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OPTIMAL DAMPING OF A MEMBRANE AND
TOPOLOGICAL SHAPE OPTIMIZATION

TONI LASSILA

ABSTRACT. We consider a shape optimization problem of finding the optimal damping
set of a two-dimensional membrane such that the energy of themembrane is minimized at
some fixed end time. Traditional shape optimization is basedon sensitivities of the cost
functional with respect to small boundary variations of theshapes. We use an iterative
shape optimization scheme based on level set methods and thegradient descent algorithm
to solve the problem and present numerical results. The methods presented allow for cer-
tain topological changes in the optimized shapes. These changes can be realized in the
presence of a force term in the level set equation. It is also observed that the gradient
descent algorithm on the manifold of shapes does not requirean exact line search to con-
verge and that it is sufficient to perform heuristic line searches that do not evaluate the cost
functional being minimized.

1. INTRODUCTION

Shape optimization can be seen as part of the field of optimal control. Typically we have
a system governed by a partial differential equation whose solution uΩ depends on some
variable geometric shapeΩ. The problem is to minimize a given cost functionalJ(uΩ)
over the setS of all admissible geometric shapes with piecewise smooth boundary. Such
problems arise for example from the optimal design of structures such as bridges, where we
attempt to minimize compliance of the structure due to knownloads given certain material
constraints.

By considering the variation of the cost functional under small transformations of the
boundaries of shapes we can define derivatives with respect to shape. This allows us to
derive necessary optimality conditions for the shape optimization problem. The most pop-
ular frameworks are the speed method and the perturbation ofidentity method presented
for example in [7] and [22].

Shape optimization problems are typically solved numerically. A widely used approach
in the engineering fields has been to discretize the underlying problem and shape using
a finite element mesh, derive the sensitivities of the cost functional to small boundary
variations of the shape, and then adjust iteratively the mesh points near the boundary of
the shape. See [8] or [18] for an introduction to practical shape optimization methods for
engineering applications using finite element approximations.

Recently more interest has been given to methods which represent the shapeΩ globally
as the level set of a continuous functionφ. A smooth transformation of the boundary of the
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shape is then described with a transport equation forφ. These are called level set methods
and were made popular by Sethian and Osher. See [5] for a survey of level set methods
applied to shape optimization problems. In this paper we briefly cover the basic framework
for shape optimization using implicit functions and level set methods to represent smooth
transformations of shapes.

To demonstrate numerical methods for shape optimization weconsider a shape opti-
mization problem of finding the optimal damping set for a membrane with fixed boundary,
modeled by the two-dimensional wave equation. We add a fixed damping factor which
affects a subset of the membrane and causes decay in the energy of the vibration. The
objective is to find the shape of the damping set that minimizes the energy at some fixed
end time given the initial position of the membrane and the damping factor applied. This
problem was previously studied in [14] and solved numerically using finite differences on
regular grids. In this paper we use instead finite elements with irregular triangular meshes
that conform to the boundary of the damping set when solving the wave equations. The
results lead to some insight into shape optimization problems where the correct topological
properties of the shape are not known beforehand.

2. SHAPE OPTIMIZATION

2.1. Basic framework of shapes. Let D ⊂ R
n be a domain of interest andS a family of

open subsets ofD with piecewise smooth compact boundaries. Elements ofS are called
shapes. A shape functionalJ : S → R is invariant with respect to homeomorphisms that
preserve the shapes i.e. for all shapesΩ ∈ S and homeomorphismsg of D we have that

g(Ω) = Ω ⇒ J(g(Ω)) = J(Ω).

The shape optimization problem is to find an optimal shapeΩ∗ ∈ S s.t.

J(Ω∗) →֒ min!.

The existence of solutions for such optimization problems depends on the chosen family
of shapesS as well as the properties ofJ. If the shape functionalJ is lower semicontinuous
in theLp topology of the characteristic functionsχΩ then typically a sufficient condition for
the existence of an optimal solution is that the family of shapesS fulfills the uniform cone
condition or the stronger condition that all shapes have uniformly Lipschitz boundaries.
We refer the reader to the monograph [7] for in-depth coverage of the theory of of smooth
geometric shapes as well as the classical theory of shape optimization.

2.2. Boundary variation formulation. To perform optimization in the family of shapes
we would like to define the concept of derivative with respectto shape. The following
approach is called the speed method for shape derivatives. Let ~ψs be a one-parameter
family of smooth transformations~ψs : D → D, for s≥ 0, s.t. ~ψ0 = I . Then for a given
Ω ∈ S we define the shape derivative ofJ with respect to the flow~ψ at the shapeΩ as the
Gâteaux-derivative

(1) dJS(Ω;~ψ) := lim
s→0+

J(~ψs(Ω))−J(Ω)

s
,

provided that the limit exists. From now on we consider only flows~ψ of some Lipschitz
vector field~v : D → R

n s.t. the action of~ψ on a point~x0 ∈ D is given by

(2) ~x(0) =~x0, ~x′(s) =~v(~x(s)), ~ψs(~x0) =~x(s).

According to the Hadamard-Zolesio structure theorem (see [7], Chapter 8, Theorem 3.5)
the shape derivative defined by (1) has support only on a subset of the boundary∂Ω and
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thus depends only on the component of~v normal to the boundary. In the case where it is
bounded and linear, we can find a unique scalar function∇ SJ ∈ L2(∂Ω;R) s.t.

(3) dSJ(Ω;~ψ) =

∫

∂Ω
∇ SJ(~v·~n)dS.

If the shape functionalJ is shape differentiable in the sense of (3), we have the neces-
sary optimality condition∇ SJ(Ω∗) = 0 for an optimal shapeΩ∗ without the presence of
constraints.

2.3. Topological variation formulation. As defined above, the speed method of shape
optimization works with diffeomorphic maps ofΩ0, the initial guess for the damping set.
For shape optimization problems where the optimal shape canconsist of more than one
component it has been thought that in order to find the optimalshape it is either necessary
to know beforehand the topological properties of the optimal shape, or to use a special
class of methods that fall under the so called topological optimization. The topological
derivative of a shape functionalJ(Ω) can be defined as in [20] as the limit of

(4) dTJ(Ω;~x0) = lim
ρ→0+

J(Ω∪B(~x0,ρ))−J(Ω)

µ(B(~x0,ρ))
,

whereB(~x,ρ) is an open ball of radiusρ centered at~x /∈ ∂Ω andµ(B(~x,ρ)) its measure.
This derivative, when it exists, gives us an idea where inD we should add new components
of Ω.

An interesting recent development is the attempt to combinethe methods of boundary
variation and topological optimization. A theoretical approach was given in [21] where a
so-called domain differential was defined as

(5) DJ(Ω;~ψ,~x0)(ρ,s) = µ(B(~x0,ρ)) ·dTJ(Ω;~x0)+s·dSJ(Ω;~ψ).

In [6] the authors derive topological gradients as a subset of shape gradients, but the algo-
rithm given was more akin to the typical bubble method where an initial guess is obtained
using topological derivatives and then a pure shape optimization method is used.

A common method of combining topological and boundary variation optimization is
to perform regularly in between boundary variation level set iterations a step where small
parts of the shapeΩ are removed in locations given by the topological derivative. This
introduces the creation of holes into the process, which in practice gives good convergence
properties in the optimal support problem for the linear elasticity model. See for example
[2], [1], and [24]. A similar step that adds new material awayfrom the shape can also be
adopted.

In [4] the authors combined boundary variation and topological level set methods. In
practice this gave better topological convergence than wasachieved using pure boundary
variations when the optimal shape contained a hole.

In [3] a method was given where the topological gradient alone was used to write a level
set equation, which was then made stable by using an orthogonal projection technique.
This was the method we chose to compare against the traditional boundary variation meth-
ods. To proceed we introduce next the concept of level set methods for practical shape
optimization.

3. LEVEL SET METHODS AND IMPLICIT FUNCTIONS

Inherent in the problem of shape optimization is that the shape functionalJ encodes the
representation of the abstract shapes within itself. For theoretical analysis this is sufficient,
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but for more practical methods we need an explicit way of representing the shapes under
consideration.

Recently an approach to describe shapes using implicit functions and their level sets has
gained popularity. LetΩ be a given subset ofRn with piecewiseCk boundary fork ≥ 1.
Then there exist continuous functionsφ : R

n → R s.t.

Ω = {~x : φ(x) < 0}, ∂Ω = {~x : φ(x) = 0}.

Such functions are called implicit functions or level set functions. We can chooseφ in such
a way that apart from the corners of∂Ω it is everywhere Lipschitz and at leastCk in some
small neighborhood of∂Ω (the latter claim follows from the implicit function theorem).
An example of such an implicit function is easy to exhibit, namely we consider the signed
distance function

(6) φd(~x) =

{
−dist(~x,∂Ω), ~x∈ Ω
+dist(~x,∂Ω), ~x∈ Ωc .

From here on we identify every piecewiseCk shapeΩ by some representative implicit
functionφ that isCk smooth near the boundary∂Ω. It turns out that the existence of a
locally Ck implicit function is an equivalent definition of aCk smooth shape for sets with
compact boundary. This allows us to consider the shape functional as a function of the
implicit functionφ and not the actual setΩ.

Consider a given piecewiseCk shapeΩ and its image under the flow of~ψ of some
velocity field~v with flow ~ψ. Denote the image of the shape by the flow as~ψs(Ω) = Ωs and
let φ(~x,s) be an implicit function forΩs. We get for each~x0 ∈ ∂Ω0

φ(~ψs(~x0),s) = 0,

and differentiating with respect tos gives together with (2)

φs(~x,s)+~v(~x) · ∇ φ(~x,s) = 0.

Using the fact that for smooth shapesΩ the boundary outer normal is given by~n =
∇ φ/|∇ φ| we get the form

(7) φs(~x,s)+ (~v(~x) ·~n)|∇ φ(~x,s)| = 0

where again only the component of the velocity field normal tothe boundary is significant.
Equation (7) is called a level set equation. It transports the level sets ofφ advectively along
the flow~ψ.

Signed distance functions (6) are a subclass of implicit functions that have the special
property that|∇ φ| = 1 almost everywhere. Such functions have nice computational prop-
erties thanks to the unit scaling of the gradient. Usually the level set equation (7) does not
preserve signed distance functions so possible numerical issues might arise as the gradi-
ent ∇ φ grows during the evolution of the equation. These problems can be rectified by
regularly rescalingφ so that it becomes a signed distance function without movingthe
zero-level set. A common idea used for example in [23] is to let φ0 be the unscaled version
of our implicit functionφ and regularly solve the equation

(8) φs(~x,s)+sgn(φ0(~x))(|∇ φ(~x,s)|−1) = 0, φ(~x,0) = φ0(~x)

for a short interval. This equation quickly rescalesφ to be closer to a signed distance
function while leaving the zero-level set intact. We shall see that this reinitialization not
only makes things numerically more robust, but has also other effects when dealing with
topology changes in shape optimization.
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D

a(~x) = a

Ω

a(~x) = 0

utt +a(~x)ut = △u

FIGURE 1. Geometry for the damped membrane.

4. OPTIMAL WAVE DAMPING PROBLEM

The following problem was studied in [14], where the author used finite difference
methods based on rectangular meshes to solve both the wave equations and the level set
equation. We refer the reader to that work for some of the details such as the derivation of
the shape gradient.

Let D ⊂ R
2 be a plane domain with piecewise smooth boundary and consider the two-

dimensional wave equation with Dirichlet boundary conditions. This equation models the
vibrations of an ideal membrane that is fixed at the edges. Consider additionally that in
some subsetΩ ⊂ D we apply a fixed damping factora > 0. The geometry of the problem
is shown in Figure 1. The resulting equation for the displacement of the membrane is then

(9)





utt −∆u+a(~x)ut = 0, (~x,t) ∈ D× (0,T)
u = 0, (~x,t) ∈ ∂D× [0,T]

u(~x,0) = u0(~x), ut(~x,0) = u1(~x)

with initial data(u0,u1) for the membrane. The damping coefficient is defined here to be
piecewise constant:

a(~x) :=

{
a, ~x∈ Ω
0, ~x /∈ Ω.

.

We refer toΩ as the damping set of the membrane. The energy of the membraneis known
to be

(10) J(Ω,a, t) = 1
2

∫

D

[
|ut(t)|

2 + |∇ u(t)|2
]
dx.

The objective is to minimize the total energy of the membraneat some fixed end timeT:

min
Ω∈S

J(Ω,a,T).

This is a shape optimization problem whose solution dependsadditionally on the chosen
constantsa andT.

In [15] it was proved that a relaxed formulation replacing the characteristic dampingχΩ
with a function inL∞(D, [0,1]) results in a problem that has a unique solution which corre-
sponds to an optimal solution of the original problem at least for small damping factorsa.
It was also pointed out that there exists a limit damping factor after which an overdamping
phenomenon occurs and leads to the non-existence of optimalsolutions with finitely many
components. The one-dimensional case was analyzed in [9]. In this work we choosea
moderate so as to avoid any problems relating to overdamping, andT large enough so that
observability problems relating to the finite propagation speed of waves do not occur.
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Without any kind of constraint on the damping set we will obtain the trivial solution
Ω∗ = D, so in addition we introduce the area constraint

(11) A(Ω) = A0 (fixed).

This constraint was handled in [14] by using a penalty coefficient λ > 0 and augmenting
a quadratic penalty term in the energy. We proceed in the samefashion. The augmented
shape functional of energy is therefore

(12) J̃(Ω,a,T) := λ
2

[
A(Ω)−A0

]2
+ 1

2

∫

D

[
|ut(T)|2 + |∇ u(T)|2

]
dx.

The shape optimization problem we consider is

(13) min
Ω∈S

J̃(Ω,a,T).

It was shown in [14] that the shape functional (12) is shape differentiable in the sense
(3) and has the shape gradient defined on∂Ω

(14) ∇ SJ̃(x) =
[
A(Ω)−A0

]
+

∫ T

0
ut(~x,t)p(~x,t)dt,

wheren is the outward pointing unit normal of∂Ω, u(~x,t) is the solution of equation (9)
andp(~x, t) is the solution of the adjoint equation

(15)






ptt −∆p−a(~x)pt = 0, (~x,t) ∈ D× (0,T)
p = 0, (~x,t) ∈ ∂D× [0,T]

p(~x,T) = −ut(~x,T),
pt(~x,T) = −a(~x)ut(~x,T)−△u(~x,T)

.

In practice, finding an optimal damping setΩ∗ requires numerical methods.
In addition to the boundary variation shape derivative we also know the topological

derivative (4). For the optimal damping problem is in fact closely related to the shape
derivative given by the boundary variation. Similarly to the linear elasticity problem ([4]),
the topological derivative differs from the boundary variation derivative only up to the sign
of φ, i.e. we should add material outsideΩ where∇ SJ̃ < 0 and create a hole insideΩ
where∇ SJ̃ > 0.

5. ITERATIVE METHOD FOR SHAPE OPTIMIZATION

The simplest derivative based method for shape optimization is the gradient descent
method. LetΩ0 be a given initial guess of the optimal shape andφ0 its implicit function.
If the shape gradient∇ SJ is known atΩ0, we can let~v= −∇ SJ on the boundary of∂Ω and
extend~v smoothly to the rest ofD. For (14) with smooth initial data this is straightforward.
Substituting into (7) we get the level set equation for gradient descent

(16) φs(~x,s)− ∇ SJ̃(~x)|∇ φ(~x,s)| = 0, φ(~x,0) = φ0(~x).

For small enoughs we haveJ(Ω0) > J(Ωs). Iterated steps of equation (16) are equivalent
to gradient descent on an infinite-dimensional manifold.

As previously noted, equation (16) is a hyperbolic advection equation. Based on this,
numerical methods for its resolution have been devised using upwind discretization schemes.
The most popular discretization methods are those of Lax-Friedrichs, and Godunov. We
refer the reader to [11] and [16] for in depth treatment of numerical methods for hyperbolic
conservation laws in general as well as the special case of level set equations. In this work
the level set equation was solved using the method of Godunov. We refer to this as the
boundary variation level set iteration (or BVLS).
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We also tested the method of [3] where the level set equation was written with a force
term containing the topological gradient

(17) φs(~x,s) = ∇ TJ−〈∇ TJ,φ(~x,s)〉
φ(~x,s)
|φ(~x,s)|2

,

where∇ TJ ∈ L2(D,R) is the topological gradient. Thus the updateφs in (17) is simply an
L2-orthogonal projection of∇ TJ to the orthogonal complement of the implicit functionφ,
which has the feature thatφ remains at all times in the unit ball ofL2(D). We refer to this
iteration as the topological level set iteration (or TLS).

6. IMPLEMENTATION

Evaluation of the shape gradient (14) requires first the solution of the two wave equa-
tions (9) and (15). We performed this using an unstructured triangular mesh with piecewise
linear elements and the Elmer FEM package (see [12]). The mesh was adapted at each it-
eration to the boundary of the damping set. The time integration was performed using the
Newmark-Bossak scheme. From the solutions of the wave equations a first-order approxi-
mation for the shape gradient (14) was computed. The level set equation (16) for gradient
descent was then solved on a regular rectangular mesh using the Level Set Toolkit for Mat-
lab (see [13]). We will examine the computational cost of thevarious stages of the iteration
later.

Optimization methods based on descent directions usually require that we perform a
line search to find a step sizes≥ 0 that solves the one-dimensional optimization problem

min
s≥0

J̃(~ψs(Ω)),

where~ψ is the flow in the direction of the negative shape gradient−∇ SJ̃. These line
searches can be performed either exactly or approximately,sometimes even heuristically.
In the level set based gradient descent method it suffices to find a step size such that the
energyJ̃ decreases on each iteration.

In practice it becomes quickly clear that accurate evaluation of the energy (12) requires
a very fine mesh with elements of good quality to be used when solving for u. We attribute
this problem to the term|∇ u|, which is known to converge only likeO(h) for piecewise
linear basis functions on triangular meshes (see [10]). In addition, poor quality elements
with malformed simplices can cause the error of the term|∇ u| to increase without bound as
was shown in [19], which sets stringent quality requirements for the mesh generator used.

The aforementioned issues might have been rectified by moving to higher order el-
ements or using methods specifically designed for hyperbolic problems. However, the
former would have increased the computational effort whilethe latter methods are usu-
ally restricted to working on structured rectangular meshes. Our objective was to improve
on the computational results in [14] by using unstructured finite element meshes, which
capture the shape of the damping set as accurately as possible near its boundary without
spending too much computational effort away from the boundary.

The choice of two different types of meshes (irregular for the wave equations vs. regular
for the level set equation) required some interpolation to be performed when moving back
and forth between the meshes. At each iteration we started with a discrete level set function
φk defined on the regular mesh. From this data we computed some initial boundary points
by looking at the values at any two adjacent mesh points. If they had different signs,
we performed first order interpolation to find the approximate position of the boundary in
between. These interpolated points were used to initializethe irregular mesh. In addition,
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we added points from a regular mesh with a given parameterh, provided that the points
to be added were not closer thanh/2 distance from the initial boundary points. Finally,
the mesh was balanced using DISTMESH ([17]) while fixing the initial boundary points to
obtain the irregular triangulated mesh for use with the FEM solver. After solving the wave
equations we used ready-made library methods of interpolating from a triangular mesh to
a regular rectangular mesh, followed by some correction steps.

When choosing the pseudo-time step length for the level set iteration we used the obser-
vation that for large enough penalty termsλ the area constraint (11) forces the areaA(Ωk)
to oscillate aroundA0. The idea is then to use the area constraint to decide a suitable step
size as follows:

(1) Let µ̄ be some default step size andε > 0 some tolerance for the area constraint.
(2) Find smallest nonnegative integerj s.t. the solution of (16) forΩk → Ωk+1 with

step size
µ = 2− j µ̄

gives a new damping setΩk+1 s.t. the area constraint is violated at most

|A(Ωk+1)−A0| < ε.

In practice the gradient descent method is known to be ratherforgiving with regards to step
size selection rules, and in the cases studied we have nice convergence of the shapes to (at
least) local optimums. We use an initial step size ofµ̄ = 10−7 and a tolerance ofε = 0.2.

To prevent numerical instability due to the increasing or decreasing gradient∇ φ we
regularly solve the reinitialization equation (8) to resetφ into a signed distance function.

7. RESULTS

7.1. Boundary variation level set iteration. We verified our solver by first comparing
it to the results obtained in [14] by solving a simple problemon the unit squareD =
(0,1)× (0,1) with smooth initial data:

(18)

{
u(~x,0) = 100sin(πx1)sin(πx2)

ut(~x,0) = 0
.

The problem parameters were fixed atT = 1 anda = 10 to obtain a well-posed problem.
The results for the initial guess of one disc that is slightlyoff-center are shown in Figure
2. We verify that the solution is the same as found and supported by theoretical analysis
in [14]. Due to the different approaches taken to discretizing the wave equations (finite
elements vs. finite differences), our solver used only the mesh parameterhUS = 0.05 for
the unstructured triangular mesh used to solve the wave equations andhSR= 0.01 for the
structured rectangular mesh used for the level set iteration compared to Munch’sh≈ 0.006
used for both methods, but obtained the same accuracy of solution.

To demonstrate that the BVLS iteration allows topology changes, we studied equation
(9) in an L-shaped domain

D =
[
(0,1)× (0,1)

]
\
[
[1
2,1)× [1

2,1)
]
.

The initial position of the membrane corresponds to the second eigenmode of the un-
damped problem {

u(~x,0) = 100sin(2πx1)sin(2πx2)
ut(~x,0) = 0

and the membrane is initially motionless.
Physical intuition says that the optimal damping set consists of three separate compo-

nents located around the extremal points of the initial position of the membraneu(~x,0). To
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FIGURE 2. Evolution of the damping set in a unit square with the initial
data (18) for the membrane using the BVLS iteration. As in [14], the
damping set converges to a symmetric optimal solution.

test this hypothesis we solved the problem numerically using two distinct initial guesses
for the damping setΩ:

• CASE A: BVLS when initial guessΩ0 is two discs.
• CASE B: BVLS when initial guessΩ0 is one disc.

Neither initial guess for the damping set possesses the correct number of connected com-
ponents that we would expect from the true solution. Therefore, any numerical shape op-
timization method must be able to handle changes in topologyin order to find the optimal
damping set.

It is known that even with BVLS we can observe certain types oftopological changes
in the deformed shapes. Consider CASE A, where the initial guess is two discs located
roughly symmetrically. Figure 4 shows the evolution of the damping set. We observe
that the flow given by the negative shape gradient tears the other disc into two, and the
resulting three components converge towards the extremal points of the initial position of
the membrane. In this case the initial guess was close enoughfor the level set method to
find the correct solution. The final energy of the solution wasJ̃ = 2179.

Details of the convergence of the iteration are presented inTable 1. We measured the to-
tal time spent on each iteration for solving the two wave equations (”Wave time”), solving
the level set equation (”LS time”), performing the interpolation between the two meshes
(”Interp time”) plus the number of pseudo-time step halvings that were needed to find
a good pseudo-time step. Every pseudo-time step consists furthermore of several shorter
pseudo-time steps, the lengths of which are dictated by the CFL condition of the discretized
equation. There is also a certain computational cost related to performing the actual mesh-
ing.

Closer study of CASE A reveals that the gradient descent iteration stalls near iteration
15. One component is near bifurcation, but the shape gradient vanishes at the bifurcation
point and thus no progress or change in topology is made. Before iteration 20 we performed
the reinitialization process given by equation (8). Immediately afterwards the component
underwent bifurcation, changing the topology, and allowing the iteration proceeded. This
effect can be explained and is not related to the reinitialization as such, but rather the
specific equation used to perform the reinitialization. Thereinitialization equation can be
written as

φs(~x,s)+sgn(φ0(~x))|∇ φ(~x,s)| = sgn(φ0(~x))

so that in addition to the advection term we have a force term of magnitude sgn(φ0). Near
the bifurcation point at iteration 20 (middle panel in Figure 4) the gradient|∇ φ| is very
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TABLE 1. Iteration convergence and computational cost of CASE A
with the boundary-evolution level set method.

Iter Final energy Wave LS Interp P-time
time (s) time (s) time(s) steps

1 38728 18.3 24.2 4.1 2
5 17430 17.5 5.2 3.9 3
10 3735 16.7 2.0 4.1 4
15 4971 16.5 5.2 3.9 14
20 5001 16.4 7.7 4.1 23
25 2713 18.4 1.3 3.9 1
30 2169 20.1 1.0 3.9 1
35 2296 17.4 1.5 4.0 1
40 2179 18.5 1.1 4.1 1

small, so that the reinitialization equation is locally

(19) φs(~x,s) = sgn(φ0(~x)).

In the vicinity of the bifurcation point we haveφ0 ≥ 0 and so equation (19) tends to increase
the values ofφ, causing the component to finally bifurcate into two. The idea is shown in
Figure 3. In fact, any positive force term would suffice to push the boundary of the shape
over the threshold so that the change of topology is realized.

φ0 ≥ 0

φs = sgn(φ0)

φ > 0

FIGURE 3. Bifurcation of a shape under equation (19).

In CASE B, we had only one disc in the initial guess. The resulting evolution is given
in Figure 5. This time the disc is elongated to cover two extremal points but remains as
one piece. No new component is created near the third extremal point. This solution is
only a local optimum, which we observe by noting that the finalenergy of the solution was
J̃ = 20267.
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FIGURE 4. Evolution of the damping set for CASE A with an initial
guess of two discs using the BVLS iteration. One disc undergoes a bi-
furcation into two and the correct optimal damping set is found.

It should be again stated that in the case of Lipschitz-continuous velocity fields~v acting
on a given shapeΩ, the deformationsΩ(0) → Ω(s) given by equation (7) are diffeomor-
phisms. This means that the speed method of shape optimization does not allow for topo-
logical changes of the shape such as bifurcation of one component into two or the merging
of two components into one. Furthermore, the advective nature of equation (7) prevents
new components of∂Ω from emerging away from the existing boundary. As we have seen,
the first limitation is not present in the BVLS iteration, butthe second limitation remains.

7.2. Topological level set iteration. By using the observation that for the optimal damp-
ing problem the shape and topological gradients are equivalent up to sign, we also at-
tempted to solve the problem using the method proposed by Amstutz and Andra and equa-
tion (17). We used again an initial guess of one disc. This will be referred to as CASE
C.

The resulting evolution is shown in Figure 6 and the convergence and computational
cost in Table 2. The iteration converges much better in topology and finds the correct
topology after only a few steps even when the initial topology is far from correct. In addi-
tion, the topological level set iteration (17) is much simpler to perform as it has no spatial
derivatives to approximate and in fact has been reduced to simple pseudo-time stepping.
Since the implicit function no longer approximates a signeddistance function we also don’t
need the reinitialization equation (8).

As mentioned previously we used a coarser mesh than in [14]. The purpose of choosing
a fine mesh in [14] was likely related to using initial guessesconsisting of a large number
of small discs to accelerate convergence to the correct topology of the shape. However,
since we have seen that properly constructed topological level set methods are able to to
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FIGURE 5. Evolution of the damping set for CASE B with an initial
guess of only one disc using the BVLS iteration. The method isunable
to discover the correct topological properties of the optimal damping set
and gets stuck in a local optimum.

TABLE 2. Iteration convergence and computational cost of CASE C
with the topological level set method of Amstutz and Andra.

Iter Final energy Wave LS Interp P-time
time (s) time (s) time(s) steps

1 60547 21.7 1.19 4.2 4
2 31570 19.7 0.22 3.8 2
3 27426 21.6 0.31 4.3 3
4 22785 18.5 0.19 4.2 2
5 18136 22.6 0.41 4.2 4
6 5507 20.9 0.37 4.2 4
7 4523 18.9 0.44 4.1 5
8 4153 24.9 0.14 4.0 1
9 5662 17.2 0.26 4.0 3
10 3649 16.7 0.21 4.0 2

discover the correct solution even when the initial guess isnot close to the actual topology,
it seems unnecessary to use extremely complicated initial guesses. A practical way would
be to first use a coarse mesh with the TLS iteration to find the correct topology of the shape,
and then switch to BVLS with a fine mesh to find the accurate boundary of the shape.
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FIGURE 6. Evolution of the damping set for CASE C with an initial
guess of only one disc using the TLS iteration. This method has much
better topological convergence properties.

8. CONCLUSIONS

We have studied a problem in numerical shape optimization related to finding the op-
timal damping set for a two-dimensional membrane. The membrane was L-shaped and
the initial data was chosen such that the optimal damping setΩ∗ consists of three separate
components. Two level set iteration based methods for shapeoptimization were presented.
Depending on the initial guess of the damping set and the iteration method chosen, the
method either converged or got stuck in a local optimum.

Using unstructured triangular meshes that are refined near the boundaries of the damp-
ing setΩ we were able to obtain similar results to those presented in [14] with fewer mesh
points. The problem with unstructured meshes is related to the accurate evaluation of the
energy functionalJ(Ω,a,T). We discovered a lack of monotonicity of the discrete energy
during the course of the gradient descent iteration. Subsequently, we chose to use a heuris-
tic step size selection rule for the descent step that did notdirectly evaluate the value of the
energy functional being minimized. The results were good inthe cases studied.

Boundary variation level set methods are known to allow certain changes of topology
in the shapes being optimized. However, in our problem it wasnoticed that the boundary
variation level set iteration stalled near a bifurcation point until an otherwise unrelated
reinitialization procedure was able to effect the change intopology due to the presence
of an implicit force term. The requirement for a force term tobe present in the level set
equation in order to obtain efficient topology discovering shape optimization methods has
been previously documented in literature.

We have also tested a topological level set iteration suggested in [3], which achieved
much better convergence for the optimal damping problem even when the initial topology
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was far from correct. For problems where the topological derivative is closely related
with the boundary variation shape derivative and thus relatively easy to compute, it seems
preferred to use one of the suggested topological optimization methods.

Despite the theoretical differences between boundary variation and topological deriva-
tives, in practice there are great similarities in the resulting methods. It remains to refine
the theory in such a way as to unify the concepts of shape and topological derivatives and
explain entirely satisfactorily the results obtained using numerical level set methods.
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