of the air gap as functions of axial

position. As will be seen, the analytical predictions agree well

with results from FE analysis, the main discrepancy being at-

tributable to the neglect of the slot openings in the analytical

model.

IV. DESIGN OPTIMIZATION

The design of a three-phase tubular modular PM machine

can be optimized with respect to the leading design parame-

ters shown in Fig. 12, taking account of both core saturation
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Fig. 12. Leading design parameters of three-phase tubular modular PM
machine.

Fig. 13. Variation of force density and efficiency with � =� and R =R .
(a) Force density. (b) Efficiency.

and subject to a specified thermal constraint [1], being the

outer radius of the stator and the air-gap length. It should

be noted that the required tooth width and radial thickness

of the stator yoke and ferromagnetic supporting tube are de-

pendent on the air-gap flux density and maximum permissible

flux density in the yoke and tube. In order that the findings are

independent of machine size, the thrust force due to the fun-

damental component of the radial air-gap field is divided by

the volume of the stator, , to give the force density

(i.e., force per unit volume). In many applications, multiple de-

sign objectives are often sought, for example, to maximize the

TABLE II
FIXED DESIGN PARAMETERS AND OPERATIONAL CONDITIONS

Fig. 14. Variation of force density and efficiency with � =� and � . (a)
Force density. (b) Efficiency.

force density or efficiency for minimum cost, and the criteria

which are used to judge an optimal machine design may vary

from one application to another. In order that the findings are

generic, therefore, the following study focuses on the influence

of leading design parameters on key cost and performance indi-

cators, such as force/power density, efficiency, normalized force

ripple, and power factor, rather than on a specific objective. It

is worth noting, however, that when considering design opti-

mization of a complete machine and drive system, the power

electronic converter rating and losses should also be taken into

account, as they can have a significant influence on the outcome

of a design optimization [1].

For a given stator outer radius , the design parameters that

have the most significant influence on the performance are the
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Fig. 15. Variation of normalized peak-to-peak force ripple and fifth
and seventh EMF harmonics with � =� and R =R . (a) Normalized
peak-to-peak force ripple. (b) Fifth and seventh EMF harmonics.

dimensional ratios , the magnet thick-

ness , and the air-gap length . In general, the performance

improves as is increased. However, an increase in the

volume of permanent-magnet material will increase the cost,

particularly if it is a rare-earth magnet, and result in a heavier

armature, which is usually undesirable for a moving-magnet

machine. In this study, therefore, the magnet thickness is fixed

at 5 mm to produce an acceptable air-gap flux density and

force density, while providing the required demagnetization

withstand capability. The air-gap length is also assumed to

be constant, at 1 mm, since although a smaller air gap would

also improve the performance, ultimately it is limited by manu-

facturing tolerances as well as stiffness and static and dynamic

radial run-out considerations.

Fig. 13 shows the variation of the force density and efficiency

as functions of and , assuming m.

The other fixed design parameters and operational conditions

are given in Table II. Similarly, Fig. 14 shows the variation of

the force density and efficiency as functions of for three

different values of , with . As will be seen,

in all cases and irrespective of the value of and the ratio of

, there is an optimal ratio of which yields

maximum force density and machine efficiency. This ratio rep-

resents an optimal condition under which the combined effect

Fig. 16. Variation of force density with R =R and � =R , for � =� =

0:6. (a) 3-D representation. (b) 2-D representation.

of the radially and axially magnetized magnets results in max-

imum fundamental radial flux density in the air gap.

Fig. 15(a) shows the variation of the normalized peak-to-peak

force ripple as a function of and assuming

m, while Fig. 15(b) shows the variation of the normalized

fifth and seventh EMF components with when

m and . It will be observed again that, irrespec-

tive of the ratio of , the normalized peak-to-peak force

ripple has two localized minima at and . These

two minima coincide with the minimum fifth harmonic content

in the EMF waveform, as is evident from Fig. 15(b). Indeed,

it can be shown, using (8) in Part I of the paper, that the fifth

harmonic air-gap flux density component becomes zero when

or . Since the magnitude of the fifth EMF har-

monic which results with other ratios of is much greater

than that of the seventh EMF harmonic, the peak-to-peak force

ripple is dominated by the influence of the fifth EMF harmonic.

The force ripple is therefore a minimum when the fifth harmonic

air-gap flux density component is zero. It is also of interest to

note that the normalized seventh EMF harmonic has three local-

ized minima, viz. when and .

Fig. 16 shows the variation of the force density as a func-

tion of and , when . As will be

seen, for a given value of , there is an optimal

ratio which yields the maximum force density. This ratio repre-

sents an optimal balance between the electric loading and the
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Fig. 17. Variation of specific force with R =R and � =R , for � =� =

0:6. (a) 3-D representation. (b) 2-D representation.

magnetic loading of the machine for a given thermal perfor-

mance. Similarly, for a given value of , an optimum

ratio exists which results in the maximum force density.

As the ratio of is reduced below the optimum value, the

air-gap field which is produced by the permanent magnets de-

cays more rapidly with radius and interpole flux leakage also

increases. Hence, the force capability reduces. However, if the

ratio of is too large, the flux per pole increases and this re-

sults in increased saturation of both the stator and armature cores

if their radii are maintained constant, or requires thicker cores if

their operating flux density is to be maintained constant. In both

cases, the force density again reduces. The optimal dimensional

ratios to achieve the maximum force density of 324.0 kN/m are

and .

Fig. 17 shows the variation of the specific force (i.e., force per

unit mass) as a function of the dimensional ratios and

. A similar trend is observed, in that for a given

ratio there exists an optimal value of which yields the

maximum specific force. However, this optimal ratio increases

as decreases. This is due to the fact that, for a given outer

radius and pole pitch , the total weight of the machine

reduces as the ratio is increased.

Figs. 18 and 19 respectively show the variation of the machine

efficiency and power factor as functions of the two-dimensional

ratios and . As will be seen, optimal ratios of

and exist which yield the max-

imum machine efficiency of 0.954. This trend is similar to that

which was observed in Fig. 16, although the optima occur at

Fig. 18. Variation of efficiency with R =R and � =R , for � =� = 0:6.
(a) 3-D representation. (b) 2-D representation.

Fig. 19. Variation of specific force with R =R and � =R , for � =� =

0:6. (a) 3-D representation. (b) 2-D representation.

slightly different dimensional ratios. It should be noted that the

power factor increases as both ratios are increased. This is due



2488 IEEE TRANSACTIONS ON MAGNETICS, VOL. 41, NO. 9, SEPTEMBER 2005

Fig. 20. Prototype three-phase tubular modular PM machine.

TABLE III
DESIGN SPECIFICATION OF PROTOTYPE MACHINE

Fig. 21. Slotted stator core for prototype three-phase tubular modular PM
machine.

to the fact that the slot-leakage inductance accounts for a large

portion of the machine inductance, and it decreases as the slot

depth is reduced with an increase in and as the slot width is

increased with an increase in .

V. PROTOTYPE AND EXPERIMENTAL RESULTS

Fig. 20 show a prototype 10-pole, 9-slot, three-phase tubular

modular PM machine, with a quasi-Halbach magnetization,

whose specification is given in Table III. The stator core is

fabricated from I-shaped silicon iron laminations, as illustrated

in Fig. 21, with the coils being inserted into the slots as the

core is assembled. The complete stator assembly is vacuum

impregnated with stycast and is accommodated in a rectangular

aluminum housing. The moving-magnet armature is supported

at both ends by linear ball bearings. The leading design pa-

rameters of the machine are given in Table IV. As can be seen,

the key dimensional ratios have been chosen to achieve the

maximum force capability.

TABLE IV
LEADING DESIGN PARAMETERS OF PROTOTYPE MACHINE

TABLE V
MEASURED AND PREDICTED PHASE RESISTANCE AND

SYNCHRONOUS INDUCTANCE

Fig. 22. Variation of measured and predicted flux-linkage with axial position.

Fig. 23. Comparison of measured and predicted thrust force as a function of
peak phase current.

Table V compares the measured and predicted phase resis-

tance and synchronous inductance. The flux-linkage waveform

of each phase has been measured using a flux meter and linear

position encoder, the measured results being compared with an-

alytical and FE predictions in Fig. 22. As can be seen, there is

a very small asymmetry in the measured flux linkage, which is

probably due to drift of the flux meter. In general, however, the
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measured flux-linkage waveform agrees very well with the pre-

dicted waveform, albeit its magnitude being % lower.

The static thrust force capability of the machine was mea-

sured at a fixed armature displacement by using a force trans-

ducer and supplying each phase with an appropriate dc current.

Since the machine design incorporates optimally profiled stator

core-end surfaces so as to minimize the cogging force compo-

nent associated with the finite axial length, the peak-to-peak

cogging force of the machine is relatively small. Nevertheless,

the cogging force and frictional force characteristic was mea-

sured separately, so that these parasitic forces could be sub-

tracted from the measured thrust force at any given armature

position. Fig. 23 compares the variation of the measured and

predicted thrust force with peak phase current. As will be seen,

measurements again agree well with predictions, and the ma-

chine exhibits a linear variation of thrust force with current, up

to its rated value.

VI. CONCLUSION

Alternative winding configurations for three-phase tubular

modular PM machines, and the associated space MMF har-

monic distributions, have been analyzed, and a general analyt-

ical framework for predicting the armature reaction field and the

machine self- and mutual inductances has been established. The

utility and accuracy of the analytical formulas for predicting the

open-circuit EMF, thrust force, and armature reaction field for

machines equipped with quasi-Halbach magnetized magnets

have been verified by extensive finite-element analysis. It has

been shown that the design of a machine can be optimized with

respect to three key dimensional ratios, and an optimization

methodology has been described. It has been shown that an

optimal ratio of , i.e., the ratio of the axial length of the

radially magnetized magnets to the pole pitch, exists which

yields maximum force capability. It has also been shown that

this ratio has a significant influence on the fifth and seventh

EMF harmonics, and hence on the peak-to-peak ripple in the

thrust force. However, the force ripple is a minimum when

, irrespective of the other design parameters. The

validity and the effectiveness of the developed analysis and

design optimization technique have been demonstrated on a

10-pole, 9-slot, three-phase tubular modular PM machine.
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