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Abstract—This work focuses on an ultrasonic guided wave
structural health monitoring (SHM) system development for
aircraft wing inspection. The performed work simulate small,
low-cost and light-weight piezoelectric discs bonded to various
parts of the aircraft wing, in a form of relatively sparse arrays,
for cracks and corrosion monitoring. The piezoelectric discs take
turns generating and receiving ultrasonic guided waves. The
development of an in situ health monitoring system that can
inspect large areas and communicate remotely to the inspector
is highly computational demanding due to both the huge number
of Piezoelectric sensors needed and the high sampling frequency.
To address this problem, a general approach for low rate
sampling is developed. Compressive Sensing (CS) has emerged
as a potentially viable technique for the efficient acquisition that
exploits the sparse representation of dispersive ultrasonic guided
waves in the frequency warped basis. The framework is applied to
lower the sampling frequency and to enhance defect localization
performances of Lamb wave inspection systems. The approach
is based on the inverse Warped Frequency Transform (WFT)
as the sparsifying basis for the Compressive Sensing acquisition
and to compensate the dispersive behaviour of Lamb waves. As a
result, an automatic detection procedure to locate defect-induced
reflections was demonstrated and successfully tested on simulated
Lamb waves propagating in an aluminum wing specimen using
PZFlex software. The proposed method is suitable for defect
detection and can be easily implemented for real application to
structural health monitoring.

Keywords—Lamb waves, Warped frequency transform, Com-
pressive sensing, Defect detection, Aircraft wing.

I. INTRODUCTION

Damages to aircraft and high-speed vehicles caused by the

impact of debris and flying objects is a critical concern for

automotive and aeronautic systems. Such damages, in fact,

if not detected and repaired at an early stage might grow

leading to the failure of the systems. Traditionally, visual

inspection, accompanied by ultrasound bulk wave or eddy

current technology, is often used to obtain general information

on the structural health conditions. However, the inspection is

limited to a point-by-point manner and is very time consuming.

In most cases, erection of scaffolding or disassembly of the

structure is needed to inspect the interior and inaccessible

components, being very labour intensive and possibly resulting

in maintenance-induced damages. In this context, Structural

health monitoring (SHM) technologies can allow for an auto-

matic detection of defects due to impacts. Among the number

of SHM approaches, the one based on guided waves (GW) is

considered as the most promising and versatile. Some major

advantages of this technique include fast scanning capabilities,

low cost, long-range inspection, and testing inaccessible or

complex components.

Recently, small and conformal piezoelectric ceramics and

wafer transducers, either being surface mounted or embedded

leave-in-place on the structures, have been widely studied for

generating and receiving guided waves for structural integrity

monitoring. In fact, an impact at high speed produces de-

tectable acoustic and ultrasonic guided waves on the struc-

tural component. These waves can be used to compute the

location of the impact and eventually to assess the damage. In

general, GW based technologies for SHM exploit a network

of piezoelectric transducers positioned on the structure to

inspect. The minimization of the number of array elements

is fundamental to reduce not only the hardware complexity

associated with transducer wiring and multiplexing circuitry

but also the intensive signal processing of the large amounts

of recorded data. For this reason, there is growing interest

in minimizing the number of sensors by optimizing their

positioning, as well as by increasing the resolution of impact

localization procedures [1].

Another current trend in the SHM field is to create wireless

sensor networks with low power consumption or even energet-

ically autonomous [2], [3]. One promising solution would be a

SHM system that could be embedded into the structure, inspect

the structural hot spots and download data or diagnostic results

wirelessly to a remote station [4], [5], [6].

A lot of literature has been produced on the use of sensor-

array-based methods for high-speed acquisition and data pro-

cessing. However, generally such approaches use a large

number of individual sensors that usually are bulky, heavy

and require wiring back to a central location. Moreover when

large-scale deployment are implied, the power consumption

of the system is hardly sustainable by the ordinary generation

system present on board. Recent works in the area of time-

frequency representations (TFRs) [7] [8] show great promise

for applications in nondestructive evaluation and material char-

acterization, in particular to interpret ultrasonic GWs, as they

represent a class of complicated ultrasonic signals, exhibiting

dispersion and containing multiple modes. Nevertheless, the

identification of Lamb modes is a challenging step in the

process of damage detection.

This work proposes a time-frequency (TF) energy density

function approach that makes use of known dispersion charac-



teristics for a propagating wave mode in order to locate defects

in aircraft wing structures.

Compressive Sensing (CS) [9] is an alternate framework to

the traditional Shannon-Nyquist framework of digital signal

and image acquisition. CS can be viewed as a scheme for

simultaneous sensing and compression; instead of being pro-

portional to the Fourier bandwidth, the rate of data acquisition

need only be proportional to the sparsity of the signal, the

number of nonzero coefficients of a signal representation

in some basis. Many methods for signal compression are

commonly based on the transform coding approach. In such

methods, the assumption is that a signal x ∈ R
N can be

represented as a sparse linear combination of elements from

a fixed, known basis Ψ ∈ R
N×N . This has given rise to

the design and development of sophisticated compression

algorithms that operate on a given signal x according to

structured sparsity models [10], [11].

In this work the compressive acquisition of Lamb wave

signal for damage detection is studied; this new framework is

based on the Warped Frequency Transform to achieve a sparse

representation of the signal. In particular an acquisition and

reconstruction stage is developed to obtain the sparse reflection

due to the damage in the warped domain.

The rest of the paper is organized as follows: Section II

provides a brief review of the Warped Frequency Transform;

in Section III we provide an overview of the Compressive

Sensing Framework and the proposed framework to recover

the reflectivity function due to the damage in the warped

domain. Finally in Section V we show the validation of the

proposed framework and the effectiveness of the obtained

results.

II. FREQUENCY WARPING SIGNAL PROCESSING

A. Frequency Warping Transform

The first step is related to the design of a proper basis for

the Lamb waves in order to obtain a sparse representation;

such sparsifying dictionary can be obtained by using unitary

transformations. Lamb waves are mechanical-stress waves

which propagate along solid surface of finite dimension. In

a given waveguide (e.g., a plate, rod, or rail) one or more

GWs can exist at a given frequency. In general, each GW

has a frequency-dependent propagation speed so a dispersive

behaviour. The representation of the wave velocity versus

frequency is generally referred to as its dispersion curve. Dis-

persion generates nonstationary signals when the waveguide

is excited by a broadband pulse.

The unitary operators based on frequency warping can

be used for the analysis of GWs. These operators deform

the frequency axis with a warping function w(f) [12]. To

guarantee invertibility of this process, w(f) must be chosen

so that

dw(f)

df
=̇ ẇ(f) > 0 ⇒ ∃w−1, w−1(w(f)) = f

where ẇ represents the first derivative of the map w with

respect to frequency and w−1 is the functional inverse of

w. Given a generic signal s(t) whose continuous Fourier

transform is Fs(t) =̇S(f), the continuous warping operator

W is defined as

(FWs)(f) =
√
ẇ(f)(Fs) · (w(f))

The warping operator results in a unitary transformation which

preserves orthogonality [13]. For discrete-time signals of finite

duration N , the warping operator is defined as a matrix whose

entries are

W(m,n) = 1
M

∑M−1
k=0

√
ẇ
(

k
M

)
ej2π(m

k
M

−nw( k
M

)),

m ∈ ZM , n ∈ ZN

By considering the discrete Fourier transform of size M ×M ,

F(k, n) = e−j2πn k
M , k, n ∈ ZM

and the nonuniform discrete Fourier transform of size M ×
N , scaled along rows according to the orthogonalizing factor√
ẇ
(

k
M

)

Fw(k, n) =

√
ẇ

(
k

M

)
e−j2πnw( k

M
), k ∈ ZM , n ∈ ZN

(1)

the discrete warping operator in (1) can be factorized as

W(m,n) = F−1Fw

A fast computation of the discrete warping operator is achieved

by means of this decomposition. In fact, F−1 is computed with

the Fast Fourier transform (FFT) and Fw can be efficiently

factorized with the nonuniform-FFT algorithm [14]. In order

to compensate the signal with respect to a particular guided

mode, w(f) can be defined through its functional inverse, as:

C
dw−1(f)

df
=

1

cg(f)
(2)

where 1
cg(f)

is the nominal dispersive slowness relation of

the wave we want to consider, being cg(f) its group velocity

curve and C is a normalization parameter selected so that

w−1(0.5) = w(0.5) = 0.5. Equivalently, the inverse warping

map w−1 can be defined with respect to the wave phase

velocity cph(f) or wavenumber k(f).

The group velocity curves of the Lamb modes for a 0.003
m thick aluminium wing as in Figure 4 with Young modulus

E = 69 GPa, Poisson’s coefficient ν = 0.33 and material

density ρ = 2700 kg · m−3 are represented in Fig. 1. The

curves were obtained by using PZFlez software. A sample

warping map is depicted in Fig. 2 along with its functional

inverse.
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Fig. 1. cg(f) dispersion curves for the Lamb waves propagating in an
aluminium 0.003 m aluminum wing obtained by simulation.
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Fig. 2. Warping map w(f) for A0 wave dispersion compensation and its
functional inverse w−1(f) designed according to Eq. 2.

B. Dispersion Compensation

In active monitoring techniques the time instant in which

an acoustic emission starts is known. Being (Fs0)(f, 0) the

Fourier Transform of the excited wave (incipient pulse cen-

tered in t = 0), an undamped guided wave at a distance

D from the source point, s(t,D), can be modeled in the

frequency domain as a dispersive system whose response is:

(Fs)(f,D) = (Fs0)(f, 0) · e−j2π
∫
τ(f,D)df (3)

being τ(f,D) the group delay of the wave component of

frequency f which can be assumed equal to:

τ(f,D) =
D

cg(f)
= D · C · dw

−1(f)

df
(4)

By substituting Eq. 4 into Eg. 3:

(Fs)(f,D) = (Fs0)(f, 0) · e−j2πw−1(f)CD (5)

where the distortion results from the nonlinear phase term.

Consider now that the generated dispersive wave s(t) is

acquired after having travelled the distance of propagation,

D1. The warped Fourier transforms of the recorded signals

s(t,D1) is given by:

(FWs(t,D1))(f) =
√
ẇ(f)·(Fs0)(w(f), 0)·e−j2πfCD1 (6)

where the right hand terms can be distinguished only for

the underlined distance-dependent linear phase shifts, which

causes simple translations of the warped signals on the warped

time axis.

III. FREQUENCY WARPING COMPRESSED SENSING

A. General Framework

The main idea behind CS is now quite well known but, for

the sake of completeness, the main concepts are summarized.

Let x = Ψα be a real-valued N -dimensional discrete signal

vector (x ∈ R
N ) that is compressible in some orthonor-

mal basis Ψ = [ψ1|ψ2| . . . |ψN ], where each column is a

vector ψi, and α represents the N -dimensional coefficient

vector. In our framework the orthonormal basis Ψ is rep-

resented by the discrete warping operator W(m,n) defined

in Section II. By compressible we mean that the entries of

α = [α1, α2, . . . , αN ], when sorted in decreasing order of

magnitude, decay rapidly to zero; any such a signal is well

approximated using a K-term approximation, consisting of the

K largest entries of α and setting all other terms to zero

x ≈
K∑

k=1

αkψk, with K ≪ N.

In essence, compressible signals are well approximated by

sparse signals. Conventionally, one would collect signal sam-

ples at the Nyquist rate forming x and then compress it

using nonlinear digital compression techniques. CS offers a

striking alternative by showing that if x is compressible, one

can recover to a K-term approximation by only collecting

roughly M ≈ K samples using simple analog measurement

waveforms, thus sensing and compressing at the same time.

More precisely, M = O(K logN/K) samples are collected

by projecting on sensing waveforms {φi}1≤i≤M thus forming

the measurement vector yi = φHi x = 〈φi, x〉, i = 1, . . . ,M .

Consequently, the CS linearly compressed data vector y ∈ R
M

is described by y = Φx, where Φ denotes the M × N
measurement or sensing matrix with the vectors φH1 , . . . , φ

H
M

as rows. It is important to notice that the sensing matrix Φ

does not depend on the signal: CS proposes a simple linear

sampling strategy that is only marginally off the optimal but

complex best adaptive strategy. To guarantee the robust and

efficient recovery of any S-sparse signal, the sensing matrix

Φ must obey the key restricted isometry property (RIP)

(1− δS)‖α‖22 ≤ ‖ΦΨα‖22 ≤ (1 + δS)‖α‖22
for all S-sparse vectors α. The isometry constant δS of matrix

Φ must not be too close to one. This property is difficult to

verify in practice and it is often replaced by the requirement



that the sensing matrix Φ and sparsity basis Ψ must be

incoherent, i.e., their coherence

µ(Φ,Ψ) =
√
N · max

1≤k,j≤N
|〈φk, ψj〉|

is small enough. A universal good choice for the sensing

matrix Φ are random matrixes, such as random matrixes

with independent identically distributed entries formed by

sampling: 1) a Gaussian distribution; 2) a symmetric Bernoulli

distribution. If the RIP holds, then accurate reconstruction can

be accomplished by solving the following convex optimization

problem:

min
α̃∈RN

‖α̃‖1 subject by ‖ΦΨα̃− y‖2 ≤ σ

where σ bounds the amount of noise unavoidably corrupting

the data. Many algorithms were introduced to solve this l1-

norm reconstruction problem; our results are based on the

orthogonal matching pursuit algorithm [15].

IV. ANALOG COMPRESSIVE SAMPLING ACQUISITION

Suppose our analog signal has finite information rate K
i.e., the signal can be represented using K parameters per

unit time in some continuous basis. More concretely, let the

analog signal x(t) be composed of a discrete, finite number

of weighted continuous basis or dictionary components

x[i] =
N∑

n=1

αnψn[i] (7)

with t, αn ∈ R. In cases where there are a small number

of nonzero entries in α, we may again say that the signal

x is sparse. Although each of the dictionary elements ψn

may have high bandwidth, the signal itself has few degrees of

freedom. Our signal acquisition system consists of three main

components; demodulation, filtering, and uniform sampling.

As seen in Figure 3, the signal is modulated by a psuedo-

random maximal-length PN sequence of ±1. This chipping

sequence pc(t) must alternate between values at or faster than

the Nyquist frequency of the input signal. The purpose of the

demodulation is to spread the frequency content of the signal

so that it is not destroyed by the second stage of the system, a

low-pass filter with impulse response h(t). Finally, the signal

is sampled at rate M using a traditional ADC. Although our

system involves the sampling of continuous-time signals, the

discrete measurement vector y can be characterized as a linear

transformation of the discrete coefficient vector α. As in the

discrete CS framework, we can express this transformation as

an M × N matrix Θ = ΦΨ that combines two operators:

Ψ, which maps the discrete coefficient vector α to an analog

signal x, and Φ, which maps the analog signal x to the discrete

set of measurements y. To find the matrix Θ we start by

looking at the output y[m], which is a result of convolution

and demodulation followed by sampling at rate M . Since our

analog input signal in Eq. 7 is composed of a finite and discrete

number of components of Ψ, we can write

y[m] =

N∑

n=1

αn

∫ +∞

−∞

ψn(τ)pc(τ)h(mM − τ)dτ

It is now clear that an expression for each element θm,n ∈ Θ

can be separated out for row m and column n

θm,n

∫ +∞

−∞

ψn(τ)pc(τ)h(mM − τ)dτ

The CS acquisition scheme is shown in Figure 3

Fig. 3. Compressed Sensing acquisition scheme: random modulation pre-
integration

V. VERIFICATION

A. Simulations

Finite element analysis of an aircraft wing was performed

by PZFlex (Weidlinger Assoc. Inc. CA) and, as a case study,

the proposed framework was exploited to locate defects in an

aluminum 1050A wing 1000 × 1000 mm and 3 mm thick.

Four piezoelectric discs (PIC181, diameter 10 mm, thickness

1 mm) were bonded to the wing. The simulated setup designed

with Solidworks (Dassault Systmes ,USA)is shown in Fig. 4

and the position of the transducers is defined in Table I.

Fig. 4. Simplified aircraft wing model used in the simulations. Simulated set
up used to validate the defect location procedure with PZFlex and Solidworks
CAD importing



TABLE I
ACTUATOR AND RECEIVERS TOPOLOGY.

Coordinates Actuator Receivers

x (m) 0.10 0.10 0.90 0.90
y (m) 0.10 0.70 0.10 0.70

The sampling frequency chose for the simulations was

fs = 500 kHz, sufficiently high to avoid aliasing effects, as

the frequency content of the acquired signals vanishes above

60 kHz. The active monitoring was performed by simulating a

chirp as voltage input in (0.1, 0.1) m on the top of the surface

(active piezoelectric discs) and recording the wave propagation

by two sensors on the top surface. In PZFlex simulation the

structural damage was emulated as a cubic mass of 10 mm on

the top of the wing surface [16]. For example, the waveforms

detected by the 3 receivers, after having placed the mass at

the coordinates x = 0.20 m and y = 0.55 m, are shown in

Fig. 5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−1

−0.5

0

0.5

Signal at sensor 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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−0.5

0
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Signal at sensor 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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0

0.5

Signal at sensor 3

Time (ms)

Fig. 5. Simulated signals acquired by the 3 sensors whose coordinates are
reported in Table I.

As can be seen from the time waveforms, it is difficult

estimating the time of arrival of echoes due to the mass

(emulated defect) among the other interfering waves caused

by edge reflections and multimodal propagation.

The acquired signals were processed through the random

modulator pre-integrator implemented in Matlab (Mathworks

Inc., MA) with the frequency specifications are the following:

chipping frequency equal to 500 kHz and the information

frequency finf = 50 kHz.

In order to compensate for dispersion, first the WFT opera-

tor must be defined. In the [0−300] kHz frequency range, only

the two fundamental A0 and S0 Lamb waves can propagate

through this plate. The group velocity curve of the A0 mode

was used to shape the warping operator according to Eq. 2

because the energy in the A0 mode is considerably greater

than that retained by the S0 mode for out-of-plane excitation.

In the recovery stage the orthogonal matching pursuit algo-

rithm was applied to recover the sparse signal in the warped

domain. Fig. 6 shows the sparse estimated signal related to the

defect located in x = 0.20 m and y = 0.55 m and the passive

sensor 2 at 0.6 m from the active sensor. The local maxima of

the reconstructed sparse signal are close to the real distance of

the incident wave (blue) and the distance due to the reflection

of the defect (green). The warped distance can be detected and

the corresponding coordinates provide the distance traveled by

the incident wave and the total distance of the wave reflected

by the defect.

Fig. 6. Sparse signal after the CS recovery

B. Results

To asses the feasibility of the proposed technique, a study

on the dependence of the localization error with the number of

bit used in the quantization stage was performed. In Table II

the localization error and the mean absolute error (%) which

is defined as the between the localization error and the actual

defect position are shown.

TABLE II
LOCALIZATION ERROR DEPENDENCY ON THE QUANTIZATION.

Number of Bits Localization Error (mm) Mean absolute error

8 19.3 2.9%

16 8.7 1.3%

24 3.1 0.5%

It is possible to see how using few bits, for example 8 bits,

the error tends to rise reaching 2 cm. The choice of the number

of bits depends on the specific control and application; a good

compromise can be between 16-24 bits.

It is important to notice how the obtained results with the

CS framework are very close to the localization error achieved

applying only the compensation operator without lowering the

sampling frequency using the random modulator as acquisition

module.

In Fig. 7 the localization error comparison between com-

pensation with and without Compressed Sensing acquisition

is presented. It is possible to underline that the performance

of the CS proposed algorithm was very close with the simple

dispersion compensation warping procedure.
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VI. CONCLUSION

In this work, a signal processing strategy to locate defects

in aircraft wings by analysing actuated and received Lamb

waves by piezoelectric sensors was proposed. The method is

suitable for chirped pulse actuations, and it is based on a

two-step procedure using the Compressed Sensing acquisition

method. The signal processing reveals directly the distance

traveled by the dispersive waves thus overcoming the diffi-

culties associated to arrival time detection. In particular, by

exploiting the dispersion compensation properties of the WFT

a suitable sparse representation of Lamb wave is obtained.

The actuated frequency modulated chirp is compressed in a

subsequent processing step. A mean absolute error on defects

localization equal to 0.5% is obtained simulating the dispersive

propagation on a simplified aircraft wing through PZFlex. It is

worth noticing that the robustness of the distance estimation

allows to achieve such performances with sparse arrays of

conventional transducers. Thanks to its unique potential, the

WFT joint with CS acquisition could pave a new class of

procedures to locate defects in waveguides. Optimization and

adaptive selection of the array shape and size are under

investigation to further improve the accuracy of the proposed

approach.

REFERENCES

[1] A. Perelli, L. D. Marchi, A. Marzani, and N. Speciale, “Acoustic
emission localization in plates with dispersion and reverberations using
sparse pzt sensors in passive mode,” Smart Mater. Struct., vol. 21, no. 2,
p. 025010, 2012.

[2] D. Boyle, M. Magno, B. O’Flynna, D. Brunelli, E. Popovici, and
L. Benini, “Towards persistent structural health monitoring through
sustainable wireless sensor networks,” in Intelligent Sensors, Sensor Net-
works and Information Processing (ISSNIP), 2011 Seventh International
Conference on, 2011, pp. 323–328.

[3] L. Benini, D. Brunelli, C. Petrioli, and S. Silvestri, “Genesi: Green
sensor networks for structural monitoring,” in Sensor Mesh and Ad
Hoc Communications and Networks (SECON), 2010 7th Annual IEEE
Communications Society Conference on, 2010, pp. 1–3.

[4] X. Zhao, T. Qian, G. Mei, C. Kwan, R. Zane, C. Walsh, T. Paing,
and Z. Popovic, “Active health monitoring of an aircraft wing with an
embedded piezoelectric sensor/actuator network: Ii wireless approaches,”
Smart Mater. Struct., vol. 16, pp. 1218–1225, 2007.

[5] L. Liu and F. Yuan, “Active damage localization for plate-like structures
using wireless sensors and a distributed algorithm,” Smart Mater. Struct.,
vol. 17, p. 055022, 2008.

[6] B. Aygun and V. Gungor, “Wireless sensor networks for structure health
monitoring: recent advances and future research directions,” Sensor
Review, vol. 31, no. 3, pp. 261–276, 2011.

[7] R. Benz, M. Niethammer, S.Hurlebaus, and L. J. Jacobs, “Localization of
notches with lamb waves,” Journal of the Acoustical Society of America,
vol. 114, no. 2, pp. 677–685, 2003.

[8] A. Leger and M. C. Deshamps, Ultrasonic Wave Propagation in Non
Homogeneous Media. Springer, 2009.

[9] D. Donoho, “Compressed sensing,” IEEE Transactions on Information
Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[10] R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde, “Model-based com-
pressive sensing,” IEEE Transactions on Information Theory, vol. 56,
no. 4, pp. 1982–2001, 2010.

[11] C. Hegde and R. Baraniuk, “Sampling and recovery of pulse streams,”
IEEE Transactions on Signal Processing, vol. 59, no. 4, pp. 1505–1517,
2011.

[12] A. Oppenheim and D. Johnson, “Discrete representation of signals,”
Proceedings IEEE, vol. 60, no. 6, pp. 681–691, 1972.

[13] L. D. Marchi, A. Marzani, S. Caporale, and N. Speciale, “Ultrasonic
guided-waves characterization with warped frequency transforms,” IEEE
Trans. Ultrason. Ferroelectr., Freq. Control, vol. 56, pp. 2232–2240,
2009.

[14] J. Fessler and B. Sutton, “Nonuniform fast fourier transforms using min-
max interpolation,” IEEE Trans. Signal Process, vol. 51, no. 2, pp. 560–
573, 2003.

[15] D. Needell and J. Tropp, “Cosamp: Iterative signal recovery from incom-
plete and inaccurate samples,” Applied and Computational Harmonic
Analysis, vol. 26, no. 3, pp. 301–321, 2009.

[16] L. D. Marchi, A. Perelli, and A. Marzani, “A signal processing approach
to exploit chirp excitation in lamb wave defect detection and localization
procedures,” Mechanical Systems and Signal Processing, 2012.


