UNIVERSITY OF LEEDS

This is a repository copy of Inverse scheduling: two machine flow shop problem.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/81533/

Article:
Brucker, P and Shakhlevich, NV (2011) Inverse scheduling: two machine flow shop
problem. Journal of Scheduling, 14 (3). 239 - 256. ISSN 1094-6136

https://doi.org/10.1007/s10951-010-0168-y

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

| university consortium eprints@whiterose.ac.uk
WA Universities of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Inverse Scheduling: Two Machine Flow Shop Problem

Peter Brucker
Universitdt Osnabriick, Fachbereich Mathematik/Informatik,
49069 Osnabriick, Germany (pbrucker@uni-osnabrueck.de)

Natalia V. Shakhlevich*
School of Computing, University of Leeds,
Leeds LS2 9JT, U.K. (N.Shakhlevich@leeds.ac.uk)

Abstract

We study an inverse counterpart of the two machine flow-shop scheduling problem
that arises in the context of inverse optimization. While in the forward scheduling
problem all parameters are given and the objective is to find job sequence(s) for which
the value of the makespan is minimum, in the inverse scheduling the exact values of
processing times are unknown and they should be selected within given boundaries so
that pre-specified job sequence(s) become optimal. We derive necessary and sufficient
conditions of optimality of a given solution for the general case of the flow shop problem
when the job sequences on the machines can be different. Based on these conditions
we prove that the inverse flow-shop problem is NP-hard even in the case of the same
job sequence on both machines and produce a linear programming formulation for a
special case which can be solved efficiently.

Keywords: inverse scheduling, flow shop scheduling

1 Introduction

In this paper we study the classical two-machine flow-shop scheduling problem from the
inverse optimization perspective. While in a forward optimization problem traditionally
considered in discrete optimization, the exact values of all parameters of the problem are
given and the goal is to find a solution within the solution space with the smallest value of
the objective function, in an inverse optimization problem the typical values of the problem
parameters are given together with the description of a target, usually non-optimal solution.
The objective is to adjust the parameters within certain limits and not deviating too much
from their typical values so that the target solution becomes optimal.

Many classical optimization problems have been studied from the point of view of inverse
optimization; the summary of the results can be found in the comprehensive reviews [1, 6]
and in monograph [13]. The area continues to attract attention of researchers, see, e.g.,
more recent papers [4, 12, 14].

The adjustable parameters of inverse problems can be of two types. Often the coef-
ficients of the objective function are adjustable (for example, the costs in the assignment

*Correspondence to: Natalia Shakhlevich, e-mail: N.Shakhlevich@leeds.ac.uk

problem). In some research, the adjustable parameters are not related to the objective
function as, for example, in the inverse counterpart of the minimum cost flow problem
with adjustable capacities, see [5] for the latest study. Inverse problems that arise in the
area of scheduling are usually of the second type: the adjustable parameters are various
job characteristics such as processing times [10], due dates or release times [3], rather than
costs in the objective function.

In this paper we study the inverse counterpart of the two-machine flow shop problem
with the makespan objective. In the forward problem denoted by F2||Ciax, the jobs of the
set N ={1,2,...,n} should be processed first by machine A and then by machine B. All
jobs are available at time 0. The processing times of the two operations of a job 7 € N on
machines A and B are given by integers a; and b;, respectively. We denote the two vectors

of processing times by a = (a1,...,a,) and b = (b1,...,by).
If the jobs are processed in the same order on both machines, then the schedule is called
a permutation schedule. If additionally the jobs are renumbered so that = = (1,2,...,n),

then the makespan C.x of such a schedule can be calculated as

Chnax (7, 7,2, b) = max Za]—i—Zb) (1)

1<h<n

In the notation of Chax, the first two parameters stay for the permutations on machines
A and B while the last two parameters denote the vectors of processing times on those
machines.
If the jobs are processed in accordance with different permutations = = (7 (1),7(2),
..,m(n)) and 0 = (0 (1),0(2),...,0(n)), then the schedule is called a non-permutation
schedule and the makespan of such a schedule can be calculated as

71 (h)
C’max(ﬁaab)—lrg’?é(n Z ar(jy + Z bo(k) ¢ > 2)

: kO‘l

where 77! (h) and 0! (h) are the positions of job h in permutations 7 and o, respectively.
The objective of the forward problem F2||Chax is to find permutations 7* and o* for
which the makespan is minimum:

Crax (7*,0%,a,b) < Chax (7, 0,a,b) for any job permutations 7, o.

Observe that allowing different job permutations on the machines cannot decrease the
optimal value of the makespan, so that there always exists an optimal permutation schedule.
On the other hand, there may also exist an optimal non-permutation schedule with the same
value of the makespan.

In the inverse counterpart of problem F2||Cpax, the typical processing times a and b
are given together with the target job sequences m and o on machines A and B, which may
be the same on both machines or different. In what follows we always assume that that
the jobs are renumbered in accordance with permutation 7, so that 7 = (1,2,...,n). The
target job sequences may not be optimal for the given typical values of a; and b, j € IN.
The objective is to modify the processing times within certain limits so that the target job
sequences become optimal.

We denote the inverse problem by F2|adjustable aj,bj, 7, 0|Cmax. In this problem,
the adjusted processing times a = (ay,as,...,a,) and b= (31,32, .. ,3,1) should be se-
lected within given boundaries a; € [gj, Ej], Ej € [bj, Ej], 7 € N, so that the deviation
H (5, B) — (a, b)H from the original processing times is minimum and the target job per-
mutations 7 and o for machines A and B are optimal:

min H (Q,B — (a, b)H (3)
$t. Cuax (7,0,8,b) < Coax (7r’, o', a, B) for any permutations 7/, o’,

a; < a; < aj, JEN,

b; < bj < by, JEN.

In this paper, the deviation H (5, B) — (a, b)|| is estimated in accordance with the norm

f1, which is a popular metric in inverse optimization:

|(&5) - @)

n

=Y [a max {a; — a;,0} + a; max{a; — aj, 0}]
1,a,8 =1
n

2 [5+max{b b],0}+5 max{bj—ﬁj,o}].

Here coefficients oz;r, o, ﬁ;r and ﬁ; are non-negative. We say that operation of job j on

machine A (machine B) is decompressed if @; > a; (b; > b;) and compressed, otherwise.

Observe that an inverse counterpart of problem F2||Cpax is studied in [10] under some
additional restrictive conditions. In that study, it is assumed that not only the job sequences
are the same on both machines, but a job h that specifies the makespan in (1) is also known.
In our study the most general case of the inverse flow-shop problem is considered.

The inverse flow shop problem can be illustrated with the following scenario. Suppose
the production process requires some special setups which a producer can perform in ad-
vance. If a customer placing several orders can specify only the estimates of job processing
times, the producer may plan the production process selecting the best sequences of jobs
on the machines based on the information provided and perform the required setups for the
selected sequences. The arriving jobs may have slightly different characteristics so that the
selected sequences are no longer optimal. If the pre-planned sequences cannot be changed
due to technological restrictions, the producer may decide to adjust job processing, speed-
ing up some of them by using, for example, additional resources, or slowing down others,
so that the sequences become optimal for the adjusted processing parameters. This, how-
ever, incurs costs which should be minimized. Observe that a non-permutation schedule
with different job sequences on the machines may be a preferred production plan for the
producer; then the required adjustments of processing times are aimed at making the given
job sequences optimal.

A similar but slightly different scenario is typical for scheduling with controllable
processing times and reverse optimization. In those models, the target value of the ob-
jective function is given, while the problem parameters and the solution itself (e.g., the job
sequence) should be modified in order to achieve that target value.

The main contributions of the paper can be described as follows. We formulate necessary
and sufficient conditions of optimality of a solution given by the same permutation on both

machines and generalize it for the case when the job sequences on the machines can be
different. Some constraints of the necessary and sufficient conditions are disjunctive and
due to this the inverse flow-shop problem appears to be NP-hard even in the case of the
same permutation on both machines. On the other hand, if additional restrictions are
imposed, e.g., operations on one machine are fixed and others are adjustable, then the
disjunctive constraints can be simplified resulting in a linear programming formulation of
the inverse problem.

The paper is organized as follows. The necessary and sufficient conditions are formulated
in Section 2. NP-hardness of the inverse flow-shop problem is proved in Section 3. A special
case with one adjustable machine is studied in Section 4. Finally, conclusions are given in
Section 5.

2 Necessary and Sufficient Conditions of Optimality

In this section we formulate necessary and sufficient conditions of optimality of a solution
given by job sequences m and ¢ on machines A and B. First we consider the permutation
schedules in which the job order on both machines is the same (7 = o), then we proceed
with the general case when job permutations are different for the two machines (7w # o).

2.1 Permutation Schedules

Suppose a target solution is given by a job permutation 7 = (1,2,...,n) which is the same
for machines A and B. We introduce the following notation for cumulative processing times
of consecutive operations u,u + 1,...,v processed by machines A and B:

v

Au,v = § as,
i=u
v

Bu,v = § bja
i=u

where 1 < u < v < n. In what follows, we do not use 7, o, a and b in the notation of Cpax
if no ambiguity arises.

Definition 1 Job h € N is critical if
C'maux = Al,h + Bh,n (4)
or equivalently
A+ Bhp 2 A+ Bjn (5)
forallj € N.

Observe that the notion of a critical job plays an important role in the flow shop
problem, see, e.g., [11]. Its meaning can be explained by using the network representation
G = (V, E) of a flow-shop schedule given by the job sequence m = (1,2,...,n) on machines
A and B. In that network, the vertices represent the operations of the jobs N on machines

A and B plus the source s and the terminal node ¢, |V| = 2n + 2. The arcs E represent
the precedence relations among the operations:

4

- in accordance with permutation 7 = (1,2,...,n), every pair of nodes j and j+1 associated
with machine A are connected by an arc; similarly, every pair of nodes j and j + 1
associated with machine B are also connected by an arc;

- in accordance with the flow-shop requirement, for every job j, its operation on machine
A should precede its operation on machine B;

- source s is connected with the first operation of job 1 on machine A, while the last
operation of job n on machine B is connected to the terminal node ¢.

The length of the arc (s,1) is zero, while for any other arc its length is defined as the
processing time of an operation the arc originates from.

Mlachine 4:

Mlachine &

Figure 1: Network model G = (V, E) for the flow-shop schedule with the same permutation
m=(1,2,...,n) on both machines

Using the network representation G, the starting time of any operation can be found as
the length of the longest path from s to that operation, and the makespan Cy,.x corresponds
to the starting time of ¢ or equivalently to the length of the longest (critical) path from s
to ¢t in G. Clearly, it should contain one arc connecting two operation-nodes of the same
job, which we call critical and denote by h, and the length of the critical path is calculated
in accordance with (4). In the network model, A; j is the length of the path on machine
A from s to the A-operation of job h plus the length of the arc aj connecting the two
operations of job h, and By, is the length of the path on machine B from the B-operation
of job h to t.

An example of the network representation is shown in Fig. 1. It is assumed that the
longest path, shown by solid arcs, passes through the two nodes of job h, which is a critical
job.

The role of machines is interchangeable in the flow shop problem, and for any schedule
with machine order A, B and job order m = (1,2, ...,n) there exists a symmetric counterpart
with machine order B, A and reverse job order (n,n —1,...,1). It is easy to see that the
corresponding network model can be easily modified for that counterpart by reversing all
arcs. The two schedules are equivalent in the sense that the critical path passes through
the same critical job h in both networks and therefore the makespan value is the same.

Machine &

Machine 4:

Figure 2: Network model G = (V, E) for the symmetric counterpart with the reverse order
of jobs and reverse order of machines

Consider separately jobs u € {1,2,...,h — 1}, which precede the critical job h, and jobs
ve{h+1,...,n}, which follow it. Then conditions (5) are equivalent to

Au,h > Bu—l,h—lv 2 <u< ha (6)
Apny1o < Bpp-1, h+1<0v<n. (7)

Notice that we have no constraint (6) if A = 1 and symmetrically there is no constraint (7)
if h =n.

In what follows we formulate necessary and sufficient conditions of optimality of a given
permutation 7.

Theorem 1 [11] The job sequence m = (1,2,...,n) is optimal if and only if there is a
critical job h € N such that conditions (6)-(7) hold and

min {ay, by} < min{b,,a,} forall u<h <w. (8)

Observe that there may be several critical jobs in an optimal schedule and it may happen
that only for some of them the conditions of Theorem 1 hold while for the other critical
jobs they are not satisfied. An example of such a schedule will be provided in Section 4.1
with two critical jobs, one of which satisfies the conditions of Theorem 1 and another one
does not.

We reformulate conditions (8) as inequalities which can be used in mathematical pro-
gramming problem (3). In addition, we also include the relevant conditions (6)-(7) which
guarantee that job h is critical. Since we do not know in advance which job from the set
N should become critical for the adjusted processing times, we enumerate different classes
of schedules with the fixed critical job h and find optimum adjustments in each class; the
global solution is selected among the optimum solutions found in each class ensuring that
the adjustment cost is minimum.

Let the set of jobs N be split into three subsets:

NO = {j|aj:bj}7
Ny = {J|aj<bj}7
Ny = {jla; > b;}.

In the following two theorems we consider the two cases: h € N7 and h € Np; the case
h € Ny can be reduced to the case h € N; by formulating a symmetric counterpart of the
flow shop problem.

We start with the case h € NVj.

Theorem 2 Suppose there exists an optimal schedule with a critical job h € N1. Then a

schedule given by permutation m = (1,2,...,n) with that critical job is optimal if and only
if conditions (6)-(7) hold and

e for eachu € {l,...,h —1},

ay <b, and ay, <ay 9)

e for eachv € {h+1,...,n}, either
ap < ay < by (10)

or
a, > by. (11)

Proof. First we verify that the conditions of Theorem 2 imply (8). Clearly, (8) is satisfied
if u=wv. If u < v, then we have the following three cases.

(i) Condition (9) together with a; < by imply that (8) is satisfied for v < h = v because
ay < ap = a, and a, < by,.

(ii) Condition ap < by together with one of the conditions (10) or (11) imply that (8) is
satisfied for u = h < v. Indeed, in case of (10), a,, = ap, < a, and a,, = ap < by = by,
so that (8) holds. In case of (11), b, < a, and a, = ap, < b, = by, so that (8) holds
as well.

(iii) Condition (9) together with one of the conditions (10) or (11) imply that (8) is satisfied
for u < h < v. Indeed, (9) and (10) imply a, < b, and a, < aj, < ay, so that (8)
holds. Similarly, (9) and (11) imply a, < b,, and b, < a,, so that (8) holds as well.

In what follows we demonstrate that conditions (8) imply the conditions of Theorem 2.
In particular, we show that condition (8) with v < h = v imply (9) (see Part A) and
condition (8) with u = h < v imply (10)-(11) (see Part B).
Part A. Suppose

ap < bp, (12)
min {a,, by} < min{ap,by,}. (13)

First we observe that no job u with a, > b, can satisfy (13). Indeed, if this was a case,
then combining a,, > b, with (12) we obtain min{a,,bs} > min{ap,b,}, a contradiction
to (13).

In addition, the inequality b, < a, can never happen: if this was a case, then ap < by, <
ay, < by, so that by (13) we have b, = min{ay, by} < min{ay,b,} = ap, a contradiction
to (12).

Thus the only possible case is by, > a,,. Using this in (13) we obtain: a,, = min {ay, by} <
min {ay, by }, or equivalently a,, < aj, and a,, < b, which are the two inequalities from (9).
Part B. Suppose

ap, < by, (14)
min {ay,b,} < min{a,,by}. (15)

We demonstrate that either condition (10) or condition (11) holds. If (11) holds, we are

done. Otherwise a, < by, which together with (15) implies a, > a;,. Therefore (10) holds.

[

Observe that if the symmetric counterpart with h € N» is considered, then the equivalent

formulation of Theorem 2 should have a condition similar to (9) formulated for all jobs
¢e{h+1,...,n} and in that condition a-values are replaced by b-values and vice versa:

by <ap and by < by, (16)

Conditions similar to (10)-(11) should be formulated for all jobs k € {1,2,...,h — 1} and
in those conditions a-values are also replaced by b-values and vice versa:

b < bp < ag (17)

or
b > ay. (18)

Now we study the case of a critical job h € Np. First we observe that if there is at least
one job u € Ny which precedes h, then it is not possible that some job v which follows h
belongs to N since for jobs u and v with a,, > b, and a, < b, condition (8) does not hold.
Therefore all possible situations are covered by the two cases:

(1) uwe N1 UN for all u < h;
(ii) v € Noa U Ny for all v > h.

We can consider only situation (i); situation (ii) can be reduced to (i) by considering the
symmetric counterpart of the flow shop problem. It appears that in case (i) with h € Ny
the conditions are the same as those formulated in Theorem 2 for h € V7.

Theorem 3 Suppose there exists an optimal schedule with a critical job h € Ny and all
jobs before h belonging to Ny U Ny. Then a schedule given by permutation 7 = (1,2,...,n)
with a critical job h € Ny is optimal if and only if condition (9) holds for each u €
{1,...,h — 1} and one of the conditions (10) or (11) holds for each v € {h+1,...,n}.

Proof. It is easy to verify that the arguments used in the proof of Theorem 2 which show
that conditions (8) follow from the conditions of Theorem 2 are applicable for the case
h € Ng.

In what follows we demonstrate that conditions (8) imply the conditions of Theorem 3.
Similar to part A from the proof of Theorem 2, we show that condition (8) with u < h = v
imply (9). Indeed, the inequality a, > aj cannot hold; if this was a case, then condition
(6) would be violated and job h could not be critical:

Aqul,h < Aqul,hfl +a, < Bqul,hfl + bu = Pu,h—1-

Here the second inequality follows from the assumption of the theorem that all jobs pre-
ceding h belong to N1 U Ny.

The proof that condition (8) with u = h < v imply (10)-(11) repeats the arguments
from the proof of Theorem 2. [

It is well known that an optimal solution to the two-machine flow shop problem can
be found in accordance with the algorithm formulated by Johnson [8]. It constructs an
optimal flow shop schedule by sequencing the jobs from N U Ny in non-decreasing order
of their a-values and then the jobs from Ns in non-increasing order of their b-values. Thus
the Johnson rule implies the conditions of Theorems 2-3 but not vice versa, i.e., Johnson’s
conditions are sufficient for optimality but not necessary. In fact there may exist many
optimal schedules which are very different from Johnson’s schedule as illustrated in the
example below. Not only the jobs in Ny can be moved to different positions, jobs in Ny and
N3 can also be moved violating the Johnson sequence, but in accordance with the necessary
and sufficient conditions of optimality. Moreover, there may exist optimal schedules with
job(s) from Ny preceding job(s) from Nj.

A2V « V7%

Z.//8/ /Kl
i 43 s
Vi) « Uz "
7/ Kl . . 7z
2 5 8 1011 20 23 33 34 35 37
N -jobs M,-jobs Ny-jobs

Figure 3: Two optimal schedules satisfying the necessary and sufficient conditions of The-
orem 2

Consider an instance of the flow-shop problem with the data given by Table 1 and two
optimal schedules shown in Fig. 3 (a) and (b). In the figures, the jobs from N; and Ny are
marked by different patterns while the jobs from Ny are left blank. Both schedules have
the same critical job A = 5 and the same makespan Cy.x = 37. The schedule shown in

Fig. 3 (a) follows the Johnson rule with the jobs from N; U Ny preceding the jobs from
Ny. The second schedule shown in Fig. 3 (b) is not consistent with the Johnson rule:
the positions of Ny-jobs are changed so that Ng-job 2 appears in-between two Na-jobs; the
jobs from Nj are not sequenced in non-decreasing order of their a-values; the jobs from No
are not sequenced in non-increasing order of their b-values; moreover, a job from Na (job
7) precedes a job from Nj (job 6). Still the second schedule satisfies the necessary and
sufficient conditions and it is optimal.

2.2 Non-permutation Schedules

We start with the definition of a critical job A in a non-permutation schedule. Then we
show that in an optimal schedule job A splits the schedule into two parts with one set of jobs
processed on machines A and B before h and the remaining jobs processed after A on both
machines, so that the necessary and sufficient conditions formulated for the permutation
case are applicable to the non-permutation case.
Suppose a schedule is given by job sequences 7 = (1,2,...,n) and 0 = (0 (1),0(2),
..,0 (n)) on machines A and B, respectively. We refine definition (2) of a critical job h for a
non-permutation schedule. Let Nzefore(h) and szter(h) (Ngefore(h) and Ngfter(h)) denote the
jobs processed on machine A (machine B) before and after job h. For operations on machine

A, we denote the total sum of all operations in Nzefore(h) and szter(h) by A (Nzefore(h))
and A <szter(h)); similarly for operations on machine B, we denote the total sum of all
operations in Ngefore(h) and Ngfter(h) by B (Ngefore(h)) and B (Ngfter(h)>.
Definition 2 Job h is called critical in a non-permutation schedule if
Crnax = A (Nf;eff’re(")) Yap+by+B (N j;fter(")> (19)

or equivalently

A (foore(")) +ap+b,+B (N ;fter(h)) > A (fof"re(j)) +a;+bj+B (Ngfter(j)) (20)
forany j € N.

The network representation G = (V| F) introduced in Section 2.1, is applicable to the
non-permutation case. It illustrates that any path from s to ¢ should contain exactly one
arc connecting the two operation-nodes of the same job h, and the length of the critical
path is calculated in accordance with (19), where A (Nzefore(h)) is the length of the path
on machine A from s to the A-operation of job h, ap + by, is the total length of the two
operations of job h, and B (Ngfter(h)> is the length of the path after job h on machine B
terminating in .

An example of the network representation of the schedule given by 7 = (1,2, 3,4,5,6,7)
and 0 = (1,3,4,2,5,7,6) is shown in Fig. 4 for the processing times given by Table 2.

The longest path passes through the two nodes of job 4, which is critical, and the
makespan is given by (a1 + ag + ag) + ag + by + (b2 + b5 + b7 + bg) = 32.

Now we show that the necessary and sufficient conditions formulated in Theorems 2-3
hold for the non-permutation case.

10

jl1 2 3 45 6 7
a; [1 4 3 6 2 8 1
b; |8 2 3 5 6 3 2

Table 2: Input data for an non-permutation schedule

Mlachine 4:

Mlachine &

Figure 4: Network representation of the schedule given by = = (1,2,3,4,5,6,7) and o =
(1,3,4,2,5,7,6)

Theorem 4 A schedule S* given by permutations m = (1,2,...,n) and 0 = (o (1),0(2),
..,0(n)) on machines A and B is optimal if and only if there exists a critical job h such
that it partitions the jobs N into the same subsets on machines A and B:

{1,2,...,h — 1} = Nheforelh) - - ybeforeh) _ 451y 5(2),...,0(h—1)}, (21)

h = o(h), (22)
(h+1,...,n} = Nater®) - after®) _ g h 1 1)L o (n)}, (23)

and the necessary and sufficient conditions, formulated for the permutation case for all

after(h)

we Nzefore(h) and v € N , are satisfied as well.

Observe that it is enough to prove one of the conditions (21) or (23); together with (22),
the other condition follows immediately.

Proof. Suppose S* is an optimal non-permutation schedule. We prove that a critical job
exists such that conditions (22) and (23) hold together with the necessary and sufficient
conditions, formulated for the permutation case.

Introduce a permutation schedule S keeping the job order 7 on machine A the same as
in S* and changing the job order on machine B from o to 7. It is known that Ciax (§> <
Chnax (S%), see, e.g., [2]. Due to the optimality of S*, the above inequality should hold as
an equality, and schedule S is optimal as well.

At least one of the critical jobs in S satisfies the necessary and sufficient conditions
known for the permutation case. Suppose h is such a job in S. Denote by Nzefore(h) the
subset of jobs in S before job h on machine A and by Ngfter(h) the subset of jobs in S after

job h on machine B. Clearly,
Nzefore(h) _ Nzefore(h)

since permutation 7 is the same on machine A in both schedules S and S*. If in addition

Ngfter(h) _ Ngfter(h)j (24)

11

then

Cmax <§> _ Nzefore()+ah + bh +Nafter() _ Nzefore()+ah + bh +]Vaf‘cer(h) < Cmax (S*),

where the last inequality holds due to the definition of the makespan in schedule S*. If
that inequality is strict, then Chhax (S) < Cax (5%) and S* is not optimal, a contradiction.

Otherwise, job h is critical in S* and the correctness of the remaining statements of the

theorem follows from the fact that the necessary and sufficient conditions of optimality

of schedule S, formulated in Theorems 2-3 involve inequalities for the jobs N vheere(h) and

Ngfter(), the order of the jobs in each of these subsets being immaterial.

Suppose now that condition (24) is not satisfied. We show that in the schedule S* every
job which belongs to szter() should also belong to N after(h), so that

szter(h) - Ngfter(h)- (25)

If this is not the case, then consider a job j which satisfies:

= szter(h) _ N;fter(h)’
j ¢ Ngfter(h) ‘

If there is more than one job with this property, then among those jobs select job j as the
earliest one on machine B. By the choice of 7,

b + B(after(])) > by + B(after(h)) .

Taking into account that
A (NZefore) > A (Nzefore(h)) Tap,

we conclude that the path that passes through both operations of job j in the network
representation of schedule S* is longer than the one that passes through both operations
of job h in the network representation of schedule S:

A (fof"re(j)> +aj+b;+B (Nafter(s)) > [A (NZefOre(h)) + ah] +aj+
+ [on B (55
> A (Nf;ef”e(")) Yap+by+B (after(h))
- amfs)

a contradiction to the optimality of the schedule S*.
In what follows we assume that szter() = Ng&er(h) C Ngfter(h). Then

Cloiax (g) - A (Nzefore(h)> Fap + by + B(after(h)) <

< A (NZefore(h)) a4 by + B(after(h)) < Cooae (S7)

12

which implies Ciax (§> < Chax (5%), a contradiction to the optimality of schedule S*.

Thus condition (24) holds and we arrive at the case already considered.
Now suppose that in schedule S* given by 7 = (1,2,...,n) and ¢ = (0 (1),0(2),
.., 0 (n)) there exists a critical job h which satisfies inequalities (21)-(23) and the necessary
and sufficient conditions, formulated for the permutation case. Without loss of generality
we assume that h € Nj so that Theorem 2 holds or h € Ny and all jobs preceding h belong
to N1 U Ny so that Theorem 3 holds. We prove that S* is optimal.
Since in schedule S* job h is critical and (21)-(23) hold, then

vy + Bhn = AL + by + B (Ngf t”(’”) > A+ Y bow (26)
0

for any job j € N, where o~ (j) is the position of job j in permutation o.
Consider again a permutation schedule S obtained from S* keeping the job order 7 on

machine A the same as in S* and changing the job order on machine B from o to .
With (21)-(23) we have

A(NbeTore®) 4 gy 4 by, + B (Nefterth)) =

27
A (N a4 by, + B (NG = Chna (5%). !

If h is critical for 5, then the left-hand side of (27) provides the optimal makespan
for the corresponding permutation flow shop problem, because all the optimality criteria
are satisfied. This value is also the optimal makespan for the non-permutation flow shop
problem. Thus S* is optimal. ~

In what follows we show that h is always critical for S by demonstrating that (5) holds
for all j € N. To this end, we consider j € N under each of the following two conditions.

(1) If there is no job which is sequenced after j in 7 and before j in o, then

(0(),0(w+1), o)} D i+ 1, om)
where v = 07! () is the position of job j in o. Hence
> boy =Y b
k=0=1(5) k=j

The latter inequality combined with (26) implies condition (5).

(2) If there is a job which is sequenced after j in 7 and before j in o, then among the
jobs with this property select a job ¢ which is the earliest one in o. Due to the numbering
of jobs in 7 and due to the fact that £ is sequenced after j in m,

{1,2,....5} c{1,2,....4,...,0}.

Due to the choice of £, any job processed after j in 7 is processed after £ in o:

{j,7+1,....n} C{o(p),...,ov),...,0(n)}

13

where 1 = 01 (¢) and v = o1 (j) are the positions of jobs £ and j in o, respectively.
Therefore

Ay < Au,
> b < Z b
k=j k=o—1(

Since h is critical in schedule S*, condition (26) holds for j = ¢:

A+ Brp > A1 + Z bo(k)-
k=o—1(¢)

Combining the last three inequalities we obtain that (5) holds as a strict inequality. n

Due to Theorem 4, we can enumerate only those classes of schedules, for which a fixed
critical job h € N splits the jobs on machines A and B in accordance with (21)-(23).
In the mathematical programming formulation (3) for a fixed critical job h, the relevant
conditions (20) which guarantee that h is critical should be added to the set of constraints.
For example, in the instance shown in Fig. 4, there are two jobs 1 and 5 which satisfy
(21)-(23). In the class of the schedules with the critical job h = 5, the constraints (20) are
of the form:

(@1 + A + a3 + @) + @5 + bs + (br +bg) > a1+51+<53+54+32+35+37+56>

(@1 + Gy + a3+ a4) + a5+ bs + (b +bg) > a1+a2+62+(65+37+56)

(@1 + G2 + a3 + 1) + a5 + by + (br+bg) > (@1 +a2) + a5+ bz + (54+52+35+37+56>
(@1 + @y + a3 +a4) +as+bs+ (br+bg) > (@ +a2+63)+a4+34+(32+35+37+36)
(@1 + a2 + a3+ aa) + a5 + b5+ (br+b6) > (@1 + G + a3 + G4 + ds5) + d6 + be

(@ + Gy + a3 +a4) + 5+ bs + (br+b6) > (G + G + a3 + G4 + G5 + Gg) + a7 + by + bg

The remaining constraints are of the form (9), (10) or (11) together with the box
constraints which specify job variability intervals.

3 NP-hardness of the Inverse Flow Shop Problem

Although we have demonstrated that the same necessary and sufficient conditions of op-
timality hold for permutation and non-permutation schedules, in what follows we deal
with permutation schedules only assuming that the jobs are sequenced in the same order

= (1,2,...,n) on both machines. We show that the corresponding inverse problem is
NP-hard by using a reduction from the knapsack problem. The main idea of the reduction
is based on the fact that the jobs which follow a critical job should satisfy one of the dis-
junctive constraints (10) or (11). Therefore for a job that violates both constraints, one
of the two possible adjustments can be applied. Selecting one of the two adjustments for
such a job can be interpreted in terms of the knapsack problem as selecting an item for
including it in the knapsack or rejecting it.

14

Theorem 5 Problem F2|adjustable aj,b;, 7, 7|Cmax is NP-hard.

Proof. First notice that inverse problem F2|adjustable aj,b;, 7, 7|Cmax is in NP because
with Theorem 2 the optimality of a given solution and whether the adjustment cost is below
a given threshold value can be checked in polynomial time.

In order to prove NP-hardness of problem F'2|adjustable aj, b;, 7, 7|Crax we define an
instance of this problem which is equivalent to the knapsack problem

q
max ;% (28)
i=1
st Yl wiz <C,
2 € {0,1}, 1<i<gq.

with integers w;,y; > 0 for all 1 < i < g, integer C > 0 and

q
Zwi > C.
=1

Consider g + 3 jobs h,v1,...,v4,k,¢ given in this order. Three jobs h, k and ¢ are
“special” jobs and they cannot be adjusted:

aj, = ap =ap, by = by =bp,
ay = ag = ak, by = by = by, (29)
ap=ag=ay, by=2by=b.

Job k is a “big” job from Ny with

ap = E,
b, = E—1,

where F is defined as the total weight of all items for the knapsack plus g:
q
E= Z w; +q. (30)
i=1

Jobs h and £ are from N; and they are identical:

apb = ap=1+¢,

1
b, = bg=C+§+q<E,

where C' is the knapsack capacity and ¢ is a small positive number that satisfies

1
< —. 31
“< (31)
The processing times of the remaining jobs {v1,...,v,} are defined as
Qy; = €, 1=1,...,q,

by, =wy, +1, i=1,...,q. (32)

15

The adjustment boundaries for the jobs {v1,...,v,} are as follows:

Gy, = Qu;, Gy, =0ap, 9=1,...,q, (ay cannot be compressed but can be decompressed
up to ap)
by, = ay;, by, =by,, i=1,...,q, (by, cannot be decompressed but can be compressed

down to ay,)
and the adjustment costs satisfy
af,:.>ﬁ;i, i=1,...,q. (33)

The proof is based on the following claims. First in Claim 1 we show that job A is
the only critical job in a schedule with non-adjusted processing times. Then in Claim 2
we demonstrate that such a schedule is not optimal. In Claims 3-4 we show that in an
optimal inverse schedule job h remains critical. Finally we give formulae for the required
adjustments of the processing times of the jobs and represent them as the constraints of
the knapsack problem (28).

We start with the claims about the critical job h.

Claim 1 In a schedule with non-adjusted processing times, job h is the only critical job.
Proof of Claim 1. For completeness, define
By, =0 ifi=1.
Observe that a,, < by, and for any pair of jobs v; and vj,
ay; < by »

AS a consequence,
Avl,”i <bn+ BULUFU 1<i<gq,

so that no job wv; is critical in a schedule with non-adjusted processing time because (6) is
violated.
The last two jobs k£ and £ are not critical either:

e for job k, there exists a gap of size T between its completion time on machine A and
the starting time on machine B:

1 q
T = bh+Bvl,vq*~Av1,vq*ak: <C+§+Q> +Z(wvi+1)*5q*E:
=1

1 1
= <C+§+q>+E—5q—E:C’+§+(1—5)q>0;
e for job ¢, the gap is even larger: T+ by, —ay > T.

Thus for any job, except for job h, a gap between its completion time on machine A
and its starting time on machine B is always strictly greater than 0. [

16

W " v [" R S r

Figure 5: A schedule with non-adjusted processing times

Claim 2 A schedule with non-adjusted processing times is not optimal.

Proof of Claim 2. For any job v; € N that follows the critical job h € Nj, none of the
conditions (10) or (11) hold, so that the necessary and sufficient conditions of optimality
formulated in Theorem 2 are not satisfied. n

In what follows we demonstrate that in an optimal solution to the inverse problem job
h remains critical.

Claim 3 No adjustments can result in a new critical v-job.

Proof of Claim 3. No job v,, 1 < z < ¢, can become critical since

4 4
S, € YA =(+e)z<
i=1 i=1

< C+(Q+e)z—e<(CH+2)+(z—-1e< <C’+1+q)+(z—1)s

2
z—1 N z—lA
= bht+ D b, <but+ > by
=1 =1

so that
1 R zfl/\
D Gy, <bh+ Y b
i=1 i=1
[
Claim 4 Any adjustments of jobs {v1,...,v4} cannot make job ¢ critical.

The proof of the claim follows from the observation that both jobs k and ¢ are non-
adjustable, job £ is an immediate successor of k& and a, < b.

Claim 5 If for the adjusted processing times job k becomes critical and h becomes non-
critical, then the resulting schedule is not optimal.

Proof of Claim 5. Job k can become critical. For example, if all v-jobs are fully decom-
pressed on machine A and fully compressed on machine B, then

q
Y a,ta = (I+e)g+E>(1+e)q+(C+q),
=1

q
1
bh+zbv¢ = <C’+§+q> + g,
=1

17

so that
q q
> Gy, +ak > b+ > b,
i=1 i=1

Consider a schedule with adjusted processing times with only one critical job k. In such
a schedule, there should be an idle time before the starting time of job £ on machine B;
otherwise job h is also critical. Such a schedule cannot be optimal since the necessary and
sufficient condition of optimality does not hold for the critical job k£ and the subsequent job
l: k € Na, £ € Ni. The violated condition for this case is (16) with h = k. Observe that
processing times of both jobs k and ¢ are fixed and therefore no adjustments can achieve
the necessary and sufficient conditions of optimality for the critical job k. n

Due to the fact that only jobs vi,...,v, can be adjusted, Claims 3-5 imply that all
possible adjustments resulting in an optimal schedule should keep job h critical and the
optimality conditions should be satisfied with respect to this critical job. Since a,, can only
be decompressed and b,, can only be compressed, the appropriate adjustment for each job
v; is

either @,, = ay, + au, with the penalty af .,
or gvi = by, — Yy, with the penalty 3, v,

Observe that simultaneous adjustment of both operations of job v; such that

Ay, = Ay, + Ty, Ty, > 0,
by, = by, — Yu;s Yo, > 0,

cannot be optimal: a small decompression of /l;vi by an amount §, 0 < § < min{x,,, Y, }
and compression of a,, by the same amount changes the processing times to

vy = Qu, + Ty, — 0, Ty, —0 >0,
v = bu, = Yo, +0, Yy, —6 >0,

) QN

S

and decreases the adjustment cost due to (33), keeping job h critical.
Moreover, for the adjusted processing times necessary and sufficient conditions (10)-(11)
should be satisfied with A as a critical job and therefore

either @,, = ay, + Ty, = ap, with the penalty ozfji (aw; — ap) (then condition (10) holds);
or Evi = by, — Yu; = Gy, With the penalty 3, (b,, — ay;) (then condition (11) holds).

We introduce 0 — 1 variables z,,, which indicate what type of adjustment is applied to
jOb (VR

S

Uy

b
v = bo, — Yo, = Q.

;i

)

S

- 0, if @y = ay, + v, = an,
Vi T . ~
1, if @y, = ay,,

Then the adjusted processing times can be expressed as

:a:vi - avizvi + ap (1 - Zvi) 9

bvi = Qy,; Zy; + bw (1 - Zvi)) (34)

18

and the corresponding adjustment costs are

04+ (a’U'L avi) = azJ)ri (ah - avi) (1 - Zvi) ’
61)7 <b’U1 - bw) = /B;z (b’l)l - a’Ui) Z’Ui’
By decompressing the a,,-values and compressing the b,,-values job k£ can become crit-

ical. In that case no idle time can appear before the second operation of k (otherwise job k
would be the only critical job, a violation of Claim 5):

q q
bh ZE Z + ag.

Substituting expressions (34), we obtain:

q
by, + Z Ay, Zy; T bvl Zvl Z Qo Zv; T ah 1)] +ag (35)
=1 =1

or equivalently
q
> (bo, —an) 2y, <bp+ Y be, — qan — .
i=1 i=1
Thus we can formulate the problem of finding the optimum adjusted processing times
as follows:

q
min Z [O‘z—: (ah - avi) (1 - Zvi) + 5; (bm - a’vi) Zvi]
i=1

q q

st > (by, —an) 2y, < b+ Y0 by, — qap, — ay,
1=1 =1

zy, €{0,1}, 1<i<gq.

Simplifying the objective function, substituting the values for a,,, by, ap, by, and aj and
using relation (30) we obtain the equivalent formulation:

q
max [t = By (wy, + 1 —€)] 2, (36)
q . q
s.t. Zwvizvi§0+§—5<q—22w>,
i=1 i=1
20, € {0,1}, 1<i<q

Since z,, € {0,1} and due to (31),

q
0§s<q—szi> <
i=1

The main constraint of (36) can be simplified by using the fact that the sum in the left-hand
side and C' are integers:
q
Zwvi 2y, < C.
i=1

19

N =

It is easy to make sure that if the adjustment costs are defined as

ol =7y, + 1, 1<i<gq,
1
= 1<i<q,
Y wy, +1—¢ ==
where 7, and w,, are the parameters of the knapsack problem (28), then problem (36) is
equivalent to the knapsack problem (28). n
Observe that NP-hardness of the inverse counterpart of the permutation flow-shop prob-
lem implies NP-hardness of the inverse counterpart of the non-permutation flow-shop prob-
lem.

4 Inverse Problem with Adjustable Operations on One Ma-
chine

The NP-hardness proof from the previous section relies on the fact that the same job h is
critical for the given processing times and for the optimal adjusted processing times, which
is justified through a number of claims using the properties of the problem instance. In
this section we first demonstrate (via a counterexample) that this is not always the case
and that a critical job h of an optimal solution in general cannot be found in advance. Due
to this, we introduce n classes of schedules given by a fixed critical job h =1,2,...,n, see
Section 4.1, and look for an optimal solution in each class separately. This approach is
illustrated by considering the special case with adjustable operations on one machine. We
show how the problem with a fixed critical job h can be solved efficiently. Without loss
of generality we assume that the machine which allows adjustments is machine A while
processing times on machine B are fixed. In Section 4.2 this case is studied under the
assumption that a critical job A belongs to the set N1 U Ny; the case of h € Ny U Ny is
studied in Section 4.3.

4.1 Critical Job in an Optimal Solution

In this section we demonstrate that for the inverse problem F2|adjustable aj, 7,7|Cmax
with adjustable operations on machine A and fixed operations on machine B, an optimal
solution with adjusted processing times may have a critical job, which is not critical for
non-adjusted processing times a and b. Moreover, the necessary and sufficient conditions
of optimality should be satisfied for that new critical job.

Consider an instance with the values of a; and b; given by Table 3 and only one ad-
justable operation as which processing time can be decreased to a, = 1 and cannot be
increased, @a = ag = 4. The schedule shown in Fig 6 (a) is based on the non-adjusted
processing times and it is not optimal since for h = 2 and v = 4, ap, > a, and a, < by, a
violation of (10) and (11).

As long as as is compressed down to a value as > by, job h = 2 is the only critical job
and conditions (10) and (11) are violated. If @y is compressed down to a value ag = by, job 1
also becomes critical, see Fig 6 (b). For the resulting schedule, the optimality conditions
(10)-(11) are not satisfied for h = 2 because az > a4 and ag < by, but they are satisfied for

20

jl1 2 3 4
a; [1 4 5 2
bj |3 7 3 10

Table 3: Input data of an instance with one adjustable operation ag € [1, 4]

|1|V//ff%| 3 4] (@

: ! (b)

1 4 11 14 24

Figure 6: An example with different critical jobs in the initial schedule (a) with non-adjusted
processing times and the optimal inverse schedule (b)

h=1:
a; < Gz < by,
as > bs,
a1 < a4 < by.

We conclude that in order to find an optimal schedule, n classes of schedules should
be considered with a fixed critical job h = 1,2,...,n, and a global optimum can be found
among the solutions determined in these classes.

4.2 Search in the Class of Schedules with » € N; U N,

Suppose that machine A allows adjustments while processing times on machine B cannot
be changed. We solve the problem F2|adjustable a;, 7, 7|Cpax by considering n classes of
schedules given by a fixed critical job h, 1 < h < n, and finding optimal adjustments in each
class; then we select the class of schedules which delivers the smallest possible adjustment
cost. In this section we assume that h € N1 U Ny:

ap, < by, (37)

and all jobs u € {1,2,...,h — 1} are of type N1 U Ny. Then conditions of Theorems 2-3
are applicable. The second case with h € Nao U Ny and all jobs v € {h+1,...,n} of type
No U Ny is studied in Section 4.3.

The main idea is to produce a mathematical programming formulation for the selected
critical job h using inequalities (6)-(7), (9) and disjunctive inequalities (10)-(11). To han-
dle disjunctive inequalities, we split the interval [a;, @] of variability of @ into O (n)

21

subintervals of the form [ty_1,%x], 1 < k < g, where ¢ < 2n, in such a way that for
ay, € [tk—1,tx], the type of adjustment of any job j € N\ {h} can be uniquely defined as
a compression a; < a; or decompression a; > a; so that the corresponding term of the
objective function aj max {a; — a;j,0} + o max{a; —a;,0} is linear. In addition, for any
jobwv e {h+1,...,n} disjunctive constraints (10)-(11) can be replaced by a single inequal-
ity. This results in a mathematical program with linear constraints and a linear objective
function. Having considered ¢ subintervals [t;_1, ¢ in this manner, the solution with the
smallest cost provides the solution to the inverse problem.

To produce the mathematical programming formulation which can be solved efficiently
by the LP-programming techniques, consider the conditions of Theorems 2-3. Denote the
set of jobs processed before h by U = {1,2,...,h — 1} and those processed after h by
V ={h+1,...,n}. The corresponding formulation should include

- conditions (6)-(7) which characterize that job h is critical,
- restrictions (9) for each job u € U,

- one of the restrictions (10) or (11) for each job v € V.

Conditions (6)-(7) result in the inequalities of the form:

h
Zaj > Bu-1p-1, 2<u<h, (38)
j=u
> @ < Buy1, h+1<v<n, (39)
j=h+1

where the B-values in the right-hand sides are constants.
To model constraints (9) and (10)-(11), we introduce the subintervals [ty_1,tx] (kK =
1,2,...,q) where
ap <tg <ty <o <tg<ay

are all different values a; and b;, j € {1,2,...,n}, contained in [a;,@s]. Note that the
number of subintervals [tx_1,tx] is ¢ < 2n.

Consider such a subinterval [t;_1, tx], denoted by [e, f], and an adjusted value aj, € [e, f].
Then for any job u € U one has to satisfy only one of the two inequalities in condition (9):

ay < by (40)

or
au S ah- (41)

The other inequality is satisfied automatically. To demonstrate this, we consider six possible
cases of a,, and b, falling outside (e, f): cases (a)-(c) with a, < b, and cases (d)-(f) with
ay > by. Observe that it is assumed that aj, € [e, f].

(a) If ay < by, < e, then an increased value of @, is acceptable only if (40) holds. (Uh)

(b) If ay, < e < f < by, then an increased value of @, is acceptable only if (41) holds. (Us)

22

(c) If f <ay < by, then @, should be decreased to achieve (41) so that (9) is satisfied.(Us)
(d) If ay, > by > f, then @, should be decreased to achieve (41) so that (9) is satisfied.(Uy)

(e) If a, > f > e > by, then @, should be decreased to achieve (40) so that (9) is
satisfied. Us)

(
(f) If e > ay > by, then @, should be decreased to achieve (40) so that (9) is satisfied.(Us)

Observe that in cases (a) and (b) a decreased value of @, although feasible in terms
of (9), cannot be optimal as increasing it back to the initial value a, keeps inequalities (9)
and (38) satisfied but reduces the adjustment cost.

Thus the set of jobs U can be split into subsets Uy, Us, Us, Uy, Us, and U, depending
on conditions (a), (b), (c), (d), (e) and (f), respectively, and constraints (9) are replaced
by (40) for any job u € U; U Us U Us and by (41) for any job u € Uy UUs U Uy. The
objective function has the following components for the adjustment costs: a;f (@, — a,) for
u € Uy UU; and o, (ay — @y,) for u € U3 U Uy U Us U Us.

Consider now constraints (10)-(11). We show that for any job v € V' they can be reduced
to either

ay > by (42)

or
a, > ap,. (43)

To demonstrate this, we consider six possible cases of a,, and b, falling outside (e, f): cases
(a)-(c) with a, < b, and cases (d)-(f) with a, > b,. Observe that it is assumed that

ah € [evf]‘

(a) If a, < b, < e, then a decreased value of @, cannot lead to condition (10) or (11)
satisfied, while @, increased to the value b, or higher results in (11) satisfied. Therefore
for @, condition (42) should hold. (V1)

(b) If a, <e < f < by, then a decreased value of @, cannot lead to condition (10) or (11)
satisfied, while @, increased to the value ay, results in (10) satisfied; a further increase
in a, may lead to a, > b, corresponding to (11) satisfied, but it is sufficient to require
(43) to satisfy the necessary and sufficient conditions of optimality. (Va)

(c) If f < ay < by, then a decreased value of @, is acceptable only if (43) holds as it is
equivalent to (10). (V3)

(d) If a, > b, > f, then a decreased value of @, beyond b, is acceptable if (43) holds: for
by < @y < a, (11) holds, while for smaller values of @, satisfying (43), condition (10)
holds. (Va)

(e) If ay, > f > e > by, then a decreased value of @, is acceptable only if (42) holds, which
is equivalent to (11), and for value of @, smaller than b, neither (10) nor (11) hold.

(Vs)
(f) If e > a, > by, then a decreased value of @, is acceptable only if (42) holds, which is
equivalent to (11). (Vs)

23

Observe that in cases (c), (d), (e) and (f) an increased value of @,, although feasible
in terms of (10)-(11), cannot be optimal since decreasing it back to the initial value a,
keeps (39) satisfied and at least one of the inequalities (10) or (11) satisfied, but reduces
the adjustment cost.

Thus the set of jobs V can be split into subsets Vi, Vo, V3, Vi, V5, and Vg, depending
on conditions (a), (b), (c), (d), (e) and (f), respectively. Then the disjunctive constraints
(10)-(11) can be replaced by (42) for any job v € V4 U V5 U Vg and by (43) for any job
v € Vo U V3 UV, The objective function has the following components for the adjustment
costs: a; (ay, — ay) for v € V4 U Vs and ay, (ay — ay) for v e V3 U V3 U Vs U V.

Taking into account that the total cost of all adjustments should be as small as possible
and that additional constraints a; < a@; < @; on lower and upper limits of all variables a;
should be observed, we formulate the corresponding problem as follows:

minimize S o (ay —ay) + 3 ay, (ay —ay) +
ueU1UU2 ueUsuUuUsUUg
> o (@y — ay) + > o, (ay —ay) +
veViUVs veV3UVaUVsUVG
off max {a, — ap, 0} + «; max{a, —ay,0}
s.t.
ap < by,
e<a, < f
az+as+---+ap_1+ap ZBl,h—l
as+---+ap—1 +ap > Ban-1
~ . N : (6")
ap—2 +ap—1 +ap > Bp—3,n—1
an_1+ay > Bh_2.n-1
ap, > Bp—1,n—1
Upt1 < Bun
aht1 + Apg2 < Bppi1
apt1+ apy2 + apys < Bpni2 (7)
ah+1 +ah+2 + - +an < Bh,n—l
augbu, u e Uy UUs U Ug (9.)
ay <ap, uwelUyUUs3UUy
Gy >an, vETRUVRUT, (10")
Gy >by, vEVIUVEUVg (11°)
a;<aj<a; jeEN.
(44)
Observe that one of the components of the objective function «; max {ay, — a;,,0} or
a;, max {ay — ap, 0} is zero since for any interval [e, f] = [tr—1,tx] either a;, < e or ap > f.

We conclude that for h € N3 U Ny the problem can be handled by solving ¢ < 2n linear

24

programming programs, one for each interval [e, f] = [tx—1,tx]. If for a particular interval
[tk—1,tx] no solution exists, then the required adjustment cannot be done with @y, € [tx_1, tx]
and no solution exists. Observe that it may happen that for the selected critical job h no
solution exists for all ¢ intervals [t;_1, tx].

4.3 Search in the Class of Schedules with A € Ny U N,
Suppose now that the critical job h is of type No U Ny:

ap, > by, (45)

and all jobs from {h+1,...,n} are of type No U Ny. This case represents a symmetric
counterpart of the case with h € N1 U Ny and therefore conditions of Theorems 2-3 should
be re-formulated, as described in Section 2.1. To avoid confusion, we denote the jobs which
precede h by K = {1,2,...,h — 1} and those which follow h by L ={h +1,...,n}.

The corresponding mathematical programming formulation should include

- conditions (6)-(7) which characterize that job h is critical,
- restrictions (16) on the jobs ¢ € L sequenced after h,

- restrictions (17)-(18) on the jobs k € K sequenced before h, which should be derived
from disjunctive constraints.

Conditions (6)-(7) result in the same inequalities (38)-(39) as in the case of h € N1 UNj.
Conditions (16) result in the inequalities of the form:

by < ay, (46)
by < by, (47)

for all £ € L.

Observe that in (47) both parameters b, and by, are constants since processing times of
B-operations are non-adjustable. If b, < by, for all h + 1 < £ < n, then there is no need to
include these constraints in the mathematical programming formulation; otherwise there
does not exist an optimal schedule in the class of the schedule with the selected critical job
h € Nao U Ny.

With respect to condition (46), consider the following two cases.

(a) If ag < by, then a decreased value of @, cannot lead to condition (46) satisfied and it
should be increased to achieve (46). (L1)

(b) If ap > by, then a decreased value of @, is acceptable only if (46) holds. An increased
value cannot be optimal as its compression back to the initial value a, keeps (7) and
(46) satisfied but reduces the adjustment cost. (La)

Thus the set of jobs L can be split into subsets L; and Lo, depending on conditions (a)
and (b), constraint (16) can be replaced by (46) for any job £ € L U Lo, and the objective
function has the following components for the adjustment costs: 042 (@g — ay) for £ € Ly
and o, (a¢ — ay) for £ € Lo.

25

Consider now conditions (17)-(18) for jobs k € K. We show that they can be either
omitted or replaced by
by, > ay,. (48)

(a) If by < by, then there are no constraints on the adjusted value ag. Indeed, if ay
satisfies (48), then condition (18) holds, otherwise condition (17) holds. Observe that
a decreased value of a; cannot be optimal as increasing it back to the initial value ay
keeps (17)-(18) together with (6) satisfied but reduces the adjustment cost; therefore
ar > ay (K4)

(b) If by, > by, then condition (17) cannot hold and therefore the adjusted values of ay
should satisfy (48) corresponding to (18).

(bl) If in addition by > aj, then a decreased value of @j cannot be optimal as
increasing it back to the initial value a;, keeps (17)-(18) together with (6) satisfied
but reduces the adjustment cost; therefore a; can only be increased but without

violating (48). (K2)
(b2) If by, < ag, then an increased value of @y cannot lead to condition (18) satisfied
and it should be decreased to achieve (48). (K3)

Thus the set of jobs K can be split into subsets K7, Ko and K3, depending on conditions
(a), (bl) and (b2). Conditions (17)-(18) should be omitted for any k € K; and replaced by
(48) for any k € Ky U K3. The objective function should have the following components
for adjustment costs: a: (a — ag) for k € K1 U Ky and o, (ap —ay) for k € Ks.

The corresponding mathematical programming problem can be formulated as follows:

minimize > o (@ —ar)+ Y ap (ap —ag) +
ke K1UK> kEKs
Soaf (@ —a)+ Y o (ap—ar) +
e, (eLy
o max {a, — ap, 0} + «; max{ay, —ay,0}
s.t. 6h Z bh
Ay + a3+ ---+ap_1+ay 2817}1_1
a3+ -+ ap_1+ap > Bap-1
~ ~ ~ : (6")
ap—2 + ap—1 + ap > Bp-3n-1
ap—1 + ap > Bhah-1
an > Bh—1,n—1
Q1 < B)
Qp1 + Gpyo < Bt
Apt1 + Qg2 + Qpgs < B hyo (7)
Gpy1 + Apyo + -+ Oy < Bhn-1
b <ay, h+1</{<n, (16")
b > ax, ke KyUKs3 (17)-(18)

26

The above problem can be split into two problems with component 0‘; (ap, — ap) of the
objective function for @, > aj, and component o, (a, — ay,) for aj < aj,. The resulting two
LP problems are similar to problem (44) with two important points of difference:

- they are formulated for two subintervals [ay,, ap] and [ap, @p] rather than for O (n) subin-
tervals [tg_1,tx] of [ay,,an);

- each of them can be reduced to the Resource Allocation Problem with Tree Constraints
(see, e.g., [7, 9]) since unlike the problem from Section 4.2, there are no constraints
with variables in both left-hand side and the right-hand side.

Using the results known for the Resource Allocation Problem with Tree Constraints
[7, 9], we conclude that the inverse flow shop problem in the case of h € Na U Ny can be
solved in O(nlogn) time.

5 Conclusions

In this paper we have studied the inverse counterpart of the famous flow shop problem
F2||Cryax. We have produced a new formulation of the necessary and sufficient conditions
of optimality which has a number of advantages. First, the new formulation leads to
inequality constraints which provide a useful tool for solving the inverse flow shop problem
via linear programming. Second, the structure of these inequalities is of a special (tree)
type for the permutation flow-shop with adjustable operations on one machine and fixed
operations on the other one. Third, unlike earlier research, the conditions are generalized
for the non-permutation flow-shop model.

As far as the non-permutation flow shop problem is concerned, the necessary and suffi-
cient conditions of Theorem 4 for the general case are the same as those of Theorems 2-3 for
the permutation case; the only difference is related to the inequalities which characterize a
critical job. Therefore, for the special case with adjustable operations on one machine, the
LP formulations for the permutation and non-permutation case have the same constraints
except for those which guarantee that a particular job is critical: conditions (6)-(7) for the
permutation case and (20) for the non-permutation case.

ACKNOWLEDGEMENT

This research was supported by the EPSRC funded project EP/D059518 “Inverse Op-
timization in Application to Scheduling”. We would like to thank anonymous referees
for providing useful recommendations which helped in improving the presentation of the
material.

References

[1] Ahuja, R.K., & Orlin, J.B. (2001) Inverse optimization. Operations Research, 49, 771-
783.

27

[2] Brucker, P. (2004) Scheduling Algorithms, Springer, Berlin.

[3] Brucker, P., & Shakhlevich, N.V. (2009) Inverse scheduling with maximum lateness
objective. Journal of Scheduling, 12, 475-488.

[4] Duin, C.W., & Volgenant, A. (2006) Some inverse optimization problems under the
Hamming distance. European Journal of Operational Research, 170, 887-899.

[5] Gdiller, C., & Hamacher, H-W. Capacity inverse minimum cost flow problem. Journal
of Combinatorial Optimization (to appear).

[6] Heuberger, C. (2004) Inverse combinatorial optimization: a survey on problems, meth-
ods and results, Journal of Combinatorial Optimization, 8, 329-361.

[7] Hochbaum, D.S.; & Hong, S.-P. (1995) About strongly polynomial time algorithms for
quadratic optimization over submodular constraints, Mathematical Programming, 69,
269 - 309.

[8] Johnson, S.M. (1954) On two and three-stage production scheduling with setup times
included. Naval Research Logistics Quarterly 1, 61-67.

[9] Katoh, N., & Ibaraki, T. (1998) Resource allocation problems, in D.-Z. Du and
P.M. Pardalos (ed.), Handbook of Combinatorial Optimization, 2, Kluwer, 159-260.

[10] Koulamas, C. (2005) Inverse scheduling with controllable job parameters. International
Journal of Services and Operations Management, 1, 35-43.

[11] Lin, Y., & Wang, X. (2007) Necessary and sufficient conditions of optimality for some
classical scheduling problems, European Journal of Operational Research, 176, 809-
818.

[12] Liu, L.C., & Zhang, J.Z. (2006) Inverse maximum flow problems under the weighted
Hamming distance. Journal of Combinatorial Optimization, 12, 395-408.

[13] Tarantola, A. (2005) Inverse Problem Theory and Methods for Model Parameter Es-
timation, STAM, Philadelphia.

[14] Wang, L.Z. (2009) Cutting plane algorithms for the inverse mixed integer linear pro-
gramming problem. Operations Research Letters, 37, 114-116.

28

