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A Two-phase Approach for Real-world Train Unit

Scheduling

Zhiyuan Lin · Raymond S. K. Kwan

Abstract A two-phase approach for the train unit scheduling problem is proposed.

The first phase assigns and sequences train trips to train units temporarily ignor-

ing some station infrastructure details. Real-world scenarios such as compatibility

among traction types and banned/restricted locations and time allowances for cou-

pling/decoupling are considered. Its solutions would be near-operable. The second

phase focuses on satisfying the remaining station detail requirements, such that the

solutions would be fully operable.

The first phase is modeled as an integer fixed-charge multicommodity flow (FCMF)

problem. A branch-and-price approach is proposed to solve it. Experiments have

shown that it is only capable of handling problem instances within about 500 train

trips. The train company collaborating in this research operates over 2400 train trips

on a typical weekday. Hence, a heuristics has been designed for compacting the prob-

lem instance to a much smaller size before the branch-and-price solver is applied. The

process is iterative with evolving compaction based on the results from the previous

iteration thereby converging to near-optimal results.

The second phase is modeled as a multidimensional matching problem with a

mixed integer linear programming (MILP) formulation. A column-and-dependent-

row generation method for it is under development.
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1 Introduction

A train multiple unit, or train unit, is a set of train carriages with its own built-in

engine(s). Without a locomotive, it is able to move in both directions on its own. A

train unit can also be coupled with other units of the same or similar types. Train

unit scheduling refers to the planning of how timetabled train trips (or simply trains)

in one operational day are sequenced to be operated by each train unit in the com-

pany’s fleet. Usually performed after the timetable has been fixed, and followed by

a subsequent crew scheduling stage, train unit scheduling is also called train unit di-

agramming in the UK, where a unit diagram is a documentation of the sequence of

trains and other auxiliary activities, e.g. coupling/decoupling and shunting, an indi-

vidual train unit will serve on a specified day of operation.

Optimization in train unit scheduling is very important because of the high costs

associated with leasing, operating and maintaining a fleet. It would also impact upon

the subsequent planning of crew resources. For some heavily used commuter net-

works, e.g. in the North and South of England, train unit scheduling is also impor-

tant for best distributing limited rolling stock resources, by coupling/decoupling train

units and/or running them empty, to meet passenger demands. In real-world practice,

there are often thousands of timetabled trains to be scheduled and complex rail in-

frastructure layouts, especially at large train stations, making train unit scheduling

optimization a very hard problem to solve.

In this paper, a two-phase approach is proposed. The first phase is mainly a train

sequencing and fleet assignment problem, leaving the resolution of how the train

units would feasibly flow through the precise station layouts to the second phase.

An integer fixed-charge multicommodity flow (FCMF) model similar to Cacchiani

et al (2010), but more comprehensive in modeling the real-world conditions and con-

straints typical of UK rail operations, is used in the first phase. Fleet size and type

constraints, linkage time allowance validity and coupling/decoupling possibilities are

included in the model. The objective function minimizes a total weighted cost based

on fleet size, operational costs, empty movement mileage, and route preferences.

The second phase, as a railway shunting problem, finally determines the finer op-

erational plan details. For example, precise track and platform layout constraints are

considered. Prior to unit scheduling the timetable is already fixed, and the planning

of which would have ensured that the infrastructure capacity at each station would

be able to cope with the demand. In Phase I, platform length and coupling upper

bound constraints further ensure that unit coupling would not create infeasible ad-

ditional demands on stations. The shunting (empty movements between platforms,

sidings and depots) problems are modeled as a multidimensional matching problem,

which eliminates “crossing” shunting movements and minimizes operational costs.

A column-and-dependent-row (Muter et al (2012)) approach with pre-generation will

be used.

Traditionally human schedulers are compiling train unit schedules based on indi-

vidual train stations. Because of the input timetable, all train arrivals and departures

are predetermined and a human scheduler would try to make feasible links between

them at each station. This manual process is analogous to our proposed second phase.

However, the consideration of empty running across stations, coupling and decou-
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pling possibilities and passenger demands would force the scheduler to switch their

thought process between stations on a trial-and-error basis; our proposed first phase

takes a holistic network wide approach instead. Our rationale for the proposed two-

phase approach is partly due to the observation on the manual process that once the

cross-station flows are satisfactorily or nearly sorted, the final logistics at the station

level is usually resolvable. This observation has been further reaffirmed by our exper-

iments in post-processing the first phase results using Tracs-RS (Tracsis Plc (2013)),

a piece of interactive software which aims at facilitating human schedulers’ manual

process by visualizing and resolving blockage and shunting plans at the station level.

Results of the first phase results have been uploaded into the Tracs-RS system and

operable final results can be easily obtained by some straightforward modification in

all such experiments. The second phase model basically realizes the same tasks as

Tracs-RS, except that it will be a totally automatic process.

The remainder of this paper is organized as follows. Section 2 introduces the train

unit scheduling problem and highlights some aspects and features typical of the UK

railway industry. Section 3 gives a brief overview on relevant literature. Section 4

and 5 present the two-phase approach models. Section 6 describes the methods for

solving the proposed models. Section 7 presents the results from our experiments.

Finally Section 8 draws conclusions and remarks on the ongoing work and further

research.

2 Problem description

Given a railway operator’s timetable on a particular day of the week, and a fleet of

train units of different types, the train unit scheduling problem aims at determining

an assignment plan such that each train is appropriately covered by a single or cou-

pled units, with certain objectives achieved and certain constraints respected. From

the perspective of a train unit, the scheduling process assigns a sequence of trains to it

as its daily workload (a unit diagram). Maintenance provision can often be achieved

either within the slacks in the diagrams or by swapping physical units assigned to the

unit diagrams (Maróti and Kroon (2005)), thus maintenance planning is convention-

ally ignored at the stage of train unit scheduling.

The main objectives are to minimize the number of units used and/or the opera-

tional costs. It is also a common objective to meet the passenger capacity demands.

2.1 Scheduling constraints

The basic hard constraints for the schedule to be operable are:

(i) Each train should be covered by one or more units whose total capacity satisfies

the passenger demand expected for the train.

(ii) In between serving a sequence of passenger carrying trains, the gaps must be

time feasible for the unit. When auxiliary activities, e.g. empty running and unit

coupling/decoupling, have to be inserted in such gaps, sufficient time must be

allowed for.
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(iii) Coupling/decoupling activities may be banned or restricted at some locations.

(iv) The sequence of trains assigned to a unit must be compatible in terms of the

unit traction types and the routes traversed.

(v) The unit diagrams must not be in temporal or spatial conflict with each other,

causing blockage on the tracks/platforms within a station.

Some soft constraints are:

(i) Some auxiliary operations (empty-running, coupling/decoupling, shunting) would

be minimized.

(ii) It is desirable to achieve some long gaps of appropriate time lengths between

trains during certain times. Such long gaps in the unit diagrams would ease the

subsequent task of maintenance planning.

(iii) Beyond mandatory compatibility between the trains sequenced together, there

may be preferences for specific unit types and routes for individual trains

2.1.1 Train unit types

There could be many types of train units in a railway operator’s fleet. Different unit

types will have different features like number of seats, number of cars, unit length,

permitted routes to run, permitted home-depots, etc. We use type-route compatibility

for the relation that certain types can only run on certain routes in the rail network.

Notice there can be preferences for permitted types used for a route, as well as the

choice of home-depots.

2.1.2 Train unit coupling and decoupling

A challenging issue of train unit scheduling is that more than one unit can be attached

to serve the same train, known as coupling; the reversal activity is called decoupling.

Units of the same type can be coupled, and a certain number of different types may

also couple with each other. We call this relation as type-type compatibility. The max-

imum number of coupled units or cars for a train may depend on many factors, such

as routes, platform lengths and unit types.

With respect to type-type compatibility relation, we introduce the concept of train

unit family. Simply speaking, all unit types that are coupling compatible belong to the

same family. The permitted coupling combinations can be expressed in terms of upper

bounds on the total number of units and total number of cars. When the permitted

combinations have to be further restricted, e.g. for certain routes, sub-families using

the same unit types with different upper bounds are introduced. This is illustrated in

Table 1 for a problem instance of Southern Railway.

For any unit (sub-)families used by a train, both upper bounds have to be satisfied.

For example, using family VI, the combination of one “377/1,2,4 [4 car]” and three

“377/3 [3 car]” would be within the upper bound of 4 units but exceeds the upper

bound of 12 cars and is therefore ruled out.

Coupling/decoupling activities are often essential for satisfying passenger de-

mands. However, there are restrictions on where coupling/decoupling activities are

permitted to take place (usually at big stations or hubs). The time allowances required
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(typically 2 to 5 minutes) for accomplishing such activities may also hinder the over-

all schedule efficiency to some extent, and add to the complexity of the scheduling

problem. Moreover, after having provided the required passenger carrying capacity,

some coupled units would inevitably have been displaced to parts of the network

that become in excess in terms of capacity provision, and they would have to be re-

distributed to other locations by coupling, serving trains that do not need the extra

capacity, or by empty running.

Coupling/decoupling sometimes is not restricted to take place at the beginning/end

of a train trip. That is, train units may be joined or split en route. These scenarios are

often related to the topological structure of the railway network, e.g. hubs and junc-

tions. This sort of en route coupling/decoupling operation is very rare in the UK,

and might cause confusion and inconvenience to passengers. Maróti (2006) refers to

these special cases of coupling/decoupling as “joining/splitting”. We do not consider

the operation of coupling/decoupling en route in our work.

For a set of coupled units (which we call a unit block), both its composition and

permutation are important. The reason is that sometimes coupling/decoupling can

only be performed in certain order, and corrective repositioning may not be possible

within time constraints.

Although appropriate coupling/decoupling activities may contribute to an opti-

mal schedule, they would also consume resources like tracks, shunting operations,

crews and time. It is therefore important to avoid unnecessary coupling/decoupling

activities. Sometimes, it may be preferable to keep a unit block together for longer

rather than reversing the coupling/decoupling actions between the units in the block

several times.

2.1.3 Empty-running

An advantage of relocating a train unit by means of coupling onto another unit serving

a timetabled train trip is that there would not be conflicts in terms of track usage, and

therefore eases the scheduling process. On the other hand, running a unit empty, i.e.

without passengers, may be more flexible in terms of its timing. The disadvantages

are that the path and timing of an empty train has to be checked and approved such

that no conflict would occur with other track users; and that the empty running is

not directly contributing to passenger carrying capacity. Also, empty-runnings have

significant additional operational costs.

Table 1 Unit families of the fleet of Southern Railway, UK

Families Types Upper bound on unit # Upper bound on car #

I.a 171/7 [2 car], 171/8 [4 car] 2 8

I.b 171/7 [2 car], 171/8 [4 car] 1 4

II 455/8 [4 car], 456/0 [2 car] 3 8

III 313/1 [3 car] 1 3

IV 460/0 [8 car] 1 8

V 442/1 [5 car] 2 10

VI 377/1,2,4 [4 car], 377/3 [3 car] 4 12
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Table 2 Example trains at the same platform

Train No. Origin – Destination Departure time Arrival time

1 B – A * 09:50

2 C – A * 09:55

3 A – C 10:10 *

4 A – C 10:20 *

Empty-running may be planned on non-passenger routes. This may either short-

cut the journey, or to allow the unit to reach locations that passengers normally would

not reach, e.g. depots, shunting tracks, cleaning and refueling locations.

In an automatic scheduling process, empty-running is usually planned using a

predefined collection of empty-running journey time allowances between location

pairs. There may also be time zones when empty-running is prohibited. At the end

of the scheduling process, empty-running trains are planned in detail and ensured to

be conflict free. At that stage, it is possible that some adjustments to the schedule are

required because some empty-runnings may turn out to be infeasible.

2.1.4 Shunting movements and station infrastructure

The linkage between an arriving train and a departing train sometimes may only be

accomplished by certain shunting movements. Railway shunting generally refers to

empty-running movements between platforms, sidings and depots during a linkage.

Shunting plans enable units to be delivered to the right location at the right time

without causing blockage to each other. The length of empty running required varies

between different types of shunting movement. Whereas the arrival and departure

platforms for trains are usually assigned at the timetable planning stage, the assign-

ment of which sidings or depots the units will be shunted to are only planned at the

unit diagramming stage. Since depot shunting usually occurs before or after an idle

period for the unit, it is generally less constraining on unit scheduling.

A distinctive feature that makes rolling stock scheduling different from road (e.g.

bus) vehicle scheduling is that movements of rolling stocks are strictly restricted by

tracks and other railway infrastructures like platforms and sidings, giving additional

problems such as unit blockage or hitting platform or siding capacity restrictions. In

some literature, blockage is also known as crossing (Freling et al (2005), Kroon et al

(2008)). Other issues may also be relevant to shunting, for example, compatibility

between traction type and platform/siding/depot.

To illustrate how crossing can invalidate a unit diagram derived solely based on

timetable and fleet information without station infrastructure detail, consider a sim-

ple example. Table 2 gives a timetable of four trains. Suppose at station A all the four

trains have been assigned to the same long platform, where the tracks are bidirec-

tional. There are two train units available each with sufficient capacity for any of the

trains. Suppose Unit I can only serve Trains 1, 3 and 4, while Unit II can serve Trains

2, 3 and 4.

Applying the FIFO rule matching arrivals to departures at the platform would

give the following solution:
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To C To B

Unit II Unit I

Arr 9:55 from CDep 10:20 to C Arr 9:50 from BDep 10:10 to C 1

3

2

4

B-A C-A
A-C A-C

Platform 7 of A
Fig. 1 Station blockage with the FIFO solution (i)

To C To B

Unit II Unit I

Arr 9:55 from CDep 10:10 to C Arr 9:50 from BDep 10:20 to C 1

3

2

4

B-A C-A
A-C A-C

Platform 7 of A
Fig. 2 A feasible solution (ii)

(i) Unit I: Train 1 −→ Train 3, Unit II: Train 2 −→ Train 4;

But solution (i) is infeasible because when departing at 10:10, Unit I will be

obstructed by Unit II whose departure time is 10:20. It would be easy to see that an

alternative feasible solutions exists:

(ii) Unit I: Train 1 −→ Train 4, Unit II: Train 2 −→ Train 3.

The two solutions are illustrated in Figure 1 and 2, showing how train directions

and station infrastructure can adversely affect the results if the scheduling process

does not take them into consideration.

Within the train unit scheduling process, train sequencing and fleet assignment

based on timetable, fleet and route knowledge can be regarded as network wide high-

level planning. On the other hand, shunting movements (including null shunting)

based on detailed infrastructure and train direction knowledge belong to a lower

level planning involving platforms, sidings and depots. High-level planning alone

may result in problems such as crossing, which would hinder the solutions from be-

ing operable; but then, incorporating every detailed infrastructure information into

the scheduling method will lead to an extremely huge-sized optimization problem

intractable to solve. Therefore, a two-phase approach is preferred as a compromise,

which is to be discussed in Section 4 and 5.

3 Literature review

3.1 Train sequencing and fleet assignment problem

Schrijver (1993) proposes a multicommodity circulation flow integer linear program-

ming (ILP) model concerning the rolling stock scheduling problem for a single line

and a single day for NS Reizigers with about 100 train trips; the objective is to min-

imize the total number of train units used. As only two types of unit are used for
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coupling, the weak knapsack constraints for passenger demand satisfaction are dealt

with by explicitly finding relevant convex hulls in 2-dimensional spaces.

Alfieri et al (2006) consider a similar scenario as Schrijver (1993) for NS Reizigers;

the objective is to minimize the total number of train units used plus carriage-kilometers.

Additional considerations are given in unit permutation and shunting time buffering.

Some detailed infrastructure-related problems such as shunt crossing are ignored at

this planning stage. The transition graph concept is introduced.

Fioole et al (2006) describe a similar model and instance as Alfieri et al (2006)

with additional considerations on train splitting and joining. Peeters and Kroon (2008)

describe a similar model and instance as Alfieri et al (2006) with a specialized solver

employing branch-and-price.

Maróti (2006) proposes generalized models of the above works in the Netherlands

in his PhD thesis.

Cacchiani et al (2010) propose an integer multicommodity flow ILP model for

some local train unit scheduling problems. The LP-relaxation is solved by column

generation and a diving heuristics is used for finding integer solutions and speeding-

up the process. Taking advantage of the local instances where no more than two units

are coupled (from many potential types), the weak knapsack constraints per train

for demand satisfaction are overcome by computing a dominant set of a polytope

defined over another space. This model is applied for real-world instances of up to

600 trains. Location restrictions and time allowances for coupling/decoupling, type-

type compatibility and shunting resolutions are not considered.

3.2 Railway shunting problem

Freling et al (2005) propose a two-phase approach to solve the railway shunting prob-

lem at a station within a 24-hour horizon. The method is based on a set-partitioning

ILP model with each column corresponding to a feasible assignment plan for a siding.

Both single (FILO) and double (free) sidings are considered. It prevents overcapac-

ity and crossing at each siding, and also minimizes unnecessary coupling/decoupling

activities. The instances tested have up to about 80 train units to be parked at 19 sid-

ings. This two-phase approach gives near-optimal solutions, with small gaps to global

optimality.

Kroon et al (2008) later propose another approach for the same railway shunting

problem as in Freling et al (2005), where an integrated model (and three of its vari-

ants) is devised such that matching and assigning is processed together, hence global

optimality is guaranteed. To avoid a possible huge number of crossing constraints,

maximal cliques and comparability graph techniques are used.

3.3 Generate-and-select and PowerSolver

Dynamic column generation needs a fast non-enumerative pricing algorithm. How-

ever for real-world applications, the pricing subproblems are often computationally

expensive for even moderately large problem instances. Kwan (2004) presents a
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Generate-and-Select (GaS) approach in crew scheduling, in which the column gener-

ation process only brings in new columns within a pre-generated very large collection

of columns. Apart from the advantage of reducing computation associated with solv-

ing pricing subproblems, a reasonably sized selection of the pre-generated columns

could also be made for the branch-and-bound process. Kwan and Kwan (2007) fur-

ther propose a hybrid method called PowerSolver to solve very-large-scale train crew

scheduling problems. PowerSolver uses an iterative heuristics to control the size of

the problem instance in each execution of its core algorithm (GaS with set-covering

ILP) such that the ILP solver works comfortably due to the reduced problem size. Ini-

tially, the controlled problem instance is a crude simplification of the original problem

instance; it is then refined and converges to containing the crucial features in a com-

pact form over a number of iterations. A mechanism to ensure that new solutions

would not be worse than the current best is embedded, thus the results would con-

verge to a near-optimal one within a relatively short time. PowerSolver is now part

of the TrainTRACS system (Fores et al (2002); Wren et al (2003)) and is proving

successful by many UK transport operators who are now routinely using it. A sim-

ilar approach to PowerSolver could be applied in train unit scheduling and will be

discussed in later sections.

4 A fixed-charge multicommodity flow model for the first phase

Considering that the unit scheduling problem would be huge and intractable if all

detailed infrastructure constraints are to be considered at once, a two-phase approach

is proposed.

The first phase for train sequencing and fleet assignment uses an integer FCMF

model similar to Cacchiani et al (2010). But the model is more comprehensive in

modeling real-world conditions and constraints typical of UK railway operations, es-

pecially the coupling/decoupling location restriction and time allowances, and type-

type compatibility enforcement. The aim is to produce solutions that are near to being

fully operable.

The second phase for station shunting finally determines the finer operational plan

details in a station-by-station manner. For example, precise track and platform lay-

out constraints are considered for determining the best operable shunting movement

plans. It will be described in Section 5.

4.1 Model description

The integer FCMF model is based on a framework of directed acyclic graph (DAG)

representing trains and their relations. A generic DAG G = (N,A) consists of nodes

and directed arcs such that no cycle exists.

In this framework, the majority of nodes represent the trains in the timetable, thus

are called train nodes, denoted by Ñ. In addition, a source node 0 and a sink node

∞ are added as usual. Hence N = Ñ ∪ {0,∞}. We also use N−
B ⊆ Ñ to denote the

set of all trains whose departure locations are banned for coupling/decoupling, and
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N+
B ⊆ Ñ for arrival locations. There are three kinds of arcs in the DAG, namely sign-

on arcs, sign-off arcs and linkage arcs. A sign-on arc starts from the source node and

ends at a train node; a sign-off arc starts from a train node and ends at the sink node.

Generally all train nodes have a sign-on arc and a sign-off arc. We denote the set of all

sign-on/off arcs by A◦. A linkage arc a ∈ Ã links two train nodes i and j (a = (i, j)),
representing a potential link, with a sufficient time gap, such that after serving train

i a unit can continue to serve train j as its next task. Note that A = A◦ ∪ Ã. We use

δ−( j) to denote all arcs that terminate at node j, and δ+( j) for all arcs that originate

from node j; and use E to represent the set of all arcs implying empty-running. A

path p ∈ P in the DAG is defined as a sequence of nodes starting from the source

to the sink such that from each of its nodes there is an arc to the next node in the

sequence. A path represents a daily workload (a diagram) for a unit. In addition, Pj

and Pa denote the sets of paths passing through node j and arc a respectively; Jp and

Ap represent the sets of nodes and arcs in path p respectively.

For the fleet, we denote T the set of all unit types. In order to deal with type-route

compatibility, type-graphs Gt (also DAGs) representing routes each unit type t ∈ T

is able to serve are constructed based on the above complete DAG G. All entities in

the type-graphs Gt can be symbolized by adding a t superscript in the corresponding

notations of the complete DAG G, e.g. Pt refers to the set of all paths in type-graph

Gt . We use F to represent the set of all unit families, and Fj the set of families that

can serve train j.

There are three kinds of decision variables. Path variable xp ∈Z+,∀p∈Pt ,∀t ∈ T

is used to indicate the number of units used in path p from Gt . For each train and the

families serving it, we set train-family variable y
f
j ∈ {0,1},∀ j ∈ Ñ,∀ f ∈ Fj, to in-

dicate whether a train j is served by any units from family f . Blockflow variable

za ∈ {0,1} is used to indicate whether an arc a = (i, j) ∈ A is used. It corresponds

to a block of units that remains coupled together during two consecutive trains i

and j. za is used to forbid coupling/decoupling at banned locations, calculate time

consumed by coupling/decoupling operations, as well as eliminate unnecessary cou-

pling/decoupling activities.

Finally, Table 3 describes the parameters used in the model.

4.2 Path formulation

If column generation is to be used for a multicommodity flow problem, generally a

path formulation would be preferred than an arc formulation as the master problem,

although the bound given by LP-relaxations of both are the same (Geoffrion (1974);

Barnhart et al (1998); Cook et al (1998); Cacchiani et al (2010)). We choose an LP-

relaxation rather than a Lagrangian relaxation as nowadays a state-of-art simplex

solver can be more efficient than a subgradient method.

The path formulation:
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Table 3 Parameters in the model

Symbols Meaning

Wi, i = 1, · · · ,7 weights of terms in the objective

µ t
j mileage of train j used by type t (not including empty-running trains)

γ t
a weight for the preference showing whether arc a is a long gap for type t

πt
j weight for the preference of type-train pair (t, j)

πt
a weight for the preference of type-sign-in/off arc pair (t,a),a ∈ A◦

bt upper bound of fleet size of unit type t

κ t unit capacity of type t

r j passengers’ demand for train j

u f coupling upper bound in number of units for family f ∈ Fj

v f coupling upper bound in number of cars for family f ∈ Fj

nt number of cars of unit type t

ma the maximum number of units coupled in arc a

lt length of unit type t

L j the minimum length of platforms at all the stations passed by train j

τC
dep( j) single coupling time at the departure platform of train j

τD
arr( j) single decoupling time at the arrival platform of train j

ei j slack time in linkage arc (i, j) ∈ Ã

min
x,z

W1 ∑
t∈T

∑
p∈Pt

xp +W2 ∑
t∈T

∑
j∈Ñt

∑
p∈Pt

j

µ t
jxp +W3 ∑

t∈T
∑

a∈Et
∑

p∈Pt
a

xp

−W4 ∑
t∈T

∑
a∈Ãt

∑
p∈Pt

a

γ t
axp −W5 ∑

t∈T
∑
j∈Ñt

∑
p∈Pt

j

π t
jxp

−W6 ∑
t∈T

∑
a∈(A◦)t

∑
p∈Pt

a

π t
axp +W7 ∑

a∈A

za

(1)

subject to

∑
p∈Pt

xp ≤ bt , ∀t ∈ T ; (2)

∑
t∈T

∑
p∈Pt

j

κ txp ≥ r j, ∀ j ∈ Ñ; (3)

∑
t∈ f

∑
p∈Pt

j

xp ≤ u f y
f
j , ∀ j ∈ Ñ,∀ f ∈ Fj; (4)

∑
t∈ f

∑
p∈Pt

j

ntxp ≤ v f y
f
j , ∀ j ∈ Ñ,∀ f ∈ Fj; (5)

∑
f∈Fj

y
f
j = 1, ∀ j ∈ Ñ; (6)

∑
t∈T

∑
p∈Pt

j

ltxp ≤ L j, ∀ j ∈ Ñ; (7)
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∑
t∈T

∑
p∈Pt

a

xp ≤ maza, ∀a ∈ A; (8)

τD
arr(i)

(

∑
a∈δ+(i)

za −1

)
+τC

dep( j)

(

∑
a∈δ−( j)

za −1

)
≤ ei j, ∀(i, j) ∈ Ã : i /∈ N+

B , j /∈ N−
B ;

(9)

∑
a∈δ−( j)

za = 1, ∀ j ∈ N−
B , (10a)

∑
a∈δ+( j)

za = 1, ∀ j ∈ N+
B ; (10b)

xp ∈ Z+, ∀p ∈ Pt ,∀t ∈ T, (11a)

y
f
j ∈ {0,1}, ∀ j ∈ Ñ, ∀ f ∈ Fj, (11b)

za ∈ {0,1}, ∀a ∈ A. (11c)

4.2.1 Objective function

The objective (1) is formed by seven terms. The first term minimizes the total num-

ber of units used. The second term minimizes the total passenger train unit-mileage,

where µ t
j is the mileage of train j ∈ Ñ used by single unit of type t. The third term

minimizes the total number of empty-running trains. The fourth term encourages in-

sertion of long gaps in unit diagrams such that maintenance can be realized whereby.

Parameter γ t
a = 0 if arc a does not imply a long gap or this gap is not suitable for

type t; γ t
a > 0 if arc a contains a long gap that is suitable for type t. There are also

preferences among positive values of γ t
a as some long gaps are more suitable for type

t than others. The fifth term encourages type-train (route) preferences, where π t
j ≥ 0

is a preference weight for a type-train pair (t, j): the higher the more suitable. The

sixth term encourages sign-on/off arc preferences (usually related to home depots)

for each type of units, where π t
a stands for a preference parameter for a type/sign arc

pair (t,a): the higher the more suitable. Notice if a certain type t is not suitable for

a sign-on/off arc, this arc will not have been inserted into Gt in the first place. The

seventh term minimizes the total number of blocks, leading to minimization of the

total number of coupling/decoupling activities; it also partly drives za to desired bi-

nary values. Notice the appearance of za in the objective categorizes this model into

a fixed-charge multicommodity flow type.

Although the objective is combined with seven terms, in practice, it is possible to

only select a subset of them according to the user’s wish.
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4.2.2 Constraints

Constraints (2) ensure deployed number of units for each type within its upper bound.

Constraints (3) guarantee satisfaction of capacity demand for each passenger train.

Constraints (4) and (5) calculate each family-train indicator variable as well as re-

stricting the possible coupling combinations in terms of both the total number of units

and the total number of cars. Constraints (6) allow only one family to serve a train.

Notice (4), (5) and (6) together will ensure that y
f
j =

{
1, ∑t∈ f ∑p∈Pt

j
xp > 0

0, ∑t∈ f ∑p∈Pt
j
xp = 0

,∀ j ∈

Ñ,∀ f ∈ Fj. Constraints (7) are platform length constraints. Constraints (8) calcu-

late blockflow variables. Notice as the sum of blockflow variables is minimized in

the objective, the relation za =

{
1, ∑t∈T ∑p∈Pt

a
xp > 0

0, ∑t∈T ∑p∈Pt
a

xp = 0
,∀a ∈ A is guaranteed. Con-

straints (9) are to ensure time allowance validity for coupling/decoupling if it is al-

lowed. Constraints (10) are to forbid coupling/decoupling at banned locations. Finally

(11) gives the variable domain.

Notice some intuitive simplification will apply, e.g., trains whose platform lengths

are long enough do not need constraints (7), and the linkage arcs whose slack time

is long enough and relevant locations allow coupling/decoupling, constraints (9) can

also be omitted. For those trains only allowing compatible types to serve, train-family

variables y
f
j and constraints (6) associated with them can be omitted, and relevant

coupling upper bound constraints (4) (5) can also be simplified. And so on.

5 A multidimensional matching model for the second phase

5.1 Station element representation and model description

5.1.1 Arrival and departure units

The first phase provides a tentative schedule based on which the second phase op-

erates within the scope of each individual station σ ∈ Σ . The first phase fixes the

unit-type assignment to each arrival and departure train, e.g., “train 1E08 is served

by one British Rail Class 171/7 and one British Rail Class 171/8 units”. We can thus

define a set of arrival units and a set of departure units for a day’s operation at each

station σ , as u1,u2, · · · ,un ∈Uσ and v1,v2, · · · ,vn ∈V σ respectively. The first phase

also results in a tentative assignment of a next departure unit for every arrival unit,

and these assignments may have to be modified by the second phase because of op-

erational conflicts at the station. Here we assume empty running trains have been

inserted by the first phase and |Uσ | = |V σ | = n. Sign-on/off trains from/to a home

depot can be dealt with by slight adaptation. Exceptions, such as over-night units

remaining at the station cannot invalidate this model as sign-on/off arcs regard this

station as the source/sink node. For simplicity, we will omit the superscript σ in later

part of this section as everything is clearly based on a single station, except where

explicitly stating the station is necessary.

The attributes of each arrival and departure unit include:
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– The train the unit belongs to: T (u),T (v). Notice an arrival unit only belongs to

one arrival train and a departure unit only belongs to one departure train.

– The attributes due to its train: the arrival platform of an arrival unit P(u) and the

departure platform of a departure unit P(v); the arrival time of an arrival unit τ(u)
and the departure time of a departure unit τ(v).

– The type of that unit: t(u), t(v).

A matching between an arrival unit and a departure unit is used to represent a

linkage relation. A matching between two conceptual arrival and departure units u

and v indicates they will be materialized by being assigned to be the same unit. The

first-step rule of how an arrival unit u can be matched with a departure unit v is:

(a) Same type: t(u) = t(v); (b) the arrival time of u is appropriately earlier than the

departure time of v: τ(u)≺ τ(v).
Other linkage validity rules regarding shunting/coupling/decoupling times will be

considered respectively in other ways. It is important to note that a valid matching

between a pair of arrival and departure units (u,v), u ∈ U,v ∈ V will correspond to

one and only one linkage arc (T (u),T (v)) ∈ Ã in the DAG defined in the first phase.

This linkage arc is called a dominant arc of the matching pair.

5.1.2 Unit position

If a train is a coupled one, the positions of the units in the coupled formation are im-

portant information. Since the first phase has not provided anything on unit permuta-

tion for coupled trains, it has to be decided in the second phase. Let p ∈ Pu,q ∈ Qv de-

note positions and their possible choice sets for arrival unit u and departure unit v re-

spectively. For a unit u (or v) from a non-coupled train, its position is unique(|Pu|= 1

or |Qv| = 1); for a coupled single-type (homogenous) train, unit positions can be

pre-assigned based on the first phase result in an arbitrary order, leading to |Pu| = 1

or |Qv| = 1 as well; for a coupled multi-type (heterogenous) train where different

permutations can have essentially different results, a decision has to be made from

p ∈ Pu,q ∈ Qv, |Pu| > 1, |Qv| > 1. Therefore, the above matching has to be further

modified within a positioned pair of (u, p) and (v,q) such that a plan (u, p,v,q),u ∈
U, p ∈ Pu,v ∈V,q ∈ Qv has to be made.

Unit permutation can significantly affect a schedule without infrastructure details.

Figure 3 shows two arrival units u1,u2 coupled in a train arriving at a dead-end plat-

form, also two departure units v3,v4 coupled in a later departure train at the same

platform suitable to be linked with the arrival train. Suppose all the units have the

same traction type and their positions have been pre-assigned as indicated in the fig-

ure. Without unit position and platform layout knowledge, it seems that any arrival

units ui, i = 1,2 can be matched with any departure units v j, j = 3,4. But in fact u1

can only be matched with v3 and u2 with v4. Figure 4 gives another example con-

cerning arrival units u1,u2 and departure units v3,v4, suppose they all have the same

traction type and are at the same FIFO platform. Suppose their positions have been

pre-assigned as indicated in the figure. Moreover, T (u1) ̸= T (u2) but T (v3) = T (v4)
and τ(u2) ≺ τ(u1) ≺ τ(v3) = τ(v4) such that the two arrival units can be coupled to

serve the departure train. Here as the arrival train T (u2) comes earlier than T (u1) in a
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u1 u2frontrear

v3 v4rearfront

Fig. 3 A matching in a dead-end platform scenario

u1 u2
v3 v4rear front

Fig. 4 A matching with coupling in a FIFO scenario

FIFO track, then u1 can only be coupled at the rear of u2, which indicates u1 can only

be matched with v3 and u2 with v4. Cases in coupled multi-type trains will be more

complicated.

5.1.3 Parking berths

Generally speaking, there are three possible kinds of shunting plans at each linkage

arc: to let the unit continue to serve the next train within the platform area (short

time gap linkage), to put the unit to a siding temporarily until it is needed for the

next train (medium time gap linkage) and to put the unit to a nearby depot until it is

needed for the next train (long time gap linkage). Here we denote parking berths as

b ∈ B := {0}∪S∪D where 0 refers to a dummy parking berth representing platform

stay, S the siding set and D the depot set.

For a positioned pair of arrival and departure units (u, p,v,q),u ∈ U, p ∈ Pu,v ∈
V,q ∈ Qv, the possible choice for parking berth types (dummy, siding or depot) is

dependent on the relevant time gap length of its dominant linkage arc (T (u),T (v)). A

dummy berth is only imaginary, i.e. the unit stays put. However, if the parking berth

turns out to be a siding or a depot, usually there are a number of sidings or depots

available for a unit to be shunted to. We denote the possible parking berths for a pair

of positioned units (u, p,v,q) as B(u, p,v,q).

5.1.4 Parking methods

In order to avoid crossings, the way a unit comes to/leaves a platform or a siding

should be taken into account. It is usually not important how a unit comes to/leaves
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a depot after an empty-running trip. This is because such movements are usually

infrequent with sufficient time for resolving any conflicts that might arise.

Here we define the parking method m ∈ M(u, p,v,q,b) for a pair of positioned

units (u, p,v,q) with its parking berth b ∈ B(u, p,v,q) as possible ways of how this

unit arrives at and leaves its arrival platform P(u), comes to and leaves its parking

berth b, and then comes to and departs from the departure platform P(v). For a pair

yielding a dummy or a depot parking berth b ∈ {0} ∪D, the ways coming to and

leaving b is omitted as a default “00”.

Here is an example of such a parking method with b = 0 and a null-shunting:

m = [LR,00,LR], which means arriving from the left and departing from the right,

at the same platform without any shunting. Another example of a parking method

involving a double (free) siding shunting with re-platforming: m= [LR,RL,LL] which

means:

– at the arrival platform: arriving from the left and leaving from the right (to a

siding);

– at the siding: coming from the right and leaving from the left (to the departure

platform);

– at the departure platform: coming from the left and departing from the left.

Parking methods are determined by various factors, e.g. train directions, plat-

form, unit position, siding, depot and overall layout relations, plus possible engi-

neering and operational regulations. Usually when (u, p,v,q,b) is fixed, the resulting

M(u, p,v,q,b) would have a very small number of candidate methods. Especially

when the parking berth is a dummy one, a single (FILO) siding or a depot, the possi-

ble parking method is very likely to be unique.

5.1.5 Shunting plans and conflicts between a pair of shunting plans

The second phase shunting problem is defined as

At each station σ ∈ Σ of the rail network, give each arrival unit u ∈U a position

p ∈ Pu and assign it to a departure unit v ∈ V with position q ∈ Qv, via a parking

berth b ∈ B(u, p,v,q) and with a parking method m ∈ M(u, p,v,q,b) such that

1. Each matching pair (u,v) implies a dominant linkage arc relation (T (u),T (v)) ∈

Ã;

2. Each positioned pair (u, p,v,q) is operationally feasible for connecting T (u) and

T (v);
3. No crossing occur at platforms or sidings;

4. No overcapacity occur at any sidings or depots;

5. No breaking on any other temporal, spatial, engineering or operational rules that

makes the overall plan inoperable.

A shunting plan can be expressed as a 6-tuple (u, p,v,q,b,m), u ∈ U , v ∈ V ,

(T (u),T (v)) ∈ Ã, p ∈ Pu, q ∈ Qv, b ∈ B(u, p,v,q), m ∈ M(u, p,v,q,b) representing

a self-consistent shunting plan. For convenience, a shunting plan (u, p,v,q,b,m) is

also written as π ∈ Π when its details can be omitted, where we denote the set of all

possible shunting plans at a station as Π . The set of shunting plans all involving a
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Fig. 5 An illustration of shunting plans

specific arrival unit u can be written as Πu, the same for Πv for a specific departure

unit v. Fig.5 gives an illustration of the concept of shunting plans (unit positioning is

not depicted).

All the possible shunting plans can be pre-computed based on input data of sta-

tion information and the first phase results before the second phase begins. With a

shunting plan (u, p,v,q,b,m) timings can be determined for the unit leaving the ar-

rival platform, coming to the parking berth, leaving the parking berth and coming to

the departure platform. Also, the following parameters are known from station layout

knowledge. ∆τu: time duration at the arrival platform P(u); ∆τub: shunting/empty-

running time from platform P(u) to parking berth b; ∆τbv: shunting/empty-running

time from parking berth b to platform P(v); ∆τv: time duration at the departure plat-

form P(v). Then, the attributes of a shunting plan (u, p,v,q,b,m) include:

– All attributes inherited from its arrival and departure units, including traction

types, trains, positions and platforms;

– At the arrival platform P(u): arrival time τ(u), leaving time λ (u) := τ(u) +
∆τu, which forms a time window at the arrival platform: Wu(u, p,v,q,b,m) :=
[τ(u),λ (u)];

– At the departure platform P(v): coming time: χ(v) := τ(v)−∆τv, departure time

τ(v), which forms a time window at the departure platform: Wv(u, p,v,q,b,m) :=
[χ(v),τ(v)];

– At parking berth b: coming time χ(b) := λ (u) + ∆τub, leaving time λ (b) :=
χ(v)−∆τbv, which forms a time window at the parking berth: Wb(u, p,v,q,b,m) :=
[χ(b),λ (b)].

Although a shunting plan may be self-consistent in operation, the interaction be-

tween shunting plans may still make the overall schedule inoperable. We denote a

conflict relation between two shunting plans π and π ′ as π†π ′. Due to the determin-

istic feature, conflict relations between every pair of fixed shunting plans can also be
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pre-computed as input data for the second phase. We use

Π †(π) =
{

π ′|π ′†π,∀π ′ ∈ Π
}

to denote the set of all shunting plans that have a conflict relation with shunting plan

π and

C =
{
(π,π ′)|π†π ′,∀π,π ′ ∈ Π

}

the set of all conflicting shunting plan pairs.

5.2 Model formulation

If the unit-type contents of each train derived from the first phase result remain un-

changed, the fleet size and most other terms in the objective function (1) will remain

unchanged even if the second phase modifies the first phase results by resetting some

matching pairs. The second phase can be regarded as rematching arrival units with

departure units at each station, or from a diagram’s point of view, swapping trains

between the diagrams derived from the first phase. Therefore the global optimality

given by the first phase will be mostly preserved.

We denote the set of all dominant arcs pertaining to station σ as Aσ . As for each

valid shunting plan (u, p,v,q,b,m), (T (u),T (v)) corresponds to a unique dominant

arc a ∈ A, we thus denote the arc corresponding to shunting plan π as a(π), i.e. if

π = (u, p,v,q,b,m), then a(π) = (T (u),T (v)) ∈ Aσ . Then, after the path variables

xp, p ∈ Pt , t ∈ T from the first phase results have been transformed into arc variables

by xa = ∑p∈Pt
a

xp,∀a ∈ At , t ∈ T , it is possible to assign costs cπ to each shunting plan

π ∈ Π according to the following rule:

(i) If first phase result xa(π) > 0, then cπ = 0;

(ii) If first phase result xa(π) = 0, then cπ > 0 and can be set according to some

preferences (e.g. traction type / parking berth).

By setting the above shunting plan costs cπ and minimizing ∑π∈Π cπ xπ , where

xπ ∈ {0,1} indicates whether to use a shunting plan π ∈ Π , it ensures that if the part

of first phase result related with station σ does not cause any conflicts at all, it will

be exactly retained after the second phase.

Similar as in Kroon et al (2008), it is desirable to have each siding serving as

few types of unit as possible, yielding more flexibility and robustness. There is no

such a need for platforms or depots. We denote yt
b,b ∈ S, t ∈ T as a binary variable

indicating whether at least one unit of type t is parked at siding b, and try to minimize

∑t∈T ∑b∈S yt
b.

Similar as in the first phase, it is possible to introduce binary blockflow vari-

ables za,a ∈ Aσ indicating whether an arc a is used, which are used for forbidding

coupling/decoupling at banned locations, calculating coupling/decoupling time dura-

tions at permitted locations and eliminating unnecessary such operations. We denote

the set of all shunting plans pertaining to arc e ∈ Aσ as Πe, i.e. Πe := {π|a(π) = e}.

Then za =

{
1, if ∑π∈Πa

xπ > 0

0, if ∑π∈Πa
xπ = 0

,∀a ∈ Aσ .
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Thus, the second phase model:

min
x,y,z

W1 ∑
π∈Π

cπ xπ +W2 ∑
t∈T

∑
b∈S

yt
b +W3 ∑

a∈Aσ

za (12)

subject to

∑
π∈Πu

xπ = 1, ∀u ∈U ; (13)

∑
π∈Πv

xπ = 1, ∀v ∈V ; (14)

xπ ≤ y
t(π)
b(π)

, ∀π ∈ Π : b(π) ∈ S; (15)

xπ ≤ za(π), ∀π ∈ Π ; (16)

∑
a∈δ−( j)

za = 1, ∀ j ∈ Ñσ ; (17a)

∑
a∈δ+( j)

za = 1, ∀ j ∈ Ñσ ; (17b)

τD
arr(i)


 ∑

a∈δ σ
+ (i)

za −1


+ τC

dep( j)


 ∑

a∈δ σ
− ( j)

za −1


≤ ei j, ∀(i, j) ∈ Ãσ ; (18)

xπ +
1

|Π †(π)| ∑
π ′∈Π†(π)

xπ ′ ≤ 1, ∀π ∈ Π : Π †(π) ̸=∅; (19)

lt(π)xπ + ∑
π ′:Wb(π

′)∩Wb(π )̸=∅

lt(π ′)xπ ′ ≤ Lb(π), ∀π ∈ Π : b(π) ∈ S∪D; (20)

xπ ∈ {0,1}, ∀π ∈ Π ; (21a)

yt
b ∈ R+, ∀b ∈ S,∀t ∈ T ; (21b)

za ∈ R+, ∀a ∈ Aσ . (21c)

The first term in the objective (12) minimizes the cost of shunting plans selected;

the second term encourages units of the same type to be grouped together as much as

possible; the third term minimizes total number of unit blocks such that unnecessary

coupling/decoupling activities are also reduced. Generally, the first term should be

given a higher weight (W1) than others (W2 and W3).
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Constraints (13)–(14) match each arrival unit to a unique departure unit via a

unique parking berth by a unique parking method, and the same for each departure

unit. Similar concept for ensuring each position in coupled multi-type trains to be

occupied by one and only one unit has been encapsulated implicitly by conflict sets.

Constraints (15) calculate the siding-type variables, where t(π) is the traction

type implied by shunting plan π and b(π) is the parking berth of plan π . Notice here

we use a disaggregated formulation with many constraints (= |Πb(π)∈S|) rather than

an aggregated formulation with less constraints, e.g. a multiple variable lower bound

(MVLB) (Ciriani et al (2003)) like

1

|Π t
b|

∑
π∈Π t

b

xπ ≤ yt
b, ∀b ∈ S,∀t ∈ T, (22)

where Π t
b is the set of shunting plans implying a type t to be shunted to a berth b.

The stronger disaggregated formulation (15) will generally give a much tighter LP-

relaxation than (22), and also let yt
b be only continuous while functioning binary.

The side effect from excessive number of constraints in (15) can be neutralized if a

column-and-dependent-row generation approach is used.

Constraints (16) calculate the blockflow variables for each dominant arc pertain-

ing to station σ . Similar as in (15), we use a strong formulation rather than an MVLB

formulation.

Only one from Constraints (17) and (18) will appear for a specific station σ ,

depending on whether coupling/decoupling is banned at σ (use (17)) or allowed (use

(18)). Ñσ is the set of train nodes related with station σ .

Constraints (19) prohibit conflicts between each pair of shunting plans. Note that

a generic conflict (or crossing) exclusion formulation such as

xπ + xπ ′ ≤ 1, ∀(π,π ′) ∈C (23)

will give a huge number of constraints leading to computational difficulty (e.g. Model

1 in Kroon et al (2008)). Some successful remedy methods, for instance, taking ad-

vantage of clique inequalities or comparability graphs (e.g. Model 2 and 2a in Kroon

et al (2008)) are not suitable for the current problem, where the concept of conflict is

based on a more complex context concerning positions, platforms, sidings and com-

bined parking methods. Here we propose another remedy method as in (19). Com-

pared with (23), the number of constraints has been significantly reduced, as usually

|C| ≫ |Π |. Notice the number of constraints will be further reduced if a column-and-

dependent-row generation approach is used.

Constraints (20) prohibit overcapacity for each siding and depot berth, where lt(π)
is the capacity consumed by type t(π) implied from shunting plan π , and Lb(π) is the

total capacity of parking berth b implied from plan π . From observations of the man-

ual scheduling process, feasible berthing plans can always be found in a station-by-

station manner. Moreover, berth capacity would have been satisfied at the preceding

timetabling stage, i.e. the input timetable determines the main unit flows on stations at

certain times and places, as train unit scheduling only assigns units to predetermined

trains.

Finally (21) gives variable domains.
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6 Solution approaches

6.1 Pre/dynamic column generation

We first give a short discussion on ways columns are generated in a generic column

generation process, which seems has not been given much attention in the literature.

Generally, if a generic column generation approach is to be used, except the ini-

tial columns providing a feasible solution to trigger the subsequent process, all new

columns to be added to the restricted master problem (RMP) have to be generated

from some methods. There are usually two ways for generating them. The first one is

to generate dynamically from subproblems until no good candidate is available and

theoretically the solution will be guaranteed global optimal. However, this approach

has two major disadvantages, both due to the dynamic nature how new columns are

generated. One is the difficulty in satisfying sophisticated rules imposed on each col-

umn; the other, arising in integer programs solved by branch-and-bound (BB), is that

dynamically generated columns may have some properties inconsistent with the cur-

rent branch status (Barnhart et al (1998)). These lead to the need for designing very

complicated subproblems or ad-hoc branching strategies to exclude invalid candi-

dates. Constrained shortest path subproblems for crew scheduling (Irnich and De-

saulniers (2005)), generalized assignment problems (Savelsbergh (1997)) and single-

path multicommodity flow problems (Barnhart et al (2000)) are well-known exam-

ples.

Alternatively, it is possible to perform a pre-generation beforehand trying to ex-

tract the essence of all possible candidates into a pot, and then carry on subse-

quent column generation process only based on this pot. Candidates are priced out

by merely calculating and comparing their reduced costs, and unlike in dynamic-

generation, it is convenient and flexible to add several candidates to the RMP from

the same decomposed subproblem. Moreover, the above two disadvantages from

dynamic-generation are unlikely to occur in this approach, making it more prefer-

able for solving very large-scale complex problems, especially when sophisticated

rules are imposed on individual columns. Its disadvantage is theoretically it cannot

always guarantee global optimality, as the solution only converges to a local optimum

with respect to the pre-generated pot. Examples of this style include Fores (1996) for

bus driver scheduling, Kwan (2004) for large-scale crew scheduling and Hennig et al

(2012) for maritime transport routing.

6.2 A hybrid approach for the first phase

Integer FCMF problems are generally believed to be very difficult to solve. The first

difficulty in solving our specific model in Section 4.2 is the weak knapsack con-

straints corresponding to passenger demand satisfaction (constraints (3)) and plat-

form length (constraints (7)). As already observed by Schrijver (1993), Ziarati et al

(1999), and Cacchiani et al (2010), they will make the LP-relaxation give very poor

lower bounds and always fractional solutions. Unfortunately, the Southern Railway

instance we are dealing with does not provide sufficient characteristics for simplify-
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ing those knapsack constraints by similar methods as in the above literature, and we

have to keep them when solving the model.

We find that, as also observed in Cacchiani et al (2010), exact methods would be

incapable of handling very large problem instances. Here we propose a Size Limited

Iterative Method (SLIM) based on hybridization of an exact method (a branch-and-

price integer linear programming (ILP) solver) and a heuristic framework.

6.2.1 A branch-and-price approach for the exact solver

A branch-and-price (Barnhart et al (1998)) approach is used for the exact ILP solver.

Unlike in crew scheduling, the rules imposed upon each unit diagram are not very

complex. Thus we use dynamic column generation where the subproblem is a generic

shortest path problem. Although there are three kinds of variables, as the last two are

solely determined by the path variables, we only price out path variables.

Let β t ≤ 0,ρ j ≥ 0,φ f
j ≤ 0,ψ f

j ≤ 0,λ j ≤ 0,ζa ≤ 0 be the dual variables from

constraints (2), (3), (4), (5), (7), (8), f (p) be the family of path p ∈ Pt , t ∈ T , and cp =
c0

p+∑ j∈Jp
c j +∑a∈Ap

ca be the generalized cost of p in the objective (1) consisting of

three parts (relevant with nodes, relevant with arcs and irrelevant with any of them).

The reduced cost of p from Gt is,

c̄p = c0
p −β t + ∑

j∈Jp

(
c j −κ tρ j −φ

f (p)
j −ntψ

f (p)
j − ltλ j

)
+ ∑

a∈Ap

(ca −ζa) , (24)

finding the smallest value of which can be regarded as a shortest path problem with

train node j ∈ Ñ the weight c j −(κ tρ j +∑ f∈Fj
φ

f
j +nt ∑ f∈Fj

ψ
f
j + ltλ j), arc a ∈ A the

weight ca − ζa, plus a source-sink weight c0
p −β t . There are |T | subproblems from

Dantzig-Wolfe decomposition.

As for the branching strategy, it is a usual way to branch on the corresponding

compact formulation while working on the extensive formulation (Villeneuve et al

(2005)). This means we can branch on arc variables while performing the column

generation with path variables. However, we find it difficult to design an efficient

branching method with respect to arc variables by only deleting certain columns with-

out adding explicit branching constraints, which is to be preferred. This is because

the arc variables are integral rather than binary; moreover, each type can use multiple

paths in the final integer solution, unlike the case in Barnhart et al (2000) where each

commodity takes one and only one path. We here propose a mixed branching strat-

egy consisted of two branching rules, namely train-family branching and arc variable

branching.

Train-family branching The main idea of train-family branching is to check the LP

relaxation solution and select a train j that is covered by more than one family, say

families f1, f2, · · · , fk (k is usually not a large number). Then we form k+1 branches

with respect to families f1, f2, · · · , fk.



A Two-phase Approach for Real-world Train Unit Scheduling 23

– For the first k branches 1, · · · ,k, say at a branch i ∈ {1, · · · ,k}, only the family

fi is allowed to serve train j. To achieve this, in the RMP, all paths indicating

any families in Fj \ { fi} serving j are deleted. Moreover, to prevent subproblem

regeneration in a branch-and-price framework, in the shortest path problem of

type t whose family is not fi, node j is deleted from the shortest path network.

Variables y
f
j and constraint (6) for train j can then be removed from the RMP,

and constraint (4) (5) can also be modified according to which family serves that

train.

– In the last (k + 1)th branch, if |Fj \ { f1, · · · , fk}| ≥ 1, then we forbid families

f1, · · · , fk to serve train j, which can be realized by similar path/node delet-

ing ways as described above, and there is no removal/modification of related

variables/constraints unless |Fj \ { f1, · · · , fk}| = 1; if Fj = { f1, · · · , fk}, then the

(k+1)th branch is no longer needed.

Notice this branching rule does not add any extra constraints to the RMP. It actually

reduces the number of columns in the RMP and the network scale of the shortest path

subproblems, which effectively divides the search space and forces the train-family

variables to be integral.

Arc variable branching The train-family branching is the first choice in the branch-

and-bound tree. However, when all trains are served by single families, this branching

rule cannot be used any more. At this moment, the second branching rule, arc vari-

able branching, will be invoked. This rule detects fractional arc variables from the

result of the RMP LP relaxation by xt
a = ∑p∈Pt

a
xp, and branches over this arc by

explicit branching constraints. We use a constraint branching rule similar as the one

for integer multicommodity flow in Alvelos (2005), i.e. on one branch, add constraint

∑p∈Pt
a

xp ≤ ⌊xt
a⌋, and on the other branch, add constraint ∑p∈Pt

a
xp ≥ ⌈xt

a⌉. As all those

constraints are associated with arcs, the structure of shortest path subproblem can be

kept by adding arc weights from dual variables of those constraints; invalid path gen-

eration is also prevented straightforwardly. We currently first select on the arcs with

most fractional values to branch but find it is not very efficient. It is also a good idea

to first branch on fractional arcs at peak times, as is used in Schrijver (1993). For

node selection, a best-first strategy is used, which will always provide us a global

lower bound.

The second rule will only be triggered when the first rule cannot be used. Notice

after the second rule is used, there may be some trains served by multiple families

again, and thus the first rule will be called again until all trains are again covered by

single families, and the switch to the second rule, and so on.

6.2.2 A size limited iterative method

As an exact solver is incapable for large-scaled problems, we further propose a hy-

bridized method which we call Size Limited Iterative Method (SLIM). Its rationale is

based on PowerSolver proposed by Kwan and Kwan (2007) for crew scheduling, but

the train unit scheduling problem is more complex requiring further exploration. The

idea is to compact the problem instance such that the embedded exact solver can han-

dle it comfortably. As it proceeds, according to previous solution results plus certain
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supplementary methods, the problem instance will be adjusted to derive a different

new instance that would not yield a worse result, and to be solved again by the exact

solver. This process will be repeated until no significant improvement. The problem

instance compaction retains all the train trips, i.e. the method does not subdivide the

problem instance into small separate subproblems.

Size reduction on problem instance can be achieved by mainly two methods:

(i) Simplifying permitted types available for trains such that no type incompatibil-

ity can occur;

(ii) Pre-sequencing some trains into super-trains so that they will each be scheduled

as an integral block.

The first method eliminates a large number of variables and constraints used for en-

suring type-type compatibility. As this heuristics proceeds, types that have once been

deleted from a train will have the chance to be added back based on certain mech-

anisms to allow solution improvement. The second method significantly reduces the

number of “trains” by pre-sequencing them into super-trains. According to the cur-

rent solution status, super-trains would be reformed between iterations.

Outline of SLIM

1. Associate trains with a subset of permitted types.

2. Form a set of super-trains each replacing the original trains in the sequence.

3. Solve the reduced problem instance derived using the ILP solver. If it is not the

first result obtained and there is no improvement on the objective for a predefined

number of iterations, GOTO 7.

4. Copy the last problem instance to a new instance and then retain from the current

best solution only the linkage arcs used.

5. Extend the search space by decomposing some super-trains and/or forming some

new super-trains according to some defined criteria and make sure the resulting

solution will be no worse than the current best solution.

6. Heuristically include more potential arcs into the problem instance, ensuring that

the problem size is not exceeding a predefined upper limit. Go back to 3.

7. If the full set of permitted types is allowed for all trains, STOP. Otherwise, extend

the search space by gradually re-instating the full set of permitted types. Go back

to 3.

6.3 A column-and-dependent-row with pre-generation approach for the second

phase

Although the second phase is a 6-dimensional matching problem with side con-

straints, all possible candidate solutions have been encapsulated into shunting plans

π ∈ Π , where components of each (u, p,v,q,b,m) are determined with far less flexi-

bility. The actual size of |Π | is expected to be moderate such that a state-of-art MILP

solver incorporating BB/branch-and-price would be able to handle it.
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Column-and-dependent-row generation A challenge for the second phase model,

say if column generation is to be used, is the constraints based on columns (con-

straints (15), (16), (19) and (20)), which will cause theoretical problems that make the

column generation invalid. Simply speaking, if only a subset of columns are present

in the RMP, then the rows corresponding to the missing columns will be also absent

with their dual variables unknown, leading to incorrect reduced cost calculation, not

to mention the primal feasibility is also no longer guaranteed. This is an interesting

new research direction of column generation, and very few relevant literature can be

found. The only focused research so far, is from Muter et al (2012), which gives a

deep insight into it, and also proposes a solution approach for two-variable cases. We

believe that it is possible to expand the method in Muter et al (2012) to some three-

variable cases, as our second phase model. We will continue to focus on this special

kind of column generation problem, and propose a column-and-dependent-row gen-

eration approach for our model in the future.

Pre-generation and initial test We use a pre-generation approach for our column-

and-dependent-row generation. The complex rules imposed on individual shunting

plans make it almost impossible to generate such candidate plans dynamically. All

possible candidate shunting plans forming the set of Π will be pre-generated. Another

major step beforehand is to construct the conflict sets Π †(π) for each shunting plan

π ∈ Π . For efficiency reasons, an initial testing phase is used where only a set of

columns corresponding to the first phase results (i.e. all the shunting plans with zero

costs cπ = 0) is provided for the RMP. If those columns yield a feasible solution

for the second phase, then the process is stopped and optimality claimed. Otherwise,

extra columns have to be added to construct an initial feasible solution and then the

commence of a column generation process.

Heuristics Some heuristics speeding up the solution process can be also used, e.g.

the idea of utilizing homogenous sidings to get near-optimal solutions quickly (Kroon

et al (2008)). Another direction to be explored is the order how stations are processed.

Clearly different orders will very likely give different solutions, since solving a station

will simultaneously fix some characteristics of arrival/departure units of other related

stations, and it is not clear yet how to determine the order to improve the overall

solution.

Branching Strategy A mixed branching system is to be used, inclduing: (i) branching

on activated dominant arcs a ∈ Aσ ; (ii) branching on shunting plans π ∈ Π . Activated

dominant arcs refer to the arcs whose implied shunting plans have been priced out

into the RMP. The former is usually used at early stages of the branching process

and the later is more useful at later stages. As pre-generation is used, no subproblem

regeneration will occur.
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7 Computational experiments

7.1 Southern railway dataset

This research benefits from collaboration with Southern Railway, UK, which is a

very large passenger train operator in the South of England. Each year, there are two

timetables published. A full set of data for a timetable in December 2011, including

their actual unit diagrams used, has been used for developing our models and for test-

ing. The timetable concerned has over 2400 train trips on a typical weekday, and 11

different types of train units are in use. Furthermore, the network covered is extensive

with numerous routes, stations and platforms. Hence, the setup and configuration for

testing our models is in itself a very substantial ongoing task. Whilst some promis-

ing results have been obtained, they still have to be carefully analyzed with Southern

Railway. More comprehensive results therefore will be reported in a future paper.

Knapsack constraints The Southern Railway’s data has very complicated type-route

compatibility relationships, giving large numbers of unit types available for most of

the trains (e.g. 7 types can serve the London Bridge – East Croydon route), mainly

due to the use of four types of British Rail Class 377, which basically can run on

any route. Moreover, Class 377/3 has a coupling upper bound of 4 units, and Class

377/1, 377/2 and 377/4 have a bound of 3 units. If using family generalization, the

family Class 377 has an upper bound of 12 cars with various car number coefficients

in the constraint. These features forbid us from using the knapsack constraint sim-

plification method developed by Cacchiani et al (2010) (for a coupling upper bound

of 2 units) for almost all trains. Thus we have to retain all knapsack constraints at

this stage. Since Southern Railway cannot provide us with passenger demand data,

all passenger demands per train (r j) are derived reversely from the Southern Rail-

way December 2011 diagrams. Notice this will not surely alleviate the difficulty of

knapsack constraints, as the unit types other than the one used in the real diagrams

also appear in the demand satisfaction constraints. Also, not all platform length con-

straints are present in the experiments since complete data was not available when we

did the testing.

Arc length In constructing the DAG network, there is a minimum and maximum

time restriction for linkage arc lengths, currently set to be 5 min and 720 min re-

spectively. We are aware that setting the latter a much smaller value (e.g. 360 min)

will significantly reduce the number of arcs, which dominates the number of rows

in the formulation, while most of the “long” arcs will never be used. However, the

need for long gaps for maintenance and off-peak depot berthing requires us to retain

them. Typically there is a morning peak and an afternoon peak in the timetable, and

between the two peaks it is preferred to have most of the units back to some nearby

depots, and some of the units may be under maintenance operations during this idle

time.

Empty-running trains We use existing empty-running trains extracted from the ac-

tual diagrams in operation, plus some extra ones computed from the timetable and
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route network information using a shortest path algorithm. There were originally

some constraints for eliminating conflicting empty-running trains in the first phase

formulation, but we finally discarded them for not further increasing the problem

scale.

7.2 Branch-and-price solver design

The main purpose of our experiments is to verify the validity of the first phase model,

rather than to solve the entire problem as a whole or to test our ad-hoc solver’s per-

formance, which will be reported in continuing research. For all the experiments re-

ported here, only the first phase is involved, and SLIM is not used. Notice we have to

retain all knapsack constraints. We will first shortly describe some practical aspects

of our branch-and-price solver used in the experiments.

7.2.1 Primal heuristics

We use a greedy heuristics to generate the initial columns for the column generation

at the root node of the BB tree. The main rationale of this primal heuristics is to select

the tightest arc (with respect to time) for linking the next train at each train node, al-

ways checking other restrictions like type-type compatibility, coupling upper bound,

coupling/decoupling time allowance, etc. Ability to self-rescuing/reconstructing is

also embedded when the heuristics is trapped into infeasible solutions. This primal

heuristics will generally provide a good quality initial solution for the subsequent

stage. For instance, it has produced 15 paths for timetable 1 in Table 4, whose opti-

mal final integer solution is 13.

7.2.2 Branch-and-bound tree control

We do not let the LP relaxation problem at each BB node to be always solved to

optimality, as is suggested in Barnhart et al (1998). A lower bound is computed from

dual variables and the solution of shortest path subproblems. If the gap between the

current LP solution objective and this lower bound is less than a tolerance ε and

the LP is not optimal yet, we will regard the LP at this node almost optimal and

use this lower bound as its node value. We find that the tolerance ε is very sensitive

in reflecting computation time, and is very problem-specific. It is also a common

phenomenon that a rough value (e.g. ε = 0.2) would yield a solution of the same

quality as a very small tolerance (e.g. ε = 0.001), with far less time.

Another parameter MCG is also set as the maximum number of LP iterations col-

umn generation process is allowed at each BB tree node. The reason is to temporarily

abandon the nodes with very difficult LPs. When MCG is hit at a node, we will com-

pare the current LP objective with another tolerance ε ′, which is always larger than

ε . If the current LP objective gap is still less than ε ′, we remit this node and take the

current lower bound as its node value (which is still a valid lower bound anyway); if

the gap is greater than ε ′, then we cut off this node and put it into a waiting-list to be
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solved later. As all the nodes in the list contain difficult LPs, powerful solution meth-

ods are to be used, involving cut generation. The waiting-list will not be processed

until all other “normal” nodes have been visited and global integer solutions are still

out of reach. We find that parameters MCG and ε ′ are also very sensitive in resulting

computation time. We currently set MCG = 50 and ε ′ = 1 for most instances.

7.2.3 Column management

We do not initialize the column generation at each new leaf-node with new feasible

columns (e.g. artificial columns or from subproblem variants) every time. We directly

let each new leaf-node inherit all the columns from its parent node. This will provide

a good-quality feasible solution to a new leaf-node at the beginning compared with

starting from brand new columns, and it can also prevent taking irrelevant columns

from other nodes—e.g. to take columns generated from the parent’s sibling(s), whose

branching is quite opposite. When inheriting parent’s node results in an infeasible

solution, it does not necessarily indicate infeasibility—it is possible that there exists

a feasible solution but the limited existing columns simply cannot construct it, which

is a disadvantage of dynamic column generation. At this moment, artificial columns

will be generated. If even these artificial columns yield an infeasible solution or they

cannot be constructed, then we conclude infeasibility of this leaf-node. We also have

tried to let each new leaf-node only inherit the basic or small reduced-cost-valued

columns from its parent, but it will frequently give infeasible initial LP, leading to

artificial column construction.

The choice between inheriting parent’s columns or constructing new feasible

columns for the initial LP at leaf-nodes still needs more careful research. The for-

mer will make each leaf-node LP many columns but less LP iterations; the latter may

have each leaf-node less columns but require more LP iterations. Clearly there is a

trade-off between the two and we are interested in how to achieve a balance.

Some other column management techniques are also used, for instance, to locally

delete the columns whose reduced costs are larger than the gap derived from the dual

information, which are guaranteed to be non-basic in an optimal LP. We also tried

to delete columns whose reduced costs are larger than a preset number, or columns

which have not been chosen for more than a preset number of iterations, finding that

these will generally slow down the process greatly, or even sometimes give infeasible

final solutions, however.

7.3 Computational results

We have tested some subsets extracted from the entire Southern Railway Decem-

ber 2012 timetable, each corresponding to trains in real diagrams served by specific

type(s). The original aim is to make comparisons with manual diagrams.

Table 4 gives the results from our numerical tests. SLIM is not used, and only

the first phase is involved. Sometimes if the computation time is too long, only root

columns are taken into the BB tree to get a near-optimal solution. The objective is

to only minimize the total number of units used and also to reduce blockflows (i.e.
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W1 ∑t∈T ∑p∈Pt xp +W7 ∑a∈A za). The tests are carried out using a 64 bit Xpress-MP

7.2 on a Dell workstation with Intel Xeon CPU E31225. When the problem has been

decomposed into |T | shortest path subproblems, they are processed in parallel with

the help of Xpress-MP’s synchronization ability between master- and sub-models.

Table 4 Results from numerical tests

Timetable set No. of trains No. of units used in practice Integer solution Time (seconds)

1 102 13 13 5.065

2 164 17 12 15.652

3 207 22 41 94.979

4 377 49 50* (51.44%) > 7200

5 496 42 56* (50.48%) > 7200

Notice due to the constraints associated with arcs in the network, plus extra train-

family and blockflow variables/constraints, the problem scale could be very large

even for a network with a small number of nodes (trains). With only the exact branch-

and-price solver without SLIM, we could not find integer solutions for problem in-

stances more than 500 trains. For the problem instances within 500 trains, integer

solutions with various qualities can be found, and if the number of trains is no more

than 200, solutions can be found within a relatively short time.

Timetable 1 is actually the trains derived from the diesel set (Class 171/7 and

171/8). We find a solution with the same number of units as the manual one, including

many identical diagrams. All of the expected soft and hard requirements for the first

phase are also successfully achieved. On the other hand, after an analysis in a station-

detailed level, there are diagrams that are infeasible due to train direction and platform

blockage, unless extra shunting or swapping actions are taken. For example, we find

that 171/8(3) arrives at London Bridge at 14:49 which is after 171/8(1), so 171/8(1)

cannot depart at 21:04 as indicated in its diagram because 171/8(3) is in the way. In

fact, simply swapping the two will resolve this difficulty, which is exactly what the

second phase can do. This clearly illustrates the necessity of the second phase.

Similar phenomena were found in the other experiments in satisfying all first

phase requirements but experiencing frequent station blockage problem. For Timetable

2 with 164 trains, we find a much better solution (12 units) than the manual diagrams

(17 units). We are only able to find an integer solution (41 units) much worse than the

manual one (22) for Timetable 3, which indicates the problem-specific nature such

that the solver parameters have to be carefully tuned for different instances. Timetable

4 and 5 are medium sized instances where we only found non-optimal integer solu-

tions (marked with “*” and followed by the gap from root node LP-relaxation) after

several hours. Although they are worse than the manual solutions, the LP-relaxation

value (although known to be very weak) indicates a great potential for improvement.

We have also obtained from Table 4 a threshold the maximum problem size for

which our current exact solver can handle comfortably—around 200 trains. This is

an important parameter for designing SLIM, where we would like to sequence trains

such that the total number of super-trains will be around this threshold. For the entire

Southern Railway timetable with around 2400 trains, this means it is sufficient for
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each super-train to contain about 12 (original) trains. Of course, the power of the

exact solver itself has to be further improved in the future.

8 Conclusions

This paper has explored a hugely complex real-life problem of train unit scheduling.

A two-phase approach is proposed, in which the problem is first tackled from a net-

work wide perspective and then scrutinized at the fine-detailed individual train station

level. While mathematical programming models have been developed, hybridization

of the first phase solver with an iterative heuristics is also proposed. The use of train-

family variables to achieve type-type compatibility and coupling upper bound due

to families, and the use of blockflow variables to enforce coupling/decoupling re-

strictions with respect to location and time allowances, is new in the literature to

our knowledge so far. The two-phase approach is also novel in train unit scheduling,

especially the concept of “dominant arcs” to link the two phases.

We have carried out experiments on various technical aspects in deriving a practi-

cal solver and made some numerical experiments on some small and medium scaled

instances from real data of Southern Railway, one of the UK’s largest train operators,

using the exact branch-and-price solver without SLIM and only involving the first

phase. What we have gained from these experiments are two-fold:

– The first phase model’s capability of solving the core features of the train unit

scheduling problem, especially for type-type compatibility, redistributing unit re-

sources by coupling/decoupling, and forbidding/restricting coupling/decoupling

activities with respect to locations/time allowances, have been verified and our

conclusion is positive. Moreover, it is reflected from the experiments that without

the second phase, the diagrams would very likely to be infeasible due to station

blockage. If the research is about to solve real-world instances, the second phase

for eliminating station blockage is indispensable.

– We believe that as long as the knapsack constraints are present, the exact solver

will perform very poorly. Unfortunately the problem characteristics currently pre-

vent us from developing a simplification method for those knapsack constraints.

We have to switch to heuristics, and SLIM is an important future research direc-

tion. Moreover, we are also interested in designing simplification methods over

those knapsack constraints for instances from other smaller train operators.

We realize the complexity and sophistication the problem we are dealing with.

Testing and refinement of the models, especially on the SLIM heuristics, with feed-

backs from Southern Railway are ongoing. Future research will include more compu-

tationally efficient solution methods, possibly taking advantage of convex hull tech-

nique, heuristics, parallel computation, and further refinement of the proposed models

taking into account problem instances from more train companies. Further research

will also include investigation, theoretical and/or empirical, of error bounds on the

solutions under our proposed two-phase approach.
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