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Abstract 

The question of how meaningful associations between verbal and spatial information might 

be utilized to facilitate working memory performance is potentially highly instructive for 

models of memory function. The present study explored how separable processing capacities 

within specialized domains might each contribute to this, by examining the disruptive impacts 

of simple verbal and spatial concurrent tasks on young adults’ recall of visually presented 

digit sequences encountered either in a single location or within a meaningful spatial ‘keypad’ 

configuration. The previously observed advantage for recall in the latter condition (the 

‘visuospatial bootstrapping effect’) consistently emerged across three experiments, indicating 

use of familiar spatial information in boosting verbal memory. The magnitude of this effect 

interacted with concurrent activity; articulatory suppression during encoding disrupted recall 

to a greater extent when digits were presented in single locations (Experiment 1), while 

spatial tapping during encoding had a larger impact on the keypad condition and abolished the 

visuospatial bootstrapping advantage (Experiment 2). When spatial tapping was performed 

during recall (Experiment 3), no task by display interaction was observed. Outcomes are 

discussed within the context of the multicomponent model of working memory, with a 

particular emphasis on cross-domain storage in the episodic buffer (Baddeley, 2000).    

 

Key words: Working memory, binding, bootstrapping, episodic buffer. 
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Modality Specificity and Integration in Working Memory: Insights from Visuospatial 

Bootstrapping 

The majority of research on working memory has examined how information encountered 

within a single modality (e.g. vision or audition) is temporarily encoded and subsequently 

recalled. In line with this, classic models of working memory (e.g. Baddeley & Hitch, 1974; 

Logie, 1995) focused on capturing distinctions between domains or modalities. Baddeley and 

Hitch (1974) suggested a tripartite model comprising separate auditory-verbal and 

visuospatial stores (the phonological loop and visuospatial sketchpad respectively) and a 

central executive control resource. A range of evidence exists to support such distinctions 

between different temporary storage capacities (Baddeley, 2012), though research suggests 

the operation of both specialized and general processing resources (e.g. Barrouillet, Bernadin, 

Portrat, Vergauwe, & Camos, 2007; Cowan & Morey, 2007; Davis, Rane, & Hiscock, 2013; 

Jarrold, Tam, Baddeley, & Harvey, 2011; Morey & Mall, 2012), with shared variance 

between domains more pervasive when complex processing is required (Engle, Tuholski, 

Laughlin, & Conway, 1999; Engle, 2010).  

This leaves open the question of how interaction between different sources of 

information might be achieved in order to provide us with a multi-modal representation of the 

world. For example, when we encounter verbal stimuli distributed across spatial locations, 

how might these sources of information be combined in working memory in order to inform 

and facilitate subsequent retrieval? Baddeley (2000) addressed this in a revised 

multicomponent model, adding a modality-general store termed the episodic buffer. This was 

assumed to support the active integration and binding of information from different sources, 

including modality-specific subsystems and pre-existing knowledge held in long-term 

memory. Recent evidence has indicated that participants are able to make recognition or recall 

judgments concerning simple combinations of features within domains (e.g. Allen, Baddeley, 
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& Hitch, 2006, 2014), between verbal and spatial domains (Langerock, Vergauwe, & 

Barrouillet, 2014; Morey, 2009), and across modalities (Allen, Hitch, & Baddeley, 2009). It is 

also possible to observe interactions between domains or modalities that serve to facilitate 

single task performance. Verbal coding can be enlisted to support visuospatial WM (e.g. 

Brown, Forbes, & McConnell, 2006; Mate, Allen, & Baques, 2012; Morey & Cowan, 2005), 

with articulatory suppression often required to prevent the use of such strategies when 

examining visual and spatial WM. Similarly, visual and spatial WM resources can support 

verbal memory, either automatically or through strategy adoption. For example, St. Clair-

Thompson and Allen (2013) found that a visual strategy (as indexed by effects of visuospatial 

n-back and dynamic visual noise) could be used during backward digit recall to aid reversal of 

the sequence at recall. Indeed, there is an established literature indicating visuospatial support 

for verbal memory (e.g. Brooks, 1967; Paivio, 1991; Ueno & Saito, 2013). However, few 

studies have examined how verbal and spatial information may be combined using stored 

long-term knowledge; indeed, the question of how different domains interact with each other 

and with LTM was a core motivation for the episodic buffer concept (Baddeley, 2000). 

The question of how such information may be utilized to boost memory performance 

has recently been addressed using the visuospatial bootstrapping paradigm introduced by 

Darling and Havelka (2010). In the key conditions of this first study, digit sequences were 

visually presented either in a single spatial location, or within a familiar keypad array as 

commonly found on telephones or ATMs. Verbal recall of the digit sequences was 

significantly more accurate when encountered within the familiar keypad array, relative to the 

single location condition. This effect appears to be non-strategic in nature, as the affordance is 

an incidental and implicit part of the task (see Morey, 2011); spatial information is not 

explicitly required for successful performance, but reliable effects are nevertheless observed. 

This would fit with a recent version of the multicomponent WM model (Baddeley, Allen, & 
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Hitch, 2011), which proposes that many forms of information binding (e.g. visual, cross-

modal, or within linguistic sequences) can proceed relatively automatically (e.g. Allen et al., 

2006, 2014; Allen et al., 2009; Allen, Hitch, Mate, & Baddeley, 2012; Baddeley, Hitch, & 

Allen, 2009); this may also apply to the association of verbal and visuospatial information 

involved in bootstrapping. Crucially, the effect appears to utilize pre-existing associations 

between verbal and spatial information. Darling, Allen, Havelka, Campbell, and Rattray 

(2012; see also Darling, Parker, Goodall, Havelka, & Allen, 2014) compared verbal recall 

using typical keypad and single location displays, with two new conditions that preserved the 

basic keypad layout but randomized digit locations within these arrays (thus removing the 

long-term component). While the advantage for recall using typical keypad arrays was 

replicated, randomized arrays showed no benefit relative to the single location condition. The 

bootstrapping effect therefore appears to draw on stored keypad knowledge in order to benefit 

from verbal-spatial associations, thus providing a useful method to explore interaction and 

binding between multiple domains of processing and LTM. This requirement for the presence 

of long-term representations in order for participants to derive a visuospatial bootstrapping 

advantage means that this effect may be characterized as a form of ‘expert’ memory (e.g. 

Chase & Simon, 1973; Ericsson & Kintsch, 1995) that is reliably observed across young adult 

participants, and furthermore that it can be differentiated from previous observations of 

simple dual coding benefits in memory (Brooks, 1967; Paivio, 1971, 1991). It is not the basic 

visuospatial information that facilitates recall, but, crucially, the familiar and meaningful 

association between visuospatial and verbal material. 

The current study utilized visuospatial bootstrapping to examine how potential 

subcomponents of working memory may contribute to the online combination of verbal and 

spatial information in the environment, based on stored long-term knowledge. According to 

Baddeley et al. (2011), information from different modalities (e.g. verbal and visuospatial) is 
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initially processed within modality-specific storage capacities before being integrated within 

the episodic buffer. Thus, support may be required from verbal and spatial subcomponents in 

order to provide the ‘raw materials’ for binding between these domains. In line with this, 

Ericsson and Kintsch (1995) suggested that higher-level processing requires lower level 

outputs to be initially retained in specialized memory buffers, before being integrated. Some 

initial support does exist to support these claims; intentional verbal-spatial binding appears to 

be negatively impacted by concurrent articulatory suppression (Morey, 2009) and 

phonological similarity (Guerard, Tremblay, & Saint-Aubin, 2009), thus indicating the 

contribution of phonological WM to the temporary binding of verbal and spatial information. 

Once bound, however, it may be that modality-specific processes become less important; 

Langerock et al. (2014) have recently found that verbal and spatial loads applied during 

retention have equivalent effects on memory for single features and verbal-spatial 

conjunctions. Exploring these issues in the context of visuospatial bootstrapping provides 

novel insights concerning how possible episodic buffer functioning might be reliant on or 

separable from different WM subcomponents, and how multimodal binding with support 

from LTM might protect and facilitate memory performance relative to single modality 

processing. 

Based on dual-task logic, any task that involves verbal or spatial processing should be 

particularly disrupted by the concurrent performance of additional activities that load on these 

WM components. This basic approach was applied in three experiments, in which digit 

sequences were visually presented (either in single locations or within familiar ‘keypad’ 

arrays) under conditions of verbal (Experiment 1) or spatial (Experiment 2) working memory 

load. The final experiment (Experiment 3) shifted the spatial load to the recall phase of the 

primary task. We expected to firstly replicate previous observations of a visuospatial 

bootstrapping advantage under no load conditions (e.g. Darling et al., 2012). We also 



 

  7 

anticipated negative effects of articulatory suppression and spatial tapping on performance in 

each of the display conditions. Furthermore, if verbal and spatial WM resources make 

differential contributions to performance in the different display conditions, this should be 

reflected in the relative magnitude of effects. Specifically, we anticipated that verbal WM 

would be relatively more important for recall in the single digit condition and thus that there 

would be greater impact of concurrent articulatory suppression on single digit presentations in 

Experiment 1, while spatial WM would contribute more to recall when digits are presented 

within familiar keypad arrays, predicting larger disruption by concurrent spatial tapping in the 

keypad condition in Experiment 2. Comparison of effects when spatial load is shifted from 

encoding to recall (Experiment 3) would indicate whether this is important throughout all 

stages of the task, or whether spatial processing is only important during initial binding of 

verbal and spatial information; the latter outcome would indicate the creation of modality-

general representations within the episodic buffer.  

Experiment 1 

This first study examined the impact of concurrent articulatory suppression (AS) on digit 

recall performance following visual presentation either using single locations or standard 

keypad arrays. AS is a standard methodological tool that involves participants repeatedly 

articulating a simple word or phrase. It is commonly used to disrupt verbal recoding of 

visually presented stimuli and prevent articulatory rehearsal strategies that might otherwise 

keep verbal representations active over time (e.g. Baddeley, Thomson, & Buchanan, 1975; 

Baddeley, Lewis, & Vallar, 1984; Murray, 1968), while minimally impacting on central 

executive control resources (e.g. Morey & Cowan, 2004). In particular, for the highly familiar 

numerical stimuli used in the current study, it is likely that suppression particularly impacts 

on ongoing phonological maintenance and rehearsal, while still allowing initial derivation of a 

phonological code from written material (Besner, 1987). We therefore implemented it in the 
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present study to examine how memory for digits presented within a meaningful spatial 

configuration or in a single location might draw on verbal storage and rehearsal.  

Given that both conditions involve visual presentation of to-be-recalled verbal 

information, we expected to find a substantial general effect of AS on performance, through 

the requirement to verbally maintain digit sequences. If the bootstrapping effect generally 

relies on WM in a modality-independent manner, it should be selectively impaired by any 

concurrent task, meaning that we would expect to find relatively larger impacts of AS on the 

keypad condition. However, Morey (2009) observed that visually presented letter 

discrimination during concurrent AS was superior when maintenance of letters within spatial 

locations (i.e. as part of cross-domain binding) was encouraged, relative to when letter 

location was irrelevant. Thus, an alternative possibility is that dependence on verbal coding is 

reduced, as implicit binding of verbal information with a familiar spatial configuration in the 

keypad condition might protect against AS interference through the provision of 

representational formats that are independent of the phonological loop. In contrast, for the 

single location condition, the lack of meaningful variation in spatial information would leave 

performance more dependent on transient visual representations of the presented digits and 

associated verbal code maintained through rehearsal by the participant. Recall in this case 

should therefore be relatively more vulnerable to interference from a concurrent verbal task 

that particularly disrupts the rehearsal process.  

Method 

Participants 

Thirty-two participants (8 males, 24 females; mean age 22.1, range 18-47, SD = 5.67) took 

part in this experiment. All were students or staff members at the University of Leeds. 

Design 
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A 2x2 repeated measures design was implemented, manipulating display type (single vs. 

keypad) and concurrent task (no task vs. articulatory suppression). All participants took part 

in all conditions within a single session, in a fully counterbalanced order. The dependent 

variable was the mean proportion of digits correctly recalled in each condition.  

Materials and Procedure 

Testing was controlled on a 13” Macbook, using a programme written in SuperCard 4.7. Each 

trial was initiated by participants pressing a space bar, and began with a fixation cross 

presented centrally for 500ms followed by a 250ms blank screen delay, before the sequence 

started. Digits were presented in Arial font (black, size 36) within black square outlines 

60x60px in size (see Figure 1). Each display was presented for 500ms, with the target digit 

indicated by highlighting the background in green, with displays separated by 500ms blank 

screen inter-stimulus intervals. For the single digit display, each item was presented in 

isolation at screen centre. For the typical keypad display, all 10 digits (0-9) were presented in 

a familiar keypad layout, with 12px separating each square. Participants attempted to verbally 

recall the entire digit sequence in its original order immediately upon offset of the final item. 

<Figure 1> 

Each session started with a span test (using the single digit display condition) in order 

to ascertain sequence length to use for each participant. Following one practice trial 

containing a two-digit sequence, a standard span procedure was implemented with length 

progressively increased from 2-10 digits, with two sequences at each length. Testing 

continued until participants failed to correctly recall in order either of the sequences at a given 

length, with span classed as the maximum length at which at least one sequence was 

accurately recalled. The four experimental conditions then followed, with each containing 1 

practice trial and 20 test trials performed at the same predetermined sequence span length. 
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 Articulatory suppression was performed from the point of fixation through to the end 

of the sequence presentation (and the start of the recall phase). For this task, participants were 

required to repeatedly vocalize the phrase coca-cola at a rate of approximately one per 

second. 

Results 

Participants achieved a mean span score of 6.84 (SE  = .17) in the pretest, with this being the 

mean sequence length implemented in the subsequent experimental conditions. Strict serial 

position scoring criteria were applied to the latter data, to yield a measure of mean proportion 

of digits correctly recalled per sequence
1
. This is displayed in Figure 2, for each display type 

and concurrent task condition. A 2x2 repeated measures ANOVA revealed significant effects 

of display type, F (1,31) = 66.59, η�2 = .68, p < .001, and articulatory suppression, F (1,31) = 

397.11, ηp2 = .93, p < .001, indicating superior recall for digits in the keypad condition 

relative to single digit displays, and a substantial negative effect of suppression. In addition, 

there was a significant interaction between display type and concurrent task, F (1,31) = 5.51, 

η�2 = .15, p < .05. Further analyses revealed that articulatory suppression had significant 

effects on both single digit, t (31) = 15.32, p < .001, and keypad conditions, t (31) = 11.53, p 

< .001, though effect size was considerably larger for the single digit condition (d = 1.96) than 

for keypad recall  (d = 1.19). 

Discussion 

This experiment replicated the basic advantage in digit recall for the typical keypad displays 

over the single location condition, indicating the visuospatial bootstrapping effect (Darling & 

Havelka, 2010; Darling et al., 2012, 2014) to be a robust and reliable phenomenon. 

Articulatory suppression had a substantial deleterious effect on digit recall performance in 

both conditions, revealing an expected role for the phonological loop (Baddeley & Hitch, 
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1974) in this task. Importantly, the negative effect of this concurrent activity was significantly 

larger for recall of digits from the single location condition, relative to the keypad display 

condition. It appears that the availability of meaningful spatial information not only facilitates 

verbal recall performance in general, but also reduces the relative reliance on phonological 

WM and resulting susceptibility to disruption by concurrent verbal suppression.  

Experiment 2 

We would argue that the larger effects of AS on single location recall relative to keypad recall 

in Experiment 1 reflects a stronger relative reliance on modality-specific processing; 

specifically, the set up and maintenance (through rehearsal) of phonological representations. 

An alternative possibility, however, is that the availability of stored configural knowledge to 

support digit recall may protect performance against any form of working memory load, 

regardless of modality. Experiment 2 replaced articulatory suppression with a simple spatial 

analogue (spatial tapping) to examine whether differential patterns of concurrent task effects 

are general or modality-specific in nature. Spatial tapping typically involves participants 

repeatedly tapping out a simple sequence at a steady pace on a spatial array. It can be 

dissociated from impacts of AS and provides a straightforward and reliable method of 

examining the involvement of visuospatial working memory in various cognitive tasks (e.g. 

Barton, Mathews, Farmer, & Belyavin, 1995; Brown & Wesley, 2013; Darling, Della Sala, & 

Logie, 2009; Farmer, Berman, & Fletcher, 1986; Larsen & Baddeley, 2003; Pearson, Logie, 

& Gilhooly, 1999) while placing relatively minimal load on phonological processing or 

central executive control (e.g. Barton et al., 1995; Chincotta, Underwood, Abd Ghani, 

Papadopoulou, & Wresinski, 1999; Smyth & Pelky, 1992). The effects of spatial tapping may 

be even more specific, with studies (e.g. Darling et al., 2009; Della Sala, Gray, Baddeley, 

Allemano, & Wilson, 1999) suggesting that this task particularly loads on a spatial WM 
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component, termed the ‘inner scribe’ by Logie (1995, 2003), that may be separable from 

visual storage (termed the ‘visual cache’).  

While the use of visuospatial information in the primary task appears to require the 

availability of stored configural knowledge in LTM (Darling et al., 2012, 2014), its initial 

utilization is nevertheless assumed to be visuospatial in nature, and thus rely on these 

subcomponents of WM. In support of this, Tanaka et al. (2002) used fMRI to examine the 

superior digit recall performance of expert mental abacus users, and found that they showed 

activation in bilateral fronto-parietal areas involved in visuospatial processing, while non-

experts showed activation in areas responsible for verbal WM, including Broca’s area. The 

visuospatial bootstrapping paradigm may provide a more widely accessible method of 

examining similar processes of interaction between verbal and spatial information using long-

term knowledge. We therefore predicted that spatial tapping performed concurrently during 

presentation of the digit sequences would have a significantly more disruptive impact on 

performance when digits were presented within a typical keypad configuration, relative to a 

single digit location condition.  

Method 

Participants 

Thirty-two participants (5 males, 27 females; mean age 19.4, range 18-23, SD = 1.04) took 

part in this experiment. All were students at the University of Leeds. 

Design 

A 2x2 repeated measures design was implemented, manipulating display type (single vs. 

keypad) and concurrent task (no task vs. spatial tapping). All participants took part in all 
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conditions within a single session, in a fully counterbalanced order. The dependent variable 

was the mean proportion of digits correctly recalled in each condition.  

Materials and Procedure 

Materials and testing procedure were closely based on Experiment 1. The main 

difference in this experiment was that spatial tapping was implemented in the concurrent task 

condition. For this task, participants were required to concurrently perform a spatial tapping 

task throughout the encoding phase, from fixation cross to final item offset. This was 

performed on a set of 4 black felt pads (each sized 2.8cm
2
) attached to a secure base and 

arranged in a cross formation (see Figure 1 inset), with a regular up-down-left-right 

movement required at approximately two taps per second. Participants were permitted to 

familiarize themselves with the configuration and pattern of motion before starting the first of 

the tapping conditions. The spatial array was then placed out of view behind a screen (though 

still in easy reach of the participant) during task performance, in order to minimize visual 

disruption and emphasize the spatial nature of the task. In the no tapping condition, 

participants were not required to concurrently perform any action during encoding. 

Results 

Participants achieved a mean span score of 6.97 (SE = .14) in the pretest, with this being the 

mean sequence length implemented in the subsequent experimental conditions. Strict serial 

position scoring criteria were applied to the latter data, to yield a measure of mean proportion 

of digits correctly recalled per sequence
2
. This is displayed in Figure 3, for each display type 

and concurrent task condition. A 2x2 repeated measures ANOVA revealed significant effects 

of display type, F (1,31) = 4.55, ηp2 = .13, p < .05, and spatial tapping, F (1,31) = 115.14, 

ηp2 = .79, p < .001, indicating superior recall for digits in the keypad condition relative to 

single digit displays, and a substantial negative effect of spatial tapping. In addition, there was 
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a significant interaction between display type and concurrent task, F (1,31) = 4.71, ηp2 = .13, 

p < .05. Further analyses revealed that spatial tapping had significant effects on both single 

digit, t (31) = 5.91, p < .001, and keypad conditions, t (31) = 8.38, p < .001, though effect size 

was considerably larger for keypad recall  (d = 1.56) than for the single digit condition (d = 

0.92). In particular, the significant advantage for keypad over single location displays was 

present in the no load condition, t (31) = 5.61, p < .001, d = .89, but not in the spatial tapping 

condition, t (31) = .08, p = .94, d = .02. 

Discussion 

This experiment again successfully replicated the bootstrapping effect (Darling & Havelka, 

2010; Darling et al., 2012, 2014); participants do reliably make use of available, meaningful 

verbal-spatial associations when recalling digit sequences. We also observed a large impact of 

concurrent spatial tapping on both display conditions. It is likely that the requirement to 

encode visually presented stimuli loads on visuospatial processing regardless of particular 

configurations or response formats (e.g. Brown & Wesley, 2013), hence why such effects 

emerged even in the single location condition. Indeed, Chincotta et al. (1999) observed 

significant effects of a similar spatial tapping task on digit recall (using single location 

presentation), and argued for a spatial component in encoding and storing digit numerals.  

Most importantly, a significant display by task interaction emerged, with larger 

disruptive effects of spatial tapping on recall in the keypad condition. In fact, performing the 

concurrent tapping task during sequence presentation abolished the bootstrapping effect. This 

experiment provides the first evidence that the bootstrapping advantage emerges through 

processes taking place during encoding, rather than at storage or later recall. Specifically, it 

appears that when spatial WM resources are loaded using an additional task during encoding, 

participants are no longer able to utilize spatial information in the environment to boost 
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performance. Thus, availability of domain-specific resources does appear to be important in 

supporting the construction and utilization of cross-domain associations.  

The findings of Experiment 2 might reflect importance of spatial processing 

availability during initial binding of verbal and spatial information, with subsequent retention 

in a modality-general store such as the episodic buffer (Baddeley, 2000). One alternative 

possibility, however, is that verbal and spatial information is stored in separate modality-

specific streams (Cowan, Saults, & Morey, 2006), with both independently feeding into recall 

performance. While still reflecting the interaction of different domains in supporting WM 

performance, this suggestion might explain the different patterns of AS and ST effects 

without the need to posit an additional general storage capacity such as the episodic buffer. 

This question was examined in a final experiment, in which spatial load was shifted to the 

recall phase. 

Experiment 3 

In this final experiment, participants were free to initially encode the digit sequences without 

any additional task requirement, but in the interference conditions, began performing spatial 

tapping at the same time as they commenced verbal recall. If the bootstrapping recall 

advantage is due to information from different modalities being stored separately and then 

independently informing recall performance, the pattern of interference effects should be the 

same when spatial tapping is moved to the recall phase as when it is implemented at 

encoding. In contrast, if the bootstrapping effect reflects initial binding of verbal and spatial 

information during encoding within a modality-general component such as the episodic 

buffer, then the display by tapping interaction will not be observed when tapping is only 

performed at recall; the bindings will already have been set up, so the keypad condition will 

no longer be vulnerable to spatially-oriented interference.  
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Method 

Participants 

Thirty-two participants (6 males, 26 females; mean age 20.2, range 18-32, SD = 3.28) took 

part in this experiment. All were students at the University of Leeds. 

Design, Materials, and Procedure 

The experimental design, materials, and procedure were identical to that used in Experiment 

2. The exception was that participants performed the spatial tapping task during the recall 

phase, commencing tapping as soon as digit presentation ended and continuing until they had 

completed their recall attempt. 

Results 

Participants achieved a mean span score of 7.09 (SE = .17) in the pretest, with this being the 

mean sequence length implemented in the subsequent experimental conditions. Mean 

proportion of digits correctly recalled per sequence was again used as the primary DV
3
. This 

is displayed in Figure 4, for each display type and concurrent task condition. A 2x2 repeated 

measures ANOVA revealed significant effects of display type, F (1,31) = 11.97, ηp2 = .28, p 

< .01, and spatial tapping, F (1,31) = 20.85, ηp2 = .40, p < .001, indicating superior recall for 

digits in the keypad condition relative to single digit displays, and a negative effect of spatial 

tapping. However, the interaction between display type and concurrent task was not 

significant, F (1,31) = .01, ηp2 = .00, p = .94. 

Discussion 

With spatial tapping shifted to the response phase, this experiment replicated the two main 

effects that were observed in Experiment 2; digit recall was superior following the keypad 

presentation (i.e. the bootstrapping effect was again observed), and spatial tapping negatively 
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impacted on performance. This latter finding would at least partly reflect a dual-response 

bottleneck (see also Hegarty, Shah, & Miyake, 2000), with participants required to 

concurrently respond in two different tasks. However, the critical finding in this experiment 

was that, with tapping performed during recall instead of encoding, the interaction between 

presentation method and concurrent task was not significant. Therefore, following initial 

encoding, spatial WM resources were not differentially important for digit recall as a function 

of how the information was originally presented. These findings will be discussed further in 

the following section. 

General Discussion 

Three experiments replicated the visuospatial bootstrapping advantage previously observed 

by Darling et al. (2012, 2014; Darling & Havelka, 2010); digit recall was reliably superior 

when digits were presented within a familiar spatial keypad array, relative to presentation in a 

single location. Given that this effect involves combining information from separable (verbal 

and spatial) domains, the key question in the current study concerned how processing in these 

domains may contribute to such cross-domain binding, and the implications this may have for 

models of working memory. As expected, performance of simple tasks requiring verbal or 

spatial processing during stimulus presentation negatively impacted on digit recall 

performance following both display conditions, indicating contributions of these specialized 

sub-components of working memory regardless of how the information was encountered. 

However, the relative magnitude of these disruptive effects varied with display configuration 

when the concurrent tasks were performed at encoding, in line with our a priori predictions; 

single location recall was relatively more susceptible to disruption from articulatory 

suppression (Experiment 1), while recall following keypad presentation showed greater 

disruption by concurrent spatial tapping (Experiment 2), though not when the latter task was 

shifted to the recall phase (Experiment 3). This novel pattern of findings provides new 
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insights for models of working memory, and in particular how specialized sub-systems might 

contribute to the interaction between these systems and stored knowledge in LTM. 

 As previously suggested (Darling et al., 2012, 2014; Darling & Havelka, 2010), the 

visuospatial bootstrapping effect reflects binding of verbal and spatial information based on 

stored configural knowledge. This may be served by a modality-general storage capacity such 

as the episodic buffer within the multicomponent model of working memory (Baddeley, 

2000). According to (Baddeley et al., 2011), the episodic buffer is directly connected to 

modality-specific subcomponents responsible for processing visual and spatial information 

and phonological information respectively, with information from the environment feeding 

into the episodic buffer via these specialized capacities. This general approach is supported by 

the present work, with the underlying processing indexed by the bootstrapping effect 

responding in distinct ways to varying forms of concurrent disruption, suggesting an 

interactive relationship between cross-domain storage and separable, specialized processing 

capacities. 

Articulatory suppression particularly impacts on the maintenance and rehearsal of 

familiar visually presented verbal material (Besner, 1987). Performance in the single digit 

condition is heavily dependent on verbal maintenance due to the absence of other 

environmental cues, and therefore particularly suffers when this is prevented. In contrast, the 

availability of a familiar spatial configuration in which to embed to-be-remembered digit 

sequences reduces the reliance on verbal working memory, and with it the impact of AS. 

These findings from Experiment 1 fit with Morey’s (2009) observation of superior letter 

recognition memory under suppression when participants were encouraged to bind letters to 

their spatial locations. Morey suggested that verbal-spatial associations are retained within the 

episodic buffer (Baddeley, 2000) or Cowan’s (2004) focus of attention, and are hence 
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somewhat preserved from domain-specific interference. The present findings extend this to 

the use of familiar verbal-spatial associations in a digit recall task.  

In contrast to the reduced impact of AS, however, the relatively larger impact of 

spatial tapping on keypad recall observed in Experiment 2 (and the resulting abolition of the 

bootstrapping advantage) would nevertheless suggest that domain-specific processes are 

critical for the activation and utilization of familiar verbal-spatial associations in order to 

facilitate recall. It appears that sufficient visuospatial resources should be available in order 

for verbal recall to benefit from the familiar keypad configuration; when these are loaded by 

concurrent spatial tapping, participants can no longer draw on this spatial information, and 

may instead rely on verbal working memory. Thus, in addition to storage in the episodic 

buffer, modality-specific storage also remains available should cross-domain binding be de-

emphasized or prevented, as in the case of spatial tapping. This reflects the flexible nature of 

working memory, with different strategies and processes potentially employed to suit 

different situations (Logie, 2011; Morey, 2009). We would suggest that, in the case of 

visuospatial bootstrapping, availability of spatial resources is important for the development 

of verbal-spatial binding in the episodic buffer. It remains to be seen whether these resources 

are required for coding directly into the buffer itself, or for creation of visuospatial 

representations which are then drawn into this modality-general store. 

One alternative explanation for the findings from Experiments 1 and 2 might be that, 

rather than requiring cross-domain storage from the point of encoding, verbal and visuospatial 

information is held in parallel within modality-specific stores, with each used at retrieval to 

inform recall performance. Cowan et al. (2006) noted such a possibility in a task requiring 

memory for sequences of arbitrary pairings of names and locations. In this way, the process of 

cross-modal integration might occur during retrieval rather than encoding. However, this class 

of suggestion is undermined by the complete absence of any interaction between display type 
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and spatial tapping in Experiment 3, when tapping was performed during recall instead of 

encoding. If the bootstrapping advantage was solely the result of participants being able to 

draw on modality-specific spatial representations at recall, spatial tapping at this phase should 

have also reduced or abolished the advantage. Instead, Experiments 2 and 3 combined 

indicate that spatial processing is key to initial formation of domain-general representations 

within the episodic buffer, but not their subsequent use at recall.  

This conclusion is supported by recent observations from Langerock et al. (2014) in 

their study of memory for visually presented verbal information (letters), spatial locations, or 

verbal-spatial binding. Tasks loading on verbal or spatial processing were added during short 

retention intervals separating presentation of each target item; these disrupted performance in 

the primary memory task to the same extent across feature and binding conditions. Langerock 

et al. interpreted this to indicate a separation between domain-specific sub-systems and the 

episodic buffer, with cross-domain associations maintained within the latter limited capacity 

store. While Experiment 3 in the present study was focused on retrieval rather than retention, 

the findings nevertheless provide convergent support for the claims of Langerock et al. 

regarding modality-general storage, but also go further in demonstrating that domain-specific 

processes do make separable contributions during initial encoding (Experiments 1 and 2). 

Following on from the work of Langerock et al., it would be of value for future research to 

examine how visuospatial bootstrapping effects may vary across retention intervals. While 

this question is outside the scope of the present study (which was focused on immediate 

recall), it would be useful to establish whether the bootstrapping advantage survives or even 

increases over time, and what cognitive processes may be involved during these extended 

maintenance periods. 

Domain-general retention of verbal-spatial associations that is connected to but 

separable from domain-specific processing would fit with our recent developmental 
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exploration of bootstrapping effects (Darling et al., 2014). In that study, we observed a 

bootstrapping advantage of equivalent magnitude in 9-year old children and young adults, 

while a group of 6-year old children did not show this effect. This abrupt emergence of the 

bootstrapping advantage can be distinguished from the more gradual development of verbal 

and visuospatial processing through childhood and into adolescence (e.g. Gathercole, 1999). 

The present dual-task study builds on this distinction; these modality-specific components are 

clearly involved in the present digit recall tasks, and visuospatial processing appears to be 

important during initial encoding of familiar verbal-spatial associations, but these are not the 

only underlying factors driving the effect; cross-domain binding and the application of stored 

long-term knowledge to working memory are also important. 

 Previous observations of visuospatial bootstrapping effects only occurred with 

meaningful configurations (Darling et al., 2012, 2014). This bears comparison with research 

showing increased expert memory for representative stimuli, and not randomly rearranged 

versions, in fields such as chess (Chase & Simon, 1973) and music (Sloboda, 1976). 

Similarly, individuals who (through extensive practice) are highly skilled at using a ‘mental 

abacus’ strategy to carry out calculations can show superior digit span performance alongside 

normal span for other materials (e.g. letters), indicating the use of established visuospatial 

expertise drawn from LTM to supplement digit memory (Hatano & Osawa, 1983). In line 

with the current findings, an fMRI study of digit recall performance by Tanaka et al. (2002) 

found that abacus experts showed activation in bilateral fronto-parietal areas linked to 

visuospatial processing, while for non-experts activity was predominantly in the left 

hemisphere in regions responsible for verbal WM. In contrast to such expert memory studies, 

however, knowledge of the keypad configuration as utilized in the present study reliably 

influences memory in typical groups of older children and young adults, indicating that it can 
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be generalized beyond a minority of expert users and cognitive skills that require years of 

specialized practice.  

Examining dual-task effects 

 The application of dual-task logic to working memory has previously been widely and 

successfully used in driving theoretical developments (see Baddeley, 2007). It is important 

however to consider the extent to which component tasks are relatively process-pure and load 

primarily on intended cognitive components. Both articulatory suppression (e.g. Baddeley et 

al., 1975, 1984; Barton et al., 1995; Farmer et al., 1986; Larsen & Baddeley, 2003; Morey & 

Cowan, 2004, Morey, 2009) and spatial tapping (e.g. Barton et al., 1995; Brown & Wesley, 

2013; Darling et al., 2009; Della Sala et al., 1999; Farmer et al., 1986; Larsen & Baddeley, 

2003; Pearson et al., 1999; Smyth & Pelky, 1992) have been frequently utilized for the 

purposes set out in the current study and their use in this context is non-contentious. 

Nevertheless, these tasks may also load on additional capacities, as well as modality-specific 

processing, and these should be considered in light of the present outcomes. 

 One possibility is that the selective disruption effects observed in Experiments 1 and 2 

may reflect input interference, with articulatory suppression and spatial tapping generating 

general attentional distraction that conflicts with the encoding of phonological or spatial 

information in the different experiments. However it does not follow that loading on the same 

general attentional resource by two concurrent tasks would then have directly contrasting 

effects on encoding of two different forms of information (single and keypad display); if both 

AS and ST simply load on the same general resource, this logically should impinge in the 

same way on primary task performance. Though it may be possible to argue that these 

findings reflect modality specificity of initial attentional resources rather than storage per se, 

this would still support our interpretation of modality-specific initial processing that varies 
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between keypad and single conditions. It should be noted that, while we consider how a 

multimodal account of working memory offers the most compelling and parsimonious 

account for our data, we do not explicitly reject other theoretical approaches. Nevertheless, 

the findings suggest that models that de-emphasize a modular approach in favour of a 

strongly unitary view (e.g. Cowan, 1995, 2005; Oberauer, 2002; Unsworth & Engle, 2007) 

might at least require some adjustment. 

 While the contrasting effects of AS and ST are therefore unlikely to simply reflect 

common impacts of a general attentional load, an alternative view of the spatial tapping task 

alone might be that it has a substantial executive component in addition to its modality 

specific effects. For example, processing within the episodic buffer might particularly draw 

on the central executive at encoding only (and not retrieval), with the executive load placed 

by spatial tapping disrupting this encoding-based binding process. While we would not 

presently wish to completely reject the suggestion that spatial tapping does require some level 

of general attentional control, previous research has suggested that this is relatively minimal 

and that the disruptive impact of spatial tapping can be dissociated from those produced by 

executive load tasks (e.g. Allen et al., 2009; Chincotta et al., 1999; Eysenck, Payne, & 

Derakshan, 2005; Kemps, Szmalec, Vandierendonck, & Crevits, 2005; Smyth & Pelky, 

1992). In addition, while the original conception of the episodic buffer identified it as being 

critically reliant on executive control (Baddeley, 2000), more recent studies have 

demonstrated that it may operate in a relatively automatic manner, independently of 

attentional load (see Baddeley et al., 2011). It is therefore unlikely that the abolition of the 

bootstrapping advantage by spatial tapping observed in Experiment 2 solely reflects an 

executive load. 

 It is also worth noting that spatial tapping was observed to disrupt single-location 

recall in Experiment 2. If this task was entirely pure in its impacts on spatial WM, this type of 
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pattern might not be expected to occur. Tapping disruption was lower than in the keypad 

condition of the same experiment, meaning that this pattern does not markedly affect 

interpretation of the key finding of this study (that tapping abolishes any evidence of a 

bootstrapping advantage for keypad displays), but it nevertheless merits some attention. 

Spatial tapping has previously been shown to impact on verbal task performance (e.g. Jones et 

al., 1995), though it is not always consistently observed (Guerard & Tremblay, 2008; Meiser 

& Klauer, 1999). Moreover some imprecision in selective interference might be 

understandable. In the visuospatial bootstrapping paradigm, presentation is visual in all 

conditions, and thus even the single location condition has a visual component. While visual 

and spatial components of working memory have been argued to be separable (Darling et al., 

2009; Della Sala et al., 1999; Logie, 1995), tapping tasks can impair memory for dynamic 

visually presented items (Pickering, Gathercole, Hall & Lloyd, 2001). Hence a concurrent 

tapping task loading on operations associated with the visuospatial sketchpad (under the 

Baddeley framework) might disrupt any visually presented primary task to at least some 

extent. This may at least partly account for why some spatial tapping effects emerged in the 

single location condition in Experiment 2. As indicated by the name of the phenomenon, we 

do not wish to argue that visuospatial bootstrapping is critically reliant only on spatial 

processing, but rather that it draws on specialized visuospatial capacities in boosting verbal 

working memory performance. 

 To conclude this section, very few tasks are entirely process-pure, and thus it is likely 

that both articulatory suppression and spatial tapping involve elements additional to 

disruption of verbal rehearsal and spatial processing. However, spatial tapping clearly does 

have a strong spatial component, and the findings observed in Experiments 2 and 3 are in line 

with our a priori predictions regarding how spatial processing might contribute to visuospatial 

bootstrapping during encoding and retrieval. As such our interpretation provides a clearly 
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motivated and parsimonious account of the pattern of effects observed. While the present 

study was focused on verbal and spatial modality-specific processing, it will be fruitful for 

further research to examine whether other processes (for example, executive attention or 

motoric processing) are also critical to visuospatial bootstrapping. 

Conclusions 

Overall, the present study demonstrates across three experiments that the visuospatial 

bootstrapping advantage is not only highly reliable, but responds in contrasting yet logical 

ways to dual task manipulations. The availability of familiar verbal-spatial associations 

facilitates digit recall and reduces reliance on maintenance in verbal working memory. This 

effect initially emerges at encoding and requires spatial processing resources to support the 

activation of verbal-spatial associations. Once these are set up within a domain-general 

storage capacity such as the episodic buffer, spatial processing is then no longer critical.  
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Footnotes 

1. Previous work on bootstrapping (Darling & Havelka, 2010; Darling et al., 2012) has used 

mean proportion of trials on which all items were successfully recalled as the main DV. Mean 

proportion of fully recalled sequences was not analyzed in this experiment, as a number of 

participants performed at floor in the articulatory suppression conditions on this measure, 

failing to correctly recall any full sequence.  

2. Analysis of mean proportion of trials on which all items were successfully recalled 

revealed equivalent patterns of data, with significant effects of display type, F (1,31) = 6.89, 

ηp2 = .18, p < .05, concurrent task, F (1,31) = 128.43, ηp2 = .81, p < .001, and the display x 

task interaction, F (1,31) = 8.47, ηp2 = .22, p < .01. Paired samples t-tests showed a 

significant bootstrapping effect in the no task condition, t (31) = 4.82, p < .001, d = 72, but 

not with spatial tapping, t (31) = .01, p = .906, d = 02. 

3. Analysis of mean proportion of trials on which all items were successfully recalled 

revealed equivalent patterns of data, with significant effects of display type, F (1,31) = 22.70, 

ηp2= .42, p < .001, concurrent task, F (1,31) = 18.13, ηp2 = .37, p < .001, but no display x 

task interaction, F (1,31) = .06, ηp2 = .00, p .81.
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Figure captions 

Figure 1. Illustration of a) presentation method in each display condition, and b) spatial 

tapping layout used in Experiments 2 and 3, with arrows indicating direction of tapping 

sequence 

Figure 2. Mean proportion correct per sequence (with standard error) in Experiment 1 

Figure 3. Mean proportion correct per sequence (with standard error) in Experiment 2 

Figure 4. Mean proportion correct per sequence (with standard error) in Experiment 3 
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Figure 3 
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Figure 4 
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