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Abstract
A model has been made of the primary shutdown system of an Advanced Gas-cooled Reactor nuclear power

station. The aim of this paper is to explore the use of sensitivity analysis techniques on this model. The two

motivations for performing sensitivity analysis are to quantify how much individual uncertain parameters

are responsible for the model output uncertainty, and to make predictions about what could happen if one

or several parameters were to change. Global sensitivity analysis techniques were used based on Gaussian

process emulation; the software package GEM-SA was used to calculate the main effects, the main effect

index and the total sensitivity index for each parameter and these were compared to local sensitivity analysis

results. The results suggest that the system performance is resistant to adverse changes in several parameters

at once.

1 Introduction

The United Kingdom has seven Advanced Gas-cooled Reactor nuclear power stations (AGRs), which pro-

vide around 20% of its electricity. The AGR design was developed in the 1970s and is unique to Britain. The

primary shutdown mechanism is provided by the control rods which absorb the neutrons needed to sustain

a chain reaction of uranium fissions in the reactor core. The control rods are continually raised and low-

ered in order to maintain a critical reaction. A reactor typically has around 80 control rods, each with its

own actuator. Should the reactor exceed its normal operating conditions, the control rods will be released

by an electromagnetic clutch and insert into the core under gravity, shutting down the reactor. This system

was designed experimentally and is regularly tested to ensure the rods will enter the core quickly enough to

shutdown the reactor with a sufficient safety margin. Large amounts of collected data and modern modelling

techniques give an opportunity to understand and monitor the primary shut down system performance at a

more detailed level; this is beneficial for managing the plant commercially and for giving early warning of

any potential performance issues. The objective of this paper is to develop a mathematical model of the

system and explore the use of probabilistic sensitivity analysis techniques on this model.

Sensitivity analysis is concerned with how a model’s inputs affect its output. In the context of modelling

control rods there are two main uses for sensitivity analysis. The first is to investigate how the uncertainty

of individual model parameters is responsible for the uncertainty of the model output. This is useful when

developing and refining the model as effort can be focused on the most important parameters. The second

use for sensitivity analysis is for making predictions about the effects of changing parameters on the perfor-

mance of the system, i.e. what will be the effect on model output if one or several model parameters deviate

from their original values?



It is relatively straightforward to assess the local sensitivity of a model to its parameters, by partially dif-

ferentiating the model output with respect to different parameters. However this method is not particularly

informative because it fails to take into account nonlinear responses. A slightly more informative technique

is to run the model for a range of parameter values, keeping the others constant. Both of these methods fail

to take into account the fact that sensitivity to a parameter could vary as other parameters change. For a

model with many parameters assessing the effects of all possible parameter combinations is challenging [1].

Global sensitivity analysis techniques investigate the entire range of the possible input space using statistical

methods; these can be time consuming and still require careful interpretation.

Monte Carlo analysis can be used to sample from the probability distribution of model outputs, given a

set of probability distributions of model inputs, these output distributions can be used to infer global sensi-

tivity qualities [2, 3]. Whilst this is effective, it can be extremely computationally expensive, especially if

there are many parameters of interest. A way of reducing the expense of global sensitivity analysis given a

computationally expensive model is to use a surrogate model - a model of a model. This still requires many

model runs but far fewer than Monte Carlo analysis. A technique based on Fourier amplitude sensitivity test-

ing (FAST) provides an elegant way of estimating the contribution of input uncertainty to output uncertainty,

however this method is limited to investigating the main effects of parameters and does not give information

regarding interactions. [4, 5].

Choosing sensitivity analysis techniques requires a compromise between robustness, computational cost,

ease of implementation and conceptual simplicity. Within the nuclear industry, robustness is generally pre-

ferred at the expense of computational cheapness, to within reason [6]. In the current case, the purpose of

the model and sensitivity measures is to assist in decision making and increase understanding of the system.

It is desirable that the meaning of the measures used and the concepts behind them are sufficiently intuitive

that someone with little knowledge of sensitivity analysis is able to confidently use them.

The technique chosen in this investigation is a Bayesian approach to surrogate modelling developed in [7],

which will be introduced in more detail below. It was chosen as it is both computationally efficient and

robust, and although the maths behind it is relatively complicated the basic principles are not difficult to

understand.

2 The model

A schematic of the system of interest is shown in Figure 1 and a more detailed sketch of the brake system is

given in Figure 2. The governor shaft is connected to the motor by an electromagnetic clutch (not shown).

If power to the clutch is lost then the governor shaft will be released and the rods will insert into the core. A

two-stage braking mechanism is attached to the governor shaft. The primary brake is driven by flyweights

and is dependent on the rod velocity. The secondary brake is driven by a lead screw, which is connected to

the bevel shaft by gears (not shown). Key assumptions made during the derivation of the model structure are:

• The effects of the chain friction, bearing friction, gear/sprocket efficiency and the friction between the

side walls of the core and the rods are lumped together in a single, scaled friction parameter Ff which

acts as a constant force resisting the rod motion.

• The coefficient of friction between the governor and the brake is a constant.

• The drag forces from the gas are directly proportional to the velocity of the rods and do not depend on

the displacement.

• All components are assumed to be fully rigid, except the springs in the brake mechanism.
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Figure 1: Schematic of control rod system.
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Figure 2: The primary and secondary brake mechanisms.

The action of the brake is sufficiently complicated that there are 9 distinct stages of rod motion. Each stage

is described by 2 simultaneous differential equations, one for the motion of the rods and one for the motion

of the flyweights. The points at which the model transitions between stages are dictated by the position of

the flyweights and the rods. The equations describing stage 6 of the rod’s motion are given as an example

below.

The rod acceleration, ẍ, is given by:

ẍ =
Mg +Mcgx− hẋ− Ff − (C1ẋ

2 − C8θf − C9)− (C10 + C11θf + C12x)

M +Mcx+ I
(1)

Where:

c =L1 sin(α+ θf )

d =L1 cos(α+ θf )

C8 =µRb(k + k1)

C9 =µR(Mfgc/b+ Cb −Mpg)

C10 =µRk2(ic + L2 − xubrake − bθfmax)

C11 =µRk2b

C12 =µRk2Cr

The acceleration of the flyweights is given by:

θ̈f =
Caẋ

2 −Mfgc− (kbθf −Mpg)b− Fusgn(θ̇f )− (k1bθf + Cb)b− (C5 + C6θf + C7x)

(If +Mtb2)
(2)

Where:

C5 =k2b(ic + L2 − xubrake − bθfmax)

C6 =k2b
2

C7 =k2bCr



Parameter Description Estimated using Expected value

M (kg) Mass of control rods. Acurately known 173

Mc (kg/m) Mass of chain. 3D drawings 2.0

L1 (m) Dimension (see fig 2). 3D drawings 0.016

L2 (m) Dimension (see fig 2). 3D drawings 0.027

a (m) Dimension (see fig 2). 3D drawings 0.021

b (m) Dimension (see fig 2). 3D drawings 0.013

µ (Nm/N) Brake coefficient of friction. System ID 8.1

k1 (N/m) Main spring stiffness. System ID 184000

k2 (N/m) Reaction spring stiffness. System ID 12300

k (N/m) Return spring stiffness. System ID 860

θfspring (degrees) Flyweight angle when thrust block

comes into contact with main

spring.

3D drawings 7.9

θfmax (degrees) Flyweight angle when primary

brake engages.

3D drawings 8.1

θfbrake2 (degrees) Flyweight angle when secondary

brake fully engaged.

3D drawings −8.5

h (N/m/s) Viscous drag coefficient. System ID 36

Ff (N) Combined friction force. System ID 330

Fu (Nm) Friction resisting flyweight move-

ment.

System ID 0.45

I (kgm) Combined scaled rotational inertia

of all rotating components.

3D drawings 240

R (radians/m) Ratio of governor shaft rotation to

rod movement.

Acurately known 190

Mp (kg) Combined mass of the thrust bear-

ing, thrust block and upper face-

plate.

3D drawings 1.6

Mt (kgm) Combined mass of the 3 faceplates,

friction disks, thrust bearing and

thrust block.

3D drawings 2.8

If (kgm) Rotational inertia of flyweights

about pinion.

3D drawings 0.00030

Mf (kg) Mass of flyweights. 3D drawings 0.89

n0 (m) Initial compression of main spring. 3D drawings 0.018

ic (m) Initial compression of reaction

springs.

3D drawings 0.017

Cr Ratio of leadscrew movement to rod

movement.

Acurately known 0.003

xbrake (m) Rod position when secondary brake

first engages.

Acurately known 6.2

α (degrees) Flyweight angle when rod is at rest. 3D drawings 55

Table 1: Description and expected value of model parameters.



Figure 3: Histogram of k1 probability distribution.

The model relies on 28 parameters which represent physical attributes of the system e.g. spring stiffnesses,

masses, coefficients of friction etc. These parameters are listed in Table 1. Some of the parameters (the gear

ratios and the mass of the rods) are accurately known quantities. Many of the parameters were estimated

using 3D models of the system which are fairly accurate, but their accuracy cannot be guaranteed. There

were some parameters which are not possible to measure directly or estimate analytically with any accuracy.

These were the friction terms, spring stiffnesses, and the viscous drag coefficient.

The system is tested regularly and time histories of the rod positions have been recorded. The possible

values of the unknown parameters were estimated using Bayesian system identification, which combines

prior knowledge of the parameters with measured data from the system to give probability distributions of

parameter values. An example of this is given in Figure ??, which shows the probability distribution for

the stiffness of the primary brake main spring, k1. The data used was a single time history taken from the

insertion test of a newly maintained system. A plot of this time history is given in Figure ?? alongside a plot

of the modelled rod position (the model used the mean of the estimated parameter probability distributions

for the unknown parameter values). Describing the details of Bayesian system identification is outside the

scope of this paper, the techniques used here were developed in [8] and [9].

The sensitivity analysis methods used in this investigation require the model to give a single value output.

The value chosen here is the distance the rod has inserted 4.5 seconds after it has been released, which was

chosen as it is used as a key measure of how well the primary shutdown system is performing. The design

specification is that the rods must have inserted at least 6.5m after 4.5 seconds to shutdown the reactor with a

sufficient safety margin. It is desirable that the rods enter the core as quickly as possible, while not traveling

fast enough to cause any damage.

3 Bayesian Sensitivity analysis

3.1 The Emulator

The sensitivity analysis technique used here involves the use of an emulator - a model of the model. The

model is treated as an unknown function, with the possible ranges of the input parameters specified by proba-

bility distributions. A selection of input vectors are sampled from these distributions, using a Maximin Latin

Hypercube design to ensure complete, even coverage of the input space. The model is then run using these



Figure 4: Plot of measured rod position and modelled rod position during an insertion test.

vectors as inputs to provide the training data for creating the emulator.

If it is assumed that the model is a smooth function of its inputs, then a response surface can be fitted to

the training data using a least squares regression and the output can be estimated for any set of inputs. Early

use of emulators in sensitivity analysis involved using the response surface to perform Monte Carlo analysis

at a reduced cost [3]. In the current case the response surface is used to provide the mean of the multivariate

Gaussian probability distribution which represents the prior belief in the value of the model output. The prior

distribution is then conditioned on the training data to give a posterior distribution over functions, which can

be used to infer many global sensitivity values, the ones of interest will be described below. This technique

is described in detail in [7].

3.2 Main effects and interactions

The model output, y can be decomposed into main effects and interactions of its input parameters, x (x
denotes the vector of n input parameters {x1, ..., xn})

y = E(Y ) +
n∑

i=1

zi(xi) +
∑

i<j

zi,j(xi,j)
∑

i<j<k

zi,j,k(xi,j,k) + ...+ zi,j,k(x) (3)

where,

zi(xi) = E(Y |xi)− E(Y ) (4)

zi,j(xi,j) = E(Y |xi, j)− zi(xi)− zj(xj)− E(Y ) (5)

zi,j,k(xi,j,k) = E(Y |xi, j, k)− zi,j(xi,j)− zi,k(xi,k)− zj,k(xj,k)− zi(xi)− zj(xj)− zk(xk) (6)

zi(xi) is the main effect of xi, zi,j(xi,j) is the first order interaction between xi and xj , zi,j,k(xi,j,k) is the

second order interaction etc. Y is the random variable corresponding to the function output, E(Y ) is the

expected value of the output considering all possible combinations of inputs.



Parameter Range Main effect

index (%)

Total sensitivity

index (%)

Mass of flyweights (kg) 0.8− 0.98 3.6 4.1

Angle - alpha (degrees) 50− 60 11.1 12.1

Dimension - L1 (m) 0.0144− 0.0176 7.5 8.3

Dimension a (m) 0.0189− 0.0231 1.1 1.3

Dimension b (m) 0.0117− 0.0143 4.0 4.5

Brake coefficient of friction (Nm/N) 0.02− 0.032 52.23 55.37

Reaction spring stiffness N/m 11000− 13000 4.7 5.9

Initial compression of main spring (m) 0.0164− 0.02 2.5 2.9

Initial compression of reaction springs (m) 0.0153− 0.0187 5.1 8.3

Table 2: Main effect index and total sensitivity index values for most important parameters from the first run

of sensitivity analysis.

The main effect of a parameter is the output of the model with the parameter held constant, averaged over all

of the other parameters’ possible values. This can be plotted over the parameter’s possible range and gives a

good visual representation of the model’s sensitivity to that parameter. A plot of the interactions shows the

effect of varying two or more parameters simultaneously (in addition to their main effects) averaged over the

rest of the parameter space.

3.3 Variance based measures

The variance of the main effect is known as the main effect index (MEI) and it can be written as,

MEIi = var{E(Y |Xi)} (7)

This is the expected amount that the uncertainty of the model output would be reduced if the true value of xi
was known.

The total sensitivity index (TSI) is the variance caused by a parameter and any interaction involving that

parameter,

TSIi = var(Y )− var{E(Y |X
−i)} (8)

It can also be thought of as the remaining variance if the true values of all of the parameters except xi are

known (−i refers to the complement of the subset i).

For a more detailed description of these measures, and how they are inferred see [7] and [10].

4 Results and discussion

4.1 The first run of sensitivity analysis

When performing global sensitivity analysis, choosing the shape and width of the parameter distributions is

important. Choosing an incorrectly wide distribution means that a parameter’s importance could be overes-

timated and an incorrectly narrow one would underestimate importance. Without a quantitative knowledge

of uncertainty in the parameter values, engineering judgement is required in choosing the width of the distri-

butions and it is worth keeping this in mind when interpreting the results. All of the parameters are assumed

to have uniform distributions.



The purpose of the first run of sensitivity analysis performed here is to investigate how the uncertainty

in individual model parameters is responsible for the uncertainty of the model output. This can be used to

decide which parameters are most important when developing the model, as well as giving insight into how

the system behaves. There are 25 parameters which were investigated here out of 28 in total. The mass of

the rods, the gear ratios and the gravitational constant are all known accurately and are not going to change.

18 of the parameters were measured from 3D drawings of the system which are thought to be reasonably ac-

curate. For these parameters a range of ±10% either side of the parameter’s expected value was used, which

is likely to be far in excess of the actual inaccuracy. Probability distributions for the other 7 parameters were

estimated using Bayesian system identification, however these distributions were estimated assuming that

the other parameter values were accurate, so the ranges used have been doubled.

At this point it is worth noting the difference between subjective and objective uncertainty in parameter

values. Subjective uncertainty results from a lack of accurate knowledge of the system, e.g. a dimension

which is not accurately known. Objective uncertainty results from the fact that some elements in the system

behave in a stochastic way, for instance, brake pad friction coefficients have been shown to vary unpre-

dictably [11].

The MEIs and TSIs of the parameters which were responsible for more than 1% of the output variance

are shown in Table 2. It can be seen that more than half of the output variance arises from the brake friction

term µ. It is also clear from the table that the vast majority of the variance arises from the main effects of

parameters, since the values of the MEIs are close to the values of the TSIs. The sum of the MEIs is 95%, so

interactions account for only around 5% of the output variance.

Plots of the main effects for selected parameters are shown in Figure 5 to 8. Alongside these are plots

of the model output with all of the parameters held at their expected values, except the parameter of interest

which is varied across a range of values. It should be noted that the y-axis limits are not the same on the

main effects plots and the corresponding one-at-a-time (1AAT) plots. A common theme across all of the

parameters is that the expected model outputs from the main effects plots are higher (the rod has inserted

further) than the corresponding model output from the 1AAT plots. This is because on average the model

is more sensitive to the change in a parameter when it increases the distance the rod inserts than when it

decreases it. This can be seen in Figure 7 which shows that the output is more sensitive to a decrease in

brake friction than an increase. The fact that the system is generally less sensitive to parameters when they

slow down the rod’s insertion suggests that the system is more likely to remain safe, but it is not the case for

all parameters.

Figure 8 shows that plotting the main effects can obscure a local nonlinearity in the response to a change in

a parameter. While in the current case the model is fairly insensitive to the parameter, it does highlight the

fact that when looking at the global behaviour it is possible to miss details in the local behaviour.

4.2 The second run of sensitivity analysis

The purpose of the second run was to investigate what could happen if parameters were to change. Only four

parameters were investigated; the brake friction coefficient µ, the general friction term Ff , the main spring

stiffness and the reaction spring stiffness. These parameters were chosen because they could feasibly change

during the lifetime of the reactor, and because the model was not shown to be totally insensitive to them

during the first run of sensitivity analysis. The authors currently do not have quantitative information regard-

ing how these parameters could change, so the ranges chosen are speculative. Each parameter was varied,

from its expected value in the direction that would have a detrimental effect on the systems performance, i.e.

which would slow the speed of the rod’s insertion.



Figure 5: Main effect plot and one at a time plot for the reaction spring stiffness.

Figure 6: Main effect plot and one at a time plot for the main spring stiffness.

Figure 7: Main effect plot and one at a time plot for the brake friction coefficient.



Figure 8: Main effect plot and one at a time plot for the angle ”thetaspring”.

Figure 9: Extended main effect plot and one at a time plot for the combined friction force.

Table 3 shows the MEIs and TSIs from the second run of sensitivity analysis where fewer parameters were

considered with an extended range. Again it can be seen that there is a relatively small contribution from the

interactions. The results suggest that the most influential parameters are the brake friction coefficient and

the main spring stiffness. However, it is not known how likely these parameters are to change, and by how

much; it is not possible to truly state which are the most influential parameters without this information.

Figures 9 to 12 show the main effects and 1AAT plots. The main effects show the rod inserting less far

than the 1AAT plots. This is to be expected since the main effects are the outputs averaged over the other pa-

rameters ranges, and the other parameters are varied from their expected values in the direction which slows

the rod’s insertion. The main effects plots also show much lower sensitivity to each of the parameters com-

pared to the 1AAT plots. This shows that if parameters change causing the rod drop to become slower, then

the system will become less sensitive to other parameters changing. This suggests that unless a component

drastically fails, the system is likely to stay safe.



Figure 10: Extended main effect plot and one at a time plot for the main spring stiffness.

Figure 11: Extended main effect plot and one at a time plot for the reaction spring stiffness.

Figure 12: Extended main effect plot and one at a time plot for the brake friction coefficient.



Parameter Range Main effect

index (%)

Total sensitivity

index (%)

Brake coefficient of friction (Nm/N) 0.026− 0.05 37.4 40.2

Reaction spring stiffness (N/m) 12000− 20000 8.5 10.5

Combined friction term (N) 330− 600 2.4 3.34

Main spring stiffness (N/m) 100000− 184000 48.12 50.61

Table 3: Main effect index and total sensitivity index values from the second run of sensitivity analysis.

5 Conclusions

The aim of this paper was to develop a model of the AGR primary shutdown system and explore the use

of probabilistic sensitivity analysis techniques on this model, with the objective of shedding light on the

contribution of parameters to model uncertainty and the system’s performance. The results suggest that

gaining a better understanding of the brake friction would be the most effective way of reducing the model

uncertainty. However, it is impossible to definitively characterise the uncertainty of the model output without

accurate estimates for how uncertain the input parameter values are. The results from the second round of

sensitivity analysis imply that the system ought to be resistant to changes in several parameters at once; a

component’s properties would have to change dramatically before the system becomes unsafe.

It is made clear in these results that while these global sensitivity analysis techniques use information from

the entire range of the possible parameter space, they do not fully describe the model’s sensitivity to these

parameters, because details (such as nonlinearities) can be lost when averaging over the other possible pa-

rameters. This study has shown that it can be useful to show local sensitivity analysis results alongside the

global ones as it provides context for comparison.
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