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ABSTRACT: This paper addresses the situation where one is performing Bayesian system identification on a nonlinear 

dynamical system using a set of experimentally-obtained training data. To be more specific, an investigation is performed to 

find the optimum form of excitation that should be used during generation of the training data. To that end, the Shannon entropy 

is used as an information measure such that, through analysing the information content of the posterior parameter distribution, 

the `informativeness' of different sets of training data can be assessed. In the current work the form of excitation is 

parameterised thus allowing the choosing of an appropriate excitation to be phrased as an optimisation problem (where one is 

aiming to maximise the information content of the training data). 

KEY WORDS: Nonlinear Dynamics, System Identification, Bayesian Inference, Shannon Entropy 

1 INTRODUCTION 

Defining   and   respectively as the input and output of a 

system, the process of system identification involves using a 

set of observed data ( ) to infer a mapping 

  ( )      (1) 

 

which can be used to approximate the behavior of the system 

of interest. In the context of the current work,   is a 

mathematical model of a (potentially nonlinear) dynamical 

system,       is a vector of parameters within that model 

and   is input and output data which has been obtained 

experimentally. In the case where one has already selected a 

model structure, probabilistic estimates of the model 

parameters can be realised using Bayes’ theorem: 
   ( |   )   ( |   ) ( | ) ( | )  

 

(2) 

where the prior  ( | ) is a probability density function 

(PDF) which represents one’s knowledge of the parameters 
before the data   was witnessed.  ( |   ) is known as the 

posterior and represents one’s knowledge of the parameters 
after the data   was witnessed. The transformation from prior 

to posterior is controlled by the likelihood,  ( |   ), which 

represents the probability of witnessing the data   given one’s 
choice of parameters and model (a more thorough description 

of the likelihood is given in the following section). The 

denominator of equation (2) is known as the evidence - it is a 

normalising constant which is obtained through marginalising 

the posterior PDF over  . 

 

In addition to the above, a Bayesian framework allows one to 

adopt a probabilistic approach to model selection; in the case 

where there are a set of competing model structures the 

probability of each model structure can also be assessed using 

Bayes’ theorem: 

  ( | )   ( | ) ( ) ( )   (3) 

 

As a result of difficulties in evaluating the evidence (a 

consequence of the curse of dimensionality), as well as the 

often complex geometry of the posterior parameter 

distribution (particularly when the system is nonlinear), it is 

now common practice to utilise Markov chain Monte Carlo 

(MCMC) methods when addressing Bayesian inference 

problems. MCMC methods involve the creation of a Markov 

chain whose stationary distribution is equal to the posterior 

parameter distribution (thus allowing one to generate 

dependent samples from  ( |   )). There exists a varied 

assortment of MCMC methods – some of which can be used 

to generate samples from the posterior parameter distribution 

[1-3] while others are also capable of addressing model 

selection [4-6]. 

 

While undoubtedly useful, MCMC methods often require 

many model runs and, as such, tend to be computationally 

expensive. In recent work [7,8] it was suggested that the 

computational cost of MCMC methods could be reduced 

through the use of relatively small amounts of ‘highly 
informative’ training data. This involved using estimates of 

the Shannon entropy to measure the information content of a 

set of data such that, in subsequent MCMC simulations, one 

could use a relatively small subset of the data which was still 

highly informative with regard to one’s parameter estimates / 

choice of model. 

 

The current paper aims to extend the concept of ‘highly 
informative training data’ towards experimental design. 
Specifically, in a situation where one is dynamically exciting 

a structural system with the aim of performing system 
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identification, it aims to answer the question: which excitation 

will provide the most informative training data? In this 

preliminary study the term ‘informative’ is used with regard to 
one’s parameter estimates - the authors intend to extend the 

concepts within this paper towards model selection in future 

work.  

 

To summarise, the method proposed herein involves running 

simulations of a real system such that, through measuring the 

information content of the resulting training data, the optimum 

excitation type for subsequent laboratory experiments can be 

determined.     

 

2 BAYESIAN FRAMEWORK 

Consider the situation where one is analysing a dynamical 

system which possesses    degrees of freedom (DOF). 

During an experimental investigation,   data points of system 

response are measured at each DOF. When forming the 

likelihood it is common practice to assume that, as a result of 

measurement and modelling error, each data point is 

independently
1
 corrupted by Gaussian noise of variance    

(drawing on the central limit theorem). Thereupon, by 

defining   ( ) and  ̂ ( )( ) as the ith data point at the jth DOF 

according to the measured data and the model response 

respectively, the likelihood is given by: 

 

  ( |   )      (   ( )) (4) 

where 

   ( )      ∑∑ (  ( )   ̂ ( )( ))   
   

 
     (5) 

 

The prior is a user-defined PDF which will be written as: 

  ( | )      (   ( )). (6) 

 

Using these definitions for the likelihood and prior, the 

posterior is: 

  ( |   )      (  ( )) (7) 

 

where   ( )    ( )    ( ).  

 

3 PROPOSED METHODOLOGY 

 Shannon Entropy 3.1

For a PDF  ( )   (where   is a normalising constant), the 

Shannon entropy (which will be referred to as ‘the entropy’ 
from now on) is defined as 

 

                                                           
1
 Although it is a strategy that has been adopted here, it is 

interesting to note that one does not necessarily have to 

assume that each data point is uncorrelated – see [9] for a 

detailed discussion.  

 

   ∫ ( )   ( ( ) )     (8) 

 

As with statistical physics, equation (8) can be viewed as a 

measure of uncertainty – the lower the entropy the more 

confidence one has in  . In the current paper the PDF  ( )   

is chosen to be the posterior parameter distribution such that a 

reduction in entropy represents an increase in confidence with 

regard to one’s parameter estimates.  

 

As one frequently finds that the geometry of the posterior is 

complex and that the evidence term is difficult to evaluate, the 

exact entropy of the posterior is often unattainable. In such 

cases, it is advantageous to approximate the posterior as being 

Gaussian. Using a second-order Taylor series expansion of  ( ) about the most probable parameter estimates (denoted   ) it is possible to shown that: 

   ( |   )     (           ) 
(9) 

 

where the asterisk indicates that the posterior has been  

approximated,          and     is the Hessian matrix: 

           ( )           ( )           ( )        
 

(10) 

Throughout this paper, the elements of     are estimated 

using finite difference methods. From equation (9) it can be 

seen that the inverse of     is equal to the covariance matrix 

of the approximated posterior. It should be noted that uniform 

priors are used throughout this work and, as such, the second 

derivative in equation (10) is always equal to zero.   

 

Substituting the Gaussian approximation of the posterior into 

equation (8), one finds that the entropy of   ( |   ) is 

given by 

      (     (  ))      (    (     ))  (11) 

 

It is possible to show that, in the case where     is diagonal, 

minimising the Shannon entropy is equivalent to minimising 

the diagonal elements of the posterior covariance matrix 

(therefore maximising one’s confidence in the parameter 
estimates) [8]. 

 

 Algorithm 3.2

The algorithm used to analyse the effectiveness of different 

excitation parameters is now described using pseudo-code. 

Before the algorithm can be implemented, one must select an 

excitation type (  ) (a square wave for example) as well as a 

vector of parameters (  ) which control certain features of the 

excitation (amplitude and frequency for example). 

Additionally, one needs an estimate of the measurement noise 

variance (  ) which is likely to occur during experimental 

testing (this is based on the assumption that only the measured 

output has been corrupted by noise).  

 



Finally, one must raster (  ) into a grid of values which are to 

be investigated: (  ( )   ( )     (  )
) before proceeding as 

follows: 

 

For        

 Generate excitation  (  ( ))  

 Generate  ̂(  ), the response of the model to input  .  

 Corrupt the model response with measurement noise 

– this is equivalent to simulating the data that one 

would typically witness experimentally 

 Estimate the entropy of the posterior parameter 

distribution  

End 

 

The optimum excitation parameters are those which minimise 

the entropy of the posterior.  

 

 Probabilistic Entropy Estimates 3.3

It is worth observing that, as a result of the measurement 

noise, there will always be uncertainty in one’s entropy 

estimates - this will inevitably lead to uncertainty in the 

optimum choice of excitation parameters. 

 

To address this, the authors considered using a Bayesian 

framework to realise probabilistic estimates of the optimum   : 

  (  |    )   ( |     ) (  |  ) ( |  )  
(12) 

 

where, in this case, the likelihood would be defined as 

  ( |     )  (     )       (      (      ) )  (13) 

 

However, this would require estimates of the average entropy 

as well as the variance term    . This is further complicated by 

the fact that     is likely to change depending on the excitation 

parameters (a low amplitude response will lead to a higher 

signal-to-noise ratio and, as such, more uncertainty in the 

entropy estimates).  

 

Consequently, rather than adopt this methodology, the authors 

chose to generate probabilistic entropy estimates using a 

frequentist approach (by generating an ensemble estimate of 

the entropy). This makes use of the fact that, as numerical 

simulations are used to analyse the effect of the excitation 

type, it is possible to conduct many experiments under the 

same conditions.  

 

 Reducing Numerical Errors 3.4

As the elements of     are approximated using finite 

difference methods, the entropy estimation process will 

always be prone to numerical errors. It was found that these 

errors could be reduced significantly using a simple strategy. 

Recalling that       is the covariance matrix of the 

approximated posterior then it follows that any estimate which 

leads to the diagonal elements of       being negative must 

be false. By instructing the algorithm to ignore such results, it 

was found that the uncertainty in the entropy estimates could 

be greatly reduced.  

 

4 RESULTS 

In this section, the proposed method is demonstrated on 

several nonlinear dynamical systems.  

 SDOF System: Coulomb Nonlinearity with Square 4.1

Wave Excitation 

Initially, a base-excited SDOF system with nonlinear damping 

was considered (Figure 1). The equation of motion of the 

system is 

  ̈       ̇           ( ̇)    ̈ (14) 

 

where  ̈ is a user-defined base acceleration,   is the resulting 

displacement of the mass,   is the damping ratio,    is the 

natural frequency and   modulates the level of Coulomb 

damping in the system. The magnitude of these parameters is 

shown in Table 1.  

 

For the first part of this investigation,    was chosen such 

that a square-wave base acceleration of amplitude 4    ⁄  was 

used to excite the system: 

  ̈           (     )   (15) 

 

The frequency of the square wave was left to be determined 

such that, in the context of this paper,      . Each 

simulation of a real test was corrupted with Gaussian 

measurement noise of standard deviation           

which, depending on the excitation frequency, resulted in a 

signal-to-noise ratio of between 15 and 60.  

 

 

 

 
Figure 1: Schematic diagram of the system described by 

equation (14). 

 

 

 

 

 

 



Table 1: Parameters of the dynamical system described by 

equation (14).  

 

Parameter Magnitude Units   0.01 -         rad/s       N/kg 

 

Treating all of the model parameters ( ) as unknown, the 

entropy of the posterior parameter distribution was estimated 

for a range of different excitation frequencies. The ensemble 

average entropy, as well as confidence bounds, is shown in 

Figure 2.  

 

 
Figure 2: Variation of the Shannon entropy with the 

frequency of a square-wave excitation for the system 

described by equation (14). 

 

It is immediately obvious that the entropy of the posterior will 

be minimised if one excites the system at its resonance 

frequency (10 Hz). This is simply because this maximises the 

signal-to-noise ratio – the relatively large response of the 

system is as far from the noise floor of the measurement noise 

as possible. It is important to note that Figure 2 shows the 

entropy of the entire posterior distribution – it does not show 

how one’s confidence in each individual parameter estimate 

changes with    (this is addressed in section 4.3 of the current 

work).  

 

Two other points are of particular interest ((a) and (b) on 

Figure 2). According to the entropy estimates, point (b) (a 

square-wave excitation of 5 Hz) should yield relatively 

uncertain parameter estimates relative to point (a) (a square-

wave excitation of 3 Hz). This was confirmed using MCMC 

simulations (the Metropolis algorithm specifically), the results 

of which are shown in Figure 3. The MCMC results have been 

normalised such that the Gaussian approximations of the 

posterior, which form an essential part of the entropy 

estimation, can be shown alongside. One can see that 

excitation (a) has indeed led to less uncertain parameter 

estimates relative to excitation (b). It is interesting to note that 

the Gaussian approximations are fairly poor, although they 

have still been able to predict which excitations will lead to 

better parameter estimates – this is a trend which the authors 

encountered throughout all the subsequent investigations.  

 

 

 
 

Figure 3: MCMC results (black lines) and Gaussian 

approximations of the posterior distribution (grey lines) for 

the parameters of the system shown in equation (14). Plots (a) 

and (b) refer to the excitations (a) and (b) on Figure 2. 

 

 SDOF System: Coulomb Nonlinearity with Sinusoidal 4.2

Excitation 

In this section the natural frequency and damping ratio of the 

system was treated as known such that the magnitude of 

Coulomb damping was the only parameter to be found. 

Additionally, a sinusoidal excitation at the resonance 

frequency of the system was employed: 

  ̈       (    )  (15) 

 

where the amplitude (  ) was left as a parameter to optimise. 

The resulting entropy estimates, as a function of   , are shown 

in Figure 4. It is clear that, as one would expect, low 

amplitude excitations (such as point (a) on Figure 4) are 

beneficial when attempting to identify Coulomb-type 

nonlinearities. However it is also important to observe that, in 

the low amplitude regions, the response of the system is 

heavily corrupted by measurement noise – this has greatly 

increased the variance of the entropy estimates. It is also 

interesting to note that, above the amplitude indicated by point 

(b), the entropy is relatively unaffected by the amplitude of 

the excitation. This may be because the system is dominated 

by the linear response.  

  

 

 

 



 
 

Figure 4: Variation of the Shannon entropy with the 

frequency of a sine-wave excitation for the system described 

in equation (14). 

 

 

 SDOF System: Coulomb and Duffing-type 4.3

Nonlinearities and Sinusoidal Excitation 

In this example a hardening Duffing-type spring was added to 

the system such that its equation of motion was now: 

  ̈       ̇           ( ̇)        ̈ (15) 

 

where   controls the magnitude of the nonlinear spring. 

Throughout the following analysis,   was set equal to      . Once again, a sinusoidal excitation was employed at a 

frequency of 10 Hz (and whose amplitude was to be 

optimised). The natural frequency and damping ratio of the 

system were considered known such that the parameters to be 

identified were   and  . 

 

In this case, rather than tracking the entropy of the entire 

posterior distribution, it was assumed that   and   were 

uncorrelated such that 

  (   |   )   ( |   ) ( |   )  (16) 

 

This allowed the entropy of the individual elements of the 

posterior (denoted    and   ) to be tracked separately (Figure 

5). As with the previous example, the entropy of  ( |   ) 

is lowest for low excitations but, above a certain level, is 

relatively insensitive to the excitation amplitude. As one 

would expect, the entropy  ( |   ) appears to be a strictly 

decreasing function of the excitation amplitude. The entropy 

of  ( |   ) at lower levels of excitation is not shown on 

Figure 5 as, because of the large amounts of uncertainty 

involved, numerical overflow issues were encountered.   

 
 

Figure 5: Variation of the Shannon entropy with the 

frequency of a sine-wave excitation for the system described 

in equation (15). 

 

Figure 5 presents an interesting conclusion. It suggests that, if 

one is wishing to simultaneously identify a Coulomb and 

Duffing-type nonlinearity using this type of excitation and        can be considered a reasonable level of uncertainty 

with regard to the Coulomb damping estimate, then a large 

amplitude excitation is preferable. This is because the 

confidence one has in the magnitude of   is insensitive to the 

excitation amplitude and so, therefore, one should simply 

choose the excitation which maximises one’s confidence in  . 

 

To validate this conclusion two sets of training data were 

created using excitation amplitudes of      and         ⁄  respectively. MCMC simulations were then used to 

generate samples from the resulting posterior distributions. 

Figure 6 confirms that the use of a higher amplitude excitation 

has greatly increased one’s confidence in the value of  , while 

it has had relatively little influence on one’s confidence in the 
value of  . 

 
 

Figure 6: MCMC samples from the posterior shown in 

equation (16) where training data was generated using an 

amplitude of (a) 1 and (b) 4    ⁄ . Dashed black lines 

represent the true parameter values.  



5 DISCUSSION AND FUTURE WORK 

The authors intend to extend the preliminary study detailed in 

this paper in a variety of ways. For example, much of the 

analysis relies on the assumption that one already has a 

reasonable estimate of the optimum parameter vector   . This 

may seem to be a somewhat circular argument as the overall 

aim of the proposed methodology is to design an experiment 

which allows one to obtain accurate estimates of   . 

However, the ultimate goal of this work is to provide much 

more generic results. For example, in the case where one 

wishes to infer whether there is a combination of Coulomb 

and Duffing-type nonlinearities (of any magnitude) present in 

a system, it is hoped that the type of analysis detailed in this 

paper will be able to generate statements such as ‘a large 

amplitude excitation at the resonance frequency of the 

structure is required to test for these nonlinearities’. 
Additionally, the authors wish to extend the method such that 

it can aid in selecting the bandwidth of random excitations or 

the frequency and phase of multi-sine excitations.   

 

Studying Figure 6, it is clear that the most probable 

parameters predicted by the MCMC simulations are biased. 

This highlights that, through using the method outlined in this 

paper, one defines the optimum excitation as being that which 

minimises parameter uncertainty (rather than that which 

minimises the bias in the most-probable parameter estimates). 

It would be interesting to see if, in future work, the phrase 

‘optimum excitation’ can be defined as that which produces 

parameter estimates whose bias, as well as uncertainty, has 

been minimised.  

 

Ultimately, before this work can be pursued further, the aim is 

to investigate how the proposed methodology can aid the 

system identification of real, laboratory-based systems.  

 

6 CONCLUSIONS 

Broadly speaking, this paper is concerned with the Bayesian 

system identification of dynamical systems using 

experimentally-obtained training data. An investigation is 

performed to find the optimum form of excitation that should 

be used during the generation of training data. This is 

achieved by using the Shannon entropy as an information 

measure such that, by estimating the entropy of the posterior 

parameter distribution, the information content of different 

sets of training data can be analysed. Using a series of 

simulations it is shown that such an approach can allow one to 

design experiments which, ultimately, will result in parameter 

estimates with minimal uncertainty.  
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