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Abstract
The aim of this paper is to demonstrate the potential of the Reversible Jump Markov Chain Monte Carlo

(RJMCMC) algorithm when applied to system identification problems which involve both parameter estima-

tion and model selection. Within the context of Bayesian Inference, Markov Chain Monte Carlo (MCMC)

methods have been used for a long period of time to address the parameter estimation of linear and nonlinear

systems, which are described approximately by a model. It is often the case that there are a set of competing

model structures that could potentially produce good approximations of the real system - this raises the issue

of model selection. Even though they address parameter estimation, many MCMC samplers cannot address

model selection. As an extension to one of the most well known MCMC samplers, the Metropolis-Hastings

algorithm, the RJMCMC algorithm is a MCMC method that covers model selection as well as parameter

estimation simultaneously. RJMCMC can be applied when models contain different numbers of parameters.

The algorithm is capable of moving between parameter spaces of different dimension in order to find the

most appropriate model that describes the system and the most probable parameters within that model. In

this contribution the RJMCMC algorithm is introduced in the context of nonlinear dynamical systems and is

demonstrated on simulated data.

1 Introduction

System Identification has, for a long time, been an area of great importance in the context of structural dy-

namics. The aim of system identification is to provide a robust characterisation of a real structure, making use

of experimental data and mathematical models. The purpose of characterising the real structure is to assess

its dynamic behaviour. As is well known, the process of system identification breaks down into two main

areas: estimation of parameters that cannot be directly measured experimentally (parameter estimation) and

identification of the mathematical model structure (model selection). From an industrial perspective, pos-

sessing knowledge of the dynamic behaviour of a real structure is helpful as it can determine such things

as the excitation a structure can withstand before damage or failure occurs or the maximum displacement a

structure can withstand, etc.

Systems can be classified into two main categories: linear systems or nonlinear systems. The process of

system identification of linear systems has been well dealt with in the past by using the principle of super-

position, reciprocity and homogeneity. When it comes to system identification of nonlinear systems, these

principles and rules do not hold anymore. For this reason, nonlinearity is hard to address. Typically, in the

engineering industry, one considers structures as being linear or behaving linearly because there are devel-

oped tools that can be used for linearity. Unfortunately, most structures display nonlinear dynamic behaviour.

Some of the most common examples of nonlinearity are friction, contacts and stiffening/softening effects.



Whatever the cause of nonlinearity, due to its unpredictable behaviour,a nonlinear structure can become

problematic [6]. Nonlinearity is increasingly being considered as part of the reason why structures fail. For

this reason, researchers are working on developing tools to deal with nonlinearity.

An important issue that one encounters when conducting system identification is that of uncertainty. Uncer-

tainty could arise from either unknown, ignored or/and compressed information [8]. Uncertainty occurs for

various reasons, such as measurement error, model selection error or parameter estimation errors, etc [3].

Whatever the provenance, uncertainty can affect the results of system identification, sometimes invalidating

them [7]. One way of accounting for uncertainty in the process of system identification is by using a prob-

abilistic framework. There are two main views when using a probabilistic framework [10]: the Frequentist

view or the Bayesian view. As the name implies, the frequentist approach is based on the frequency of out-

comes; it does not take into account anything that happened before the event of study. Another probabilistic

approach is Bayesian inference, which is the approach used in the present work. Bayesian inference is based

on degrees of belief, which means that when constructing the probability of an event happening, one takes

into account any prior information about that event. One of the benefits of using a Bayesian framework is

that it prevents overfitting in the process of model selection. Due to the fact that Bayesian inference, often

enough, makes use of posterior probability distributions with complex geometries, MCMC sampling algo-

rithms are being used (MCMC algorithms have the capacity of sampling from complex distributions). Over

the years, there have been many MCMC sampling algorithms developed, but the Metropolis-Hastings(MH)

algorithm which is presented in this current work, remains one of the most popularly used. The MH sam-

pling method is used in doing parameter estimation but unfortunately it does not cover the process of model

selection. Due to this shortcoming, the RJMCMC algorithm is introduced, which can simultaneously cover

parameter estimation and model selection of nonlinear dynamical systems. The reason for the RJMCMC

algorithm’s capacity of doing nonlinear system identification fully is due to its added benefit of being able to

move between spaces of varying dimensions. Further explanations on the RJMCMC algorithm are provided

in Section 4.

1.1 Literature Review

Some of the relevant work done in structural dynamics within the context of system identification using

Bayesian inference and MCMC sampling methods is summarised next.

MCMC sampling methods have been widely used in research areas other than structural dynamics. Their

wide application makes them even more attractive to researchers. Until 1990, MCMC algorithms were

employed mainly in the areas of chemistry and physics. After 1990, the algorithms were introduced into

statistics which provided an opportunity for them to be used in other research areas such as signal process-

ing, structural dynamics, etc. [1].

As this present work is concerned with using MCMC methods in the context of structural dynamics, a review

of work done in this particular area will be detailed further. The interested reader can find information on

using MCMC sampling methods, in particular the RJMCMC algorithm in signal processing in work by [11]

and [12]. Bayesian inference has been employed with MCMC sampling methods in many relevant works.

One of particular importance is [21]. In fact, the contributions of Beck and co-workers to the field of Bayesian

SI cannot be overstated; however, it is not the intention to present a detailed overview of their work here.

The authors of [21] proposed using MCMC methods in order to get regions of concentration of the posterior

probability distribution as explained by Bayes theorem. In order to do so, they applied the MH algorithm

to a locally identifiable model (multiple optimum parameter vectors) and to a locally unidentifiable model

(continuum of optimum parameter vectors). In order to improve convergence of the algorithm, a version

of Simulated Annealing was applied. As expected, the paper [21] provides a discussion on uncertainty and



reliability and possible ways of overcoming it. The algorithm introduced in [21] offered good results in SI

when used on two models.

MCMC sampling algorithm within a Bayesian framework have been used for SI of nonlinear systems in

the past. One example of such work by the current authors is [18]. The authors discussed the use of the

MH algorithm on two models, a ’Bouc-Wen’ hysteresis model and a nonlinear model of Duffing type. The

algorithm was used for the issue of parameter estimation and the Deviance Information Criterion in order to

conduct model selection. This can prove time consuming and computationally expensive. A discussion on

the correlation of the parameters was conducted.

Another example of using MCMC sampling methods and Bayesian inference for nonlinear system identifi-

cation is [17]. The authors of this particular work used real data in order to conduct SI on nonlinear systems

with nonlinearities of friction and stiffness.

The present work is mainly concerned with the RJMCMC algorithm which was introduced in 1995 by Green

in [16]. The author introduced the RJMCMC algorithm as an extension to the MH algorithm with the added

benefit of being able to do parameter estimation and model selection at the same time. In order to do so,

Green proved that the Markov chain created by his algorithm obeys the principle of detailed balance while

jumping between different parameter spaces. Another work by the same author [13], explains the RJMCMC

algorithm in further detail.

Having [16] as a starting point, many researchers adapted the RJMCMC algorithm. An example of such

work is [15] where the authors chose to use the Gibbs sampler rather than the MH algorithm at the core of

the RJMCMC algorithm (the method was used on logistic and simulated regression problems).

The RJMCMC algorithm found its use on NARMAX(Nonlinear Autoregressive Moving Average with eX-

ogenous input models) models as well [14]. The authors of [14] used the algorithm in order to present a

comparison between the forward regression method and the RJMCMC, with the latter having several bene-

fits.

Nuclear physicists have taken the opportunity to employ the RJMCMC algorithm as an alternative to linear

and nonlinear least squares techniques [5]. The interest of the authors of [5] was to use MCMC methods

in order to quantify the isotopic content of radioactive material. The methods proved successful in nuclear

spectroscopy but the authors brought to attention the fact that when it comes to MCMC algorithms, the pro-

cessing time can become an issue.

The paper is structured as follows. Section 2 will be an introduction to Bayesian inference and its relevance

within system identification of dynamical systems. Section 2 also introduces the background of MCMC

sampling methods and their importance in conducting Bayesian inference, concentrating on the Metropolis-

Hastings sampler. Section 3 is concerned with briefly describing the RJMCMC method and how it was

applied in the present work. Section 4 presents the results of applying the RJMCMC algorithm in nonlinear

system identification, and Section 5 provides a conclusion and discussion to the present work.

2 Bayesian Inference and MCMC sampling methods

The first documentations related to Bayesian inference are dated in the year 1763 when the publication ’An

Essay Towards Solving a Problem in the Doctrine of Chances’[19] surfaced, after the death of its author,

the Reverend Thomas Bayes. The term ’Bayesian’ came into its correct usage sometime in the 1900s when

statisticians started to use it within the context of probability approaches that make use of degrees of belief,

by employing equations (1) and (2). Equations (1) and (2) are referred to as Bayes’ theorem, even though the

current form of this equation was introduced by Laplace (in discrete form) and not by Bayes himself [20].



P (θ|D,M) =
P (D|θ,M)P (θ|M)

P (D|M)
(1)

and

P (M |D) =
P (D|M)P (M)

P (D)
(2)

where θ is the vector of parameters, D is the available data, M is the selected model and M is the vector of

possible models.

As mentioned in Section 1, the existence of uncertainty might lead one to a probabilistic approach. The

authors of the present paper used a probabilistic framework based on Bayesian inference due to the fact that

a Bayesian framework prevents overfitting in the process of model selection (it follows Occam’s razor [10])

and also due to the fact that it makes use of prior knowledge (as limits for the parameters, information on

material properties, etc.).

Equation (1) represents Bayes’ theorem used in the parameter estimation process and it states that the pos-

terior probability distribution of the parameters is equal to the likelihood of the available data multiplied by

the prior probability distribution of the parameters and divided by the evidence term.

Equation (2) represents Bayes’ theorem used in the model selection process and it states that the posterior

probability distribution of the models is equal to the likelihood of the used data multiplied by the prior

probability distribution of the models and divided by a normalising constant.

The evidence term of equation (1) is hard to evaluate analytically (complex integrals), which contributes to

the fact that the posterior probability distribution has often enough a complex form.

In 1953, the physicists from Los Alamos, New Mexico, started using successfully the MCMC sampling

methods, while working on the atomic bomb [20]. One algorithm of particular importance to the work of

statisticians during WWII was the Metropolis algorithm, developed by N. Metropolis. Later on, around

1970s, statisticians made the discovery that Bayesian inference can make use of MCMC sampling methods

in order to generate posterior probability distributions with complex forms, as these MCMC algorithms are

capable of sampling from PDFs with complicated geometries (the generalisation of the Metropolis algorithm

made by Hastings, which made available the widely used MH algorithm) [1].

In the context of structural dynamics (precisely SI), the Metropolis-Hastings algorithm together with Bayesian

inference is popularly used today to address the process of parameter estimation. Briefly put, the MH algo-

rithm works by generating samples from a target PDF, π(θ) (with θ being the vector of unknown parameters),

using a proposal PDF, Q(θ′|θ) , in order to provide samples from the posterior distribution of the parameters.

The popularity of the MH algorithm is due to the fact that the evidence term can be ignored in the sampling

process and also due to the fact that the proposal PDF can have any form the user chooses. Convergence to

the posterior distribution is guaranteed. For further details into how the MH algorithm is used in the context

of parameter estimation of dynamical systems, the reader is referred to a previous work by the authors, [4].

In his paper [16], Green made an observation about the MH algorithm. When confronted with the issue

of model selection, the Markov chain loses detailed balance as it is incapable of moving between spaces

of varying dimensions. The author introduced the RJMCMC algorithm as an alternative to other meth-

ods of conducting model selection as the RJMCMC algorithm proved to be capable of doing parame-

ter estimation and model selection simultaneously, while obeying the principle of detailed balance as re-

quired in order for the Markov chain to be able to provide samples. This happens when one has a set of

models M = {M (1),M (2), ...,M (l), ...,M (L)} each depending on its own set of vector of parameters,

{θ(1),θ(2), ...,θ(L)}.

The following section provides an introduction and a brief explanation to the RJMCMC algorithm. A detailed

view on the RJMCMC algorithm can be found in [4].



Fig. 1: (a) Linear system, (b) Nonlinear system of Duffing type

3 RJMCMC

The RJMCMC algorithm was first introduced in the well known paper [16]. This current work proposes

to introduce the algorithm in the context of system identification of dynamical systems by applying it on

two models, a SDOF linear model (M (1)) and a SDOF nonlinear model with a cubic stiffness (M (2)) as

illustrated in Fig. 1.

For the first model, M (1), the mass m, damping coefficient c and data (comprised of y (output) which

is displacement and F (input) which is the forcing), are assumed to be known or measured. The unknown

parameter for estimation is the linear stiffness k(1). Model M (1) is mathematically described by equation (3).

mÿ + cẏ + k(1)y = F (3)

For the second model, M (2), as for model M (1),the mass m, damping coefficient c and data are assumed

to be known or measured which leaves the linear stiffness k(2) and the cubic stiffness k
(2)
3 for estimation.

Model M (2) is described through equation (4).

mÿ + cẏ + k(2)y + k
(2)
3 y3 = F (4)

In order to apply the algorithm, for the current contribution, the authors used simulated data from the linear

and nonlinear models of the SDOF system. The main idea is to use the RJMCMC algorithm to do both model

selection and parameter estimation for the simulated system. The RJMCMC algorithm comprises three types

of moves:

• Birth move - attempt moving from model M (1) to model M (2) probabilistically;

• Death move - attempt moving from model M (2) to model M (1) probabilistically;

• Update move - stay in current model and update parameters using the MH algorithm(for details on

how to apply the MH algorithm please refer to [4]);

The RJMCMC algorithm is explained below [12] [4]:

The quantities αm, α′

m, are the acceptance probabilities of the birth and death moves respectively and will

be described in Section 3.1. The generated random number um dictates what the proposal will be.



Algorithm 1 RJMCMC Algorithm

for n = 1 : N do

2: Get um from U [0, 1] −generates a random number from an uniform distribution;

if um ≤ b
(n)
l

−birth move condition; then

4: −propose birth move

Generate ub from U [0, 1]−generates a random number from an uniform distribution;
6: Evaluate αm (detailed below)

if ub ≤ αm then

8: −update to model l + 1 and update model parameters;
else

10: −stay in model l;
end if

12: else

if um ≤ (b
(n)
l

+ d
(n)
l

) −death move condition; then

14: −propose death move

Get ud from U [0, 1] −generates a random number from an uniform distribution;
16: Evaluate α′

m (detailed below)
if ud ≤ α′

m then

18: −go to model l − 1 and update model parameters;
else

20: −stay in model l;
end if

22: else

normal MH algorithm, model remains at l state, update parameters only;
24: end if

end if

26: end for



As explained in the RJMCMC algorithm, the birth move is attempted with probability bl which is given by

equation (5). If the condition for the birth move is met, then the algorithm jumps from model M (1) to model

M (2),

bl = pmin

{

1,
P (l + 1)

P (l)

}

(5)

where, in this case, l = 1 (which refers to model M (1)) and l + 1 = 2 (which refers to model M (2)).

In the case of the birth condition not being met, the algorithm attempts a death move randomly by using

equation (6). If the condition for a death move is met, then the algorithm will move from model M (2) to

model M (1).

dl = pmin

{

1,
P (l − 1)

P (l)

}

(6)

where, in this case, l = 2 (which refers to model M (2)) and l − 1 = 1 (which refers to model M (1)).

If neither conditions for doing a birth or death move are met, then the algorithm will do an update move. As

bl, dl and ul are probabilities, the update move is attempted randomly using equation (7).

ul = 1− (bl + dl) (7)

Referring to equation (5), (6) and (7), the constant p is used in order to adjust the update probability, ul, with

respect to the birth and death probabilities, bl and dl. The P (l) and P (l − 1) components refer to the prior

probabilities of models l and l − 1, which according to the case, could be for models M (2) or M (1).

To recap, at this point there are two models: M (1) which represents a SDOF linear system that contains one

unknown parameter - the linear stiffness k(1) and M (2) which represents a SDOF nonlinear system that con-

tains two unknown parameters - the linear stiffness k(2) and the cubic stiffness k
(2)
3 . In his paper [16], Green

introduced the concept of dimension matching in order for the principle of detailed balance to hold while

jumping between spaces of varying dimension. Detailed balance, within the RJMCMC algorithm, allows the

Markov chain to provide samples from the mass probabilities of models while generating samples from the

target probability of parameters.

Section 3.1. provides further explanations on the concepts of dimension matching and detailed balance.

3.1 RJMCMC and the Principle of Detailed Balance

As model M (1) has only one unknown parameter and model M (2) contains two unknown parameters, one

can easily spot a mismatch in dimensions. Due to the fact that the dimensions do not match, jumping from

one model to the other in order to do model selection proves impossible when using the MH algorithm.

What one wants to do is be able to move between the two models in order to decide which of them best

fits the available data. In order for the forward and backward moves to occur, the principle of detailed

balance needs to be respected (at equilibrium each process should be balanced out by its reverse process).

As the dimensions of the two vectors of parameters for each of the two models do not match, the process of

jumping from M (1) to M (2) cannot be balanced out by its reverse process, i.e. jumping from M (2) to M (1).

An approach to solving the problem of matching dimensions is by introducing a new parameter in model

M (1). This newly introduced parameter (λ) is a randomly generated number. At this point one needs to state

the relation between the two models, M (1) and M (2). This is done by using mappings (functionals that can



relate different states [9]). In order to move from M (1) to M (2), the following mapping, h : R2 → R
2, was

introduced:

{

k(2)

k
(2)
3

}

=

[

0
µ

]

+

{

k(1)

λ

}

(8)

where µ is a chosen value that needs to be tuned in order for the algorithm to reach a solution efficiently.

The inverse of the mapping is applied for a death move, i.e. for going from M (2) to M (1).

The form of the mapping is not chosen randomly. Green also mentioned in his paper [16] that in order for

the mapping to be used in jumping between spaces it needs to be diffeomorphic. A diffeomorphic mapping

means one that is differentiable and unique. It is obvious that the created mapping is differentiable. One

is left with proving that the mapping is unique. According to the inverse function theorem, as long as the

Jacobian at whichever chosen point is nonzero, the mapping is said to be unique [9]. Furthermore, in this

particular case, the determinant of the Jacobian is calculated to be unity under all conditions. This concludes

the mapping to be differentiable and unique, i.e. diffeomorphic.

Now, having introduced a new parameter in M (1) and having proven the chosen mapping to be diffeomor-

phic, one can endeavour to prove that the detailed balance principle holds with the RJMCMC algorithm.

From this point onwards, expressions of the form π(θ) are considered to be probability density functions

(PDFs).

In the context of SI of dynamical systems, the principle of detailed balance states that:

π(θ)T (θ → θ
′)dθ = π(θ′)T (θ′ → θ)dθ′ (9)

Equation (9) can be explained as: the taget PDF,π(θ), of the vector of parameters θ, multiplied by the

transition function T (θ → θ
′) between the vector of parameters θ and the new state θ

′, has to be equal to

the taget PDF,π(θ′), of the vector of parameters θ′, multiplied by the transition function T (θ′ → θ) between

the new state of the vector of parameters θ′ and the current state of parameters vector θ.

The transition function mentioned in equation (9) can also be written in the following form:

T (θ → θ
′) = q(θ′|θ)α(θ → θ

′) (10)

where q(θ′|θ′) is the proposal density used in the sampling process. Considering that equation (9) is valid

for all paths available between the vector of parameters:

∫

π(θ)T (θ → θ
′) dθ =

∫

π(θ′)T (θ′ → θ) dθ′ (11)

Writing equation (10) for the case where there are two unknown parameters:

∫∫

π(θ)q(θ′|θ)α(θ → θ
′) dθ1dθ2 =

∫∫

π(θ′)q(θ|θ′)α(θ′ → θ) dθ′1dθ
′

2 (12)

If one considers equation (12) in the case of the two models M (1) and M (2), one has model (1) depending

on a vector of parameters θ = {k(1), λ} (as the vector of parameters was augmented with a a new parameter

λ) and model (2) depending on θ
′ = {k(2), k(2)3 } vector of parameters. Writing equation (12) using this

information:

∫∫

π(θ)q(θ′|θ)α(θ → θ
′) dk(1)dλ =

∫∫

π(θ′)q(θ|θ′)α(θ′ → θ) dk(2)dk
(2)
3 (13)



Using the mapping introduced in equation (8) and the Jacobian matrix, the relation between dk(1)dλ and

dk(2)dk
(2)
3 can be expressed as:

dk(2)dk
(2)
3 =

∣

∣

∣

∣

∂ (k(2), k
(2)
3 )

∂ (k(1), λ)

∣

∣

∣

∣

dk(1)dλ (14)

where

∣

∣

∣

∣

∂ (k(2), k
(2)
3 )

∂ (k(1), k(2))

∣

∣

∣

∣

= det

[

∂k(2)

∂k(1)
∂k(2)

∂λ

∂k
(2)
3

∂k(1)

∂k
(2)
3

∂λ

]

(15)

Calculating the determinant of the Jacobian, one can see that it is always equal to 1 in this case.

Putting everything together, gives the equation of detailed balance for the RJMCMC algorithm:

π(θ)q(θ′|θ)α(θ → θ
′) = π(θ′)q(θ|θ′)α(θ′ → θ)

∣

∣

∣

∣

∂ (k(2), k
(2)
3 )

∂ (k(1), λ)

∣

∣

∣

∣

(16)

At this point one has the following:

• one vector of parameters for M (1), θ = {k(1)} ∈ R
n;

• one vector of parameters for M (2), θ′ = {k(2), k(2)3 } ∈ R
n′

;

• one vector of generated random numbers, from a known density g, to help with the transition from θ

to θ
′, u ∈ R

r;

• one vector of generated random numbers, from a known density g′, to help with the transition from θ
′

to θ, u′ ∈ R
r′ ;

Using the mapping described in equation (8),one has h : Rn ×R
r → R

n′ ×R
r′ . In order for the mapping h

and its inverse to be diffeomorphic, then one needs to ensure n+ r = n′ + r′ (dimension matching). In this

particular case, one knows that n = 1 and n′ = 2. The linear stiffness parameters, k(1) and k(2), of M (1)

and M (2) were kept the same. The only random number needed in order to jump from one model to the

other was λ, u = (λ), and it was used to move from M (1) to M (2). According to the mapping h, no random

numbers were necessary to move from M (2) to M (1), so u
′ = 0 . This translates into r = 1 and r′ = 0.

Under these conditions, the relation n+ r = n′ + r′ is met.

Now one is left with evaluating the acceptance probability of moves, one uses the subscript m to indicate the

move attempted such that: for m = 1, a birth move is attempted, for m = 2 a death move is attempted, for

m = 3 an update move is attempted.

The acceptance probability for the birth move can be evaluated as follows:

αm(θ → θ
′) = min

{

1,
π(θ′)jm(θ′)

π(θ)jm(θ)g(λ)

}

(17)

where all the values are known or can be estimated and one can notice that the Jacobian is not included as it

is always equal to 1, no matter the conditions. The g(λ) term comes from the transition function, T (θ → θ
′).

The transition function can be also written as:

T (θ → θ
′) = g(λ)α(θ → θ

′) (18)



where g is a Gaussian PDF with mean 0. One can notice that the g′ PDF is not represented in equation 17

for simplicity, as u′ = 0.

The term g(λ) can also be evaluated:

g(λ) =
1√
2πσ2

exp(
−λ2

2σ2
) (19)

where σ is the standard deviation and is arbitrarily chosen and tuned accordingly.

Another way of writing the acceptance probability for a birth move is:

αm(θ → θ
′) = min { 1, rm} (20)

where rm is the ratio of move and is computed as:

rm =
π(θ′)

π(θ)g(λ)
(21)

The acceptance probability of the death move can now be evaluated:

α′

m(θ′ → θ) = min
{

1, r−1
m

}

(22)

The following section presents the results of using the RJMCMC algorithm on the two models introduced in

Section 3, using simulated data.

4 Results - applying the RJMCMC algorithm on a simulated nonlin-

ear system

As presented in Section 3, the RJMCMC algorithm was applied to simulated data within the explained sce-

nario of a linear model and a nonlinear model of Duffing type. The purpose of this section is to provide an

illustrative example for the concepts previously presented.

The training data used were simulated using MATLAB [2] (2000 points of displacement signal with with

artificial measurement noise and corresponding samples of excitation). Initially, the data was simulated using

equation (3) which means that one has data from a linear model. This means that the algorithm should favor

M (1) in the process of model selection and should provide an estimation of the linear stiffness of M (1), k(1).

Both models, M (1) and M (2), were simulated using MATLAB [2], applying a fixed-step fourth-order Runge-

Kutta method. The sampling frequency chosen was of 1000 Hz which means a true step value of 0.001 s.

The values of the parameters for the exemplar system were as follows: m = 0.5, c = 0.1 and k = 50.

The values of the mass, m, damping coefficient, c and linear stiffness, k(2) for the nonlinear model, M (2)

were kept the same and the cubic stiffness, k
(2)
3 was set as 103. The excitation used for both systems was a

Gaussian white noise sequence of mean 0 and variance 100.

After creating the training data, the RJMCMC algorithm was implemented using MATLAB [2] to do the

system identification of the structure. The priors for the two models were kept equal which translates into

the probability of proposing a birth being equal to the probability of proposing a death, bl = dl = 0.25 at the

current state l. This results in the probability of proposing an update in the current model being ul = 0.5.



The number of iterations used was 10000 samples.

The posterior distributions for both models were created as separate functions that included the likelihoods

and the priors of the parameters. The priors were set as lower and upper limits to the parameters. In the case

of both models the linear stiffness k was kept between 0 and 100. Limits of 100 and 104 were set for the

cubic stiffness,k
(2)
3 of model M (2). The proposal density was chosen to be a Gaussian distribution and the

width of the proposal was set to 0.5 with the possibility of changing it in the tuning stage. The initial values

of the parameters were set to be close to the values of the parameters for the exemplar system (also called

true values). A burn in of 500 samples was chosen.

Fig. 2: M (1) - parameter estimation of linear stiffness k(1) and history of samples

Fig.2. shows the results of applying the RJMCMC algorithm on simulated linear data using 10000 iterations.

As expected, the algorithm chose the linear model, M (1), as more appropriate to represent the data. Fig.3.

shows a bar chart of how the RJMCMC algorithm is favouring model 1 over model 2 when using linear train-

ing data. The algorithm stayed in the linear model for 9999 of the times and only tried to visit the nonlinear

model once.

A new set of training data was generated using the nonlinear system (equation (4)) which provided the

possibility of applying the RJMCMC algorithm on nonlinear data. Fig.4. shows the results of applying the

RJMCMC algorithm on simulated nonlinear data. In this case, the proposal width for the nonlinear parameter

was chosen to be unity.



Fig. 3: Model 1 vs Model 2 - using linear training data

Fig. 4: M (2) - parameter estimation of linear stiffness k(2) and nonlinear stiffness k
(2)
3

Fig. 5: Model 1 vs Model 2 - using nonlinear training data



Fig.5. shows a bar chart of how the RJMCMC algorithm is favouring model 2 over model 1 when using

nonlinear training data. The algorithm visited the linear model only 6 times and the nonlinear one 9996

times.

5 Discussion and Conclusions

The aim of this contribution was to provide an example of using the RJMCMC algorithm on two simulated

models for a SDOF system. The RJMCMC algorithm is capable of doing model selection and parameter

estimation simultaneously, which makes the algorithm a desirable tool in SI of dynamical systems. Further-

more, the algorithm is proven to function on nonlinear systems. In Section 4 the algorithm was used to do

SI for a SDOF system for which there are two candidate models: a linear model and a nonlinear model of

Duffing type. The algorithm proved successful in choosing the right model according to the data used (from

a linear model or a nonlinear one). In addition, the RJMCMC algorithm identified when the nonlinearity in

the second model is low enough so that the data could be represented by the first model, the linear one. This

proves that the RJMCMC algorithm prevents overfitting.

In terms of future work, the authors of this current contribution are planning to find a way to tune the

proposals automatically. Also, after experimental work is conducted and data is obtained, the authors plan to

use the RJMCMC algorithm on real data.
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