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Optimum resistive loads for vibration-based

electromagnetic energy harvesters with a

stiffening nonlinearity

A. Cammarano∗, S. A. Neild,

S. G. Burrow, D. J. Wagg, and D. J. Inman

Abstract

The exploitation of nonlinear behavior in vibration-based energy har-

vesters has received much attention over the last decade. One key moti-

vation is that the presence of nonlinearities can potentially increase the

bandwidth over which the excitation is amplified and therefore the effi-

ciency of the device. In the literature, references to resonating energy

harvesters featuring nonlinear oscillators are common. In the majority

of the reported studies, the harvester powers purely resistive loads. Given

the complex behavior of nonlinear energy harvesters, it is difficult to iden-

tify the optimum load for this kind of device. In this paper the aim is to

find the optimal load for a nonlinear energy harvester in the case of purely

resistive loads. This work considers the analysis of a nonlinear energy har-

vester with hardening compliance and electromagnetic transduction under

the assumption of negligible inductance. It also introduces a methodology

based on numerical continuation which can be used to find the optimum

load for a fixed sinusoidal excitation.

Keywords: energy harvesting, nonlinear dynamics, optimization, continu-
ation, electrical load.

1 Introduction

As the power consumption of wireless electronic devices reduces, the potential of
powering them from energy harvested from the environment, rather than from
batteries, increases. One often-cited source of ambient energy is structural vi-
bration: power-autonomous systems, such as distributed sensor networks, pow-
ered by structural vibrations have been reported in many recent works in the
literature (for example Torah et al. 2008 and Roundy and Wright 2004).

The ability to harvest vibration energy depends heavily upon the form of the
vibrations. Furthermore the harvester needs to be compatible with at least one
of the established techniques to electrically damp the oscillation. For example,
the majority of published works present vibration harvesters based upon me-
chanical oscillators (boosting the amplitude of vibration and enabling efficient
electrical transduction). However this arrangement implies that only vibrational
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energy close to the resonant frequency of the oscillator can be harvested effi-
ciently. Since the resonance bandwidth is generally narrow to achieve the ampli-
fication required, the harvester must be carefully tuned to the required vibration
frequency (Williams and Yates 1996, Baker et al. 2005, Stephen 2006, Renno
et al. 2009).

One topic which several researchers have explored to widen the application
of vibration harvesters is the use of nonlinear oscillators (Burrow and Clare
2007, Mann and Sims 2009, Stanton et al. 2010, Cottone et al. 2009, Erturk
et al. 2009, Daqaq et al. 2009). Nonlinear oscillators are known to exhibit broad
bandwidths under certain conditions and hence it may be possible to exploit this
feature to maximize the harvestable energy where the source vibrations vary in
frequency. Compared to linear-oscillator based energy harvesters, nonlinear
devices display more complex behaviors and thus the modeling and simulation
is more involved, making it difficult to define and then find the set of optimal
parameters (mechanical and electrical) for energy generation.

In addition to enabling the purposeful design of harvesters with nonlinear-
ity, understanding their behavior is important since some harvesters will feature
nonlinear behavior as a result of manufacturing, or as a consequence of another
design choice. For example the device described and modeled by the author in
Cammarano et al. 2011 uses high permeability magnetic materials in the trans-
ducer to improve electromagnetic coupling but results in the device exhibiting
highly nonlinear compliance characteristics.

Much of the work in the literature considers the dynamic response of nonlin-
ear energy harvesters with simplified electrical loads (Triplett and Quinn 2009,
Barton and Burrow 2010, Karami and Inman 2011, Liao and Sodano 2009). In
this paper the definition and determination of a purely resistive load that re-
sults in the maximum harvested power is considered. The method introduced is
general and can be applied to either one parameter or multiple parameters: an
example of a two-parameters optimization is shown later. In Section 2, a short
description of the load optimization for linear energy harvesting is provided. In
Section 3 the main differences between the linear and the nonlinear case are pre-
sented and methods for investigating the optimum parameters are introduced.
These allow the selection of the linear natural frequency and resistive load that
result in a nonlinear harvester operating at maximum power. Moreover, this
work provides useful information for developing control strategies for improving
the efficiency of existing devices that exhibit nonlinear behavior. The results
obtained with the two parameter optimization are compared with the power
harvested by an optimized linear harvester in Section 4 and conclusions are
drawn in Section 5.

2 Linear harvester: optimum resistance

Harvesting energy from vibrations relies on the fact that the energy of the
primary structure can be transferred to a transducer, and thereby converted
into electric energy. For this purpose an oscillator tuned to the frequency of
excitation can be used. In other words a linear energy harvester can be thought
of as a base-excited oscillator coupled with a transducer. The coupling between
the oscillator and the transducer can be represented by the force Fe with which
the transducer responds to the relative movement of the oscillating mass (see
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FIGURE 1: Schematic of a linear energy harvester powering a purely resistive
load.

Figure 1). This leads to the mechanical dynamics

mẍ+ cẋ+ kx = −mÿ + Fe, (1)

where m is the mass of the oscillator, c is the mechanical damping, k the stiff-
ness of the spring. The variable x measures the relative distance between the
harvester mass and the moving base and y is the displacement of the base
with respect to the inertial reference frame. In the case of an electromagnetic
transducer, the coupling force is due to electromagnetic interaction between the
magnet and the current i induced in the coil and can be written as follows

Fe = −θi, (2)

where θ is the electromechanical constant.
Two common designs for the electromagnetic transducers are found in the

literature. In the first configuration the magnet is fixed to the frame of the
harvester and the coil moves with the oscillating mass. In the second one the
coil is fixed to the frame and the magnet moves with oscillating mass. In both
cases, the mass of the moving part of the transducer has to be taken into account
for the correct design of the moving mass. In either configuration, the motion of
the oscillating mass induces a change in the relative position between the magnet
and the coil, and by Faraday’s law, a voltage proportional to the change of the
flux linked with the coil is induced. If the terminals of the coil are not connected
to any circuit, ideally no current can pass through the coil and the tension is
proportional to the velocity of the coil: v = θẋ. When the coil is connected
to a purely resistive load, the value of i can be evaluated by using Kirchhoff’s
second law,

θẋ = RLi. (3)

We note that more complex loads and optimized circuits for power conditioning
have been presented in the literature (Wickenheiser and Garcia 2010). The
choice of simplifying the load to a pure resistance is aimed at providing a valid
comparison between the nonlinear harvester and the well reported case of a
linear harvester with resistive load. This simple load case provides insight into
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the additional complexity of designing harvesters with nonlinear elements. For
the same reason an ideal coil, which has no parasitic resistance, is considered.

The electric force due to the reactive component is very small over the fre-
quency range of interest given the resistance values considered (0.03% of the
elastic force). For this reason the inductance of the coil is neglected as well.
Note that for harvesters with extremely low levels of mechanical damping and
parasitic resistance or operating at high frequency the reactive force is not neg-
ligible. These cases are not considered in this work. Using Equation (2) and (3),
it is possible to relate the electromagnetic force to the velocity of the harvester.
The expression obtained, substituted in Equation (1) leads to

mẍ+

(

c+
θ2

RL

)

ẋ+ kx = −mÿ. (4)

By inspection of Equation (4), it can be seen that the electromagnetic interac-
tion, in this case, is perceived as a damping force acting on the harvester mass.
Figure 2a shows a schematic of the equivalent mechanical oscillator with two
dampers in series. Using the mobility analogy on this system it can be shown

(a)
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c k
θ2
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(b)
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FIGURE 2: Mechanical (a) and electrical (b) analogy of the energy harvester
with a purely resistive load

that the circuit in Figure 2b is the electrical equivalent to Figure 2a. In the
analogy, the current circulating in the circuit is proportional to the force ap-
plied to the system and the voltage generated is proportional to the velocity.
Applying Thevenin’s theorem to the circuit it can be proved that the maximum
energy dissipated in the load is obtained when the value of RL is equal to θ2/c.
This same result can be obtained analytically by applying the Fourier transform
to Equation (4), resulting in

(

−mΩ2 +

(

c+
θ2

RL

)

jΩ+ k

)

X(Ω) = mΩ2Y (Ω). (5)

Finding the value of X(Ω) from Equation (5) and substituting it into Equa-
tion (3) allows the Fourier transform of the current to be obtained. Hence, the
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average power dissipated in the electrical load over a cycle can be evaluated as

P =
1

2
RLI

2 =

(

θmΩ3|Y (Ω)|
)2

2RL

[

(k −mΩ2)2 +

(

c+
θ2

RL

)2

Ω2

] . (6)

Considering a constant amplitude of base displacement, the value of RL

which allows for the power in the load to reach its maximum can be found using
Fermat’s theorem on the stationary points for n-dimensional functions

{

∂P

∂RL

,
∂P

∂Ω

}

= 0 ⇔
{

RL =
θ2

c
,Ω ≈

√

k

m

}

. (7)

This means that the energy harvester gives the maximum power to the load if
operated at its natural frequency and that the losses in the electrical resistance
and in the mechanical damping have to be equal.1. As previously mentioned this
work considers an harvester with an ideal coil. The coil resistance can be taken
into account by scaling the power multiplying by the ratio between the effective
load resistance and the total resistance. This is thoroughly demonstrated in
Stephen 2006. A more exhaustive discussion about the optimum load for linear
energy harvesters can be found in Cammarano et al. 2010.

3 Nonlinear harvester: load optimization

In this section a mathematical model of a nonlinear energy harvester with cubic
stiffness is presented. An example of this type of harvester along with experi-
mental validation is given by Burrow and Clare 2007. The model is based on
the following second order differential equation

mẍ+

(

c+
θ2

RL

)

ẋ+ kx+ knl x
3 = −mÿ. (8)

where m is the moving mass and c the mechanical damping coefficient. The
equivalent elastic force k x + knlx

3 is the composition of the mechanical stiff-
ness of the system and the component of the magnetic force in phase with
the displacement. For more details on this topic see, for example, Cammarano
et al. 2011. Equation (8) can be written in terms of non-dimensional parameters
as follows

ẍ+ 2ωn ζt ẋ+ ω2

n x+ αx3 = −ÿ, (9)

where ωn is the linear natural frequency of the system, α = knl/m and ζt is
the damping ratio. The damping ratio represents both the electrical and the
mechanical losses, hence

ζt =
1

2mωn

(

c+
θ2

RL

)

. (10)

1The optimal frequency is not exactly equal to the natural frequency, it is slightly higher
due to damping. Nevertheless, since the oscillator is designed so that it can amplify the input
excitation, the total damping has to be small and therefore the use of the undamped natural
frequency can be justified

5
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3.1 Analytical model

The nonlinear differential Equation (9) can be solved using the analytical ap-
proximate method of nonlinear normal forms (NLNF), described in Neild and
Wagg 2011.

For the NLNF method to be valid the contribution of the nonlinear terms has
to be small when compared to the other terms. This assumption is not always
true for this application: when the system is considered open-circuit (i.e. the
mechanical damping is the only loss mechanism in the system), the nonlinear
elastic force can be of the same order of magnitude as the linear elastic force.
However this does not affect the computation of the primary response (see Neild
and Wagg 2013). To confirm this, an error analysis is presented in Section 3.5.
Also, when a load resistance is considered in the circuit, the total damping of
the device increases such that the amplitude of the oscillations, as well as the
ratio between nonlinear and linear forces, reduces. In Neild and Wagg 2011
the method is described for a sinusoidal force. Here the system is base-excited.
For the case where base moves sinusoidally, the forcing term can be written as
follows

F = −Ω2Yo cos (Ωt) , (11)

where Yo is the maximum displacement of the base with respect to the inertial
reference frame. Hence, equation (9) can be written as

ẍ+ 2ωn ζt ẋ+ ω2

n x+ αx3 = −Ω2Yo cos (Ωt) . (12)

Here the damping ratio ζt and the nonlinear coefficient α in this model are
assumed to be small compared to the other terms. Following the procedure in
Neild and Wagg 2011, or using the general solution for polynomial nonlinearities
reported in Xin et al. 2013, the amplitude of the oscillation can be related to
the input excitation by

(

(

ωn
2 − Ω2

)

U +
3

4
αU3

)2

+ (2 ζt ωn ΩU)
2
=
(

−Ω2Yo

)2

, (13)

where U is the amplitude of the first harmonic. The components of the response
at harmonics of the forcing frequency can also be calculated (Neild and Wagg
2011). For sake of simplicity, in this paper, to estimate the harvested power
equation 13 is used, and the higher order harmonics are neglected.

3.2 Optimum resistance

Although the oscillator is nonlinear, Equation (3) still holds. Assuming that
the amplitude of x equals U , i.e. neglecting the contribution of the higher
harmonics, Equation (3) can be written as

P =
1

2

(ΩU)
2
θ2

RL

. (14)

From Equation (14) an expression for U2 as a function of P can be derived,
which, substituted into Equation (13), leads to

2

(

(

ω2

n − Ω2
)

+
3

2

αRLP

θ2Ω2

)2
RLP

θ2Ω2
+ 2

(

c

m
+

θ2

RLm

)2
RLP

θ2
= F 2. (15)
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Equation (15) provides a functional relationship between the power P and the
load resistance RL. To find this relationship, it is necessary to find the roots
of a cubic equation, which leads to overly lengthy expressions providing limited
insight about the dependency between the power delivered to the load and its
resistive characteristics. In addition the differentiation of these expressions with
respect to RL results in 6th order polynomials. The roots of these would require
numerical evaluation. This would reduce the advantage of using an analytical
method. A different approach is therefore adopted. Rearranging Equation (15)
to be in the form

G(P,RL) = 0 (16)

the implicit function theorem can be applied. The derivative of the power with
respect to the load resistance can be evaluated using

∂P

∂RL

= −

∂G

∂RL

∂G

∂P

. (17)

The stationary points of the function P (RL) coincide with the zeros of Equa-
tion (17). To express the results of this analysis in a more compact way, the
following coefficients have been defined

a1=
9

2

( α

θ3 Ω3

)2

,

a2=
6α

θ4
ω2

n − Ω2

Ω4
,

a3=
2

θ2

[

(

ω2

n − Ω2

Ω

)2

+
( c

m

)2

]

,

a4=
4 c

m2
,

a5=
2 θ2

m2
.

so that Equation (15) can be written as

G(P,RL) = a1R
3

LP
3 + 2a2R

2

LP
2 +

(

a3RL + a4 +
a5
RL

)

P − F 2. (18)

Hence the numerator of Equation (17) can be written as

P (3 a1R
4

L P 2 + 2 a2 R
3

L P + a3 R
2

L − a5 )RL = 0. (19)

Equation (19) provides a relation between P and RL which applies when the
function P (RL) is at a maximum, given by

P =
1

3

−a2RL +
√

(a2
2
− 3a1a3)R2

L + 3a1a5
a1R2

L

. (20)

By substituting Equation (20) into Equation (18), a 6th order polynomial in
RL is obtained. Not all the solutions of this polynomial are values of optimal
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Linear stiffness 300 N/m

Nonlinear stiffness 1.02 × 108 N/m3

Mechanical damping 4.8 Ns/m

Electro-mechanical coefficient 8.9 V s/m

TABLE 1: Mechanical and electrical parameters used for the model of the
nonlinear harvester

resistances. Roots which are negative or complex must be discarded as non-
physical and in addition those relative to the minima are of no interest.

To proceed we consider an example system in which the equivalent force-
displacement curve has a cubic characteristic. The parameters for the math-
ematical model, taken from an experimental characterization of a real device
(Cammarano 2012), are listed in Table 1. The device considered has an un-
derlying linear frequency of ∼ 10 Hz. All the parameters in Equation (18) are
fixed except for the frequency of excitation, which is varied between 5 and 25
Hz. For each frequency, the roots of the polynomial have been extracted us-
ing the function “roots” provided by MATLAB based on the extraction of the
eigenvalues of the companion matrix associated with the polynomial. Keeping
just the valid (real, positive) roots, these are substituted, using an iterative rou-
tine, into Equation (20) and the corresponding values of power found. Figure 3
shows the resulting power harvested as a function of frequency for a range of
resistive loads (grey and red lines representing stable and unstable solutions
respectively). Unlike the linear case, the maximum power is not obtained at
the same frequency, a projection of the maximum power from the 3D plot is
shown as a thick black line on the power-frequency plane. This relationship
requires the optimum resistance to be used. The relationship between the op-
timum resistance, the frequency and power is shown as thick black lines in the
frequency-resistance and power-resistance plane respectively.

Figure 4a, again shows the power harvested as a function of frequency for
a range of resistive loads, but now we consider the case where the frequency is
fixed. Two such slices are shown as thick black lines on the plot. The curves
relating to f = 11.7 Hz and f = 18 Hz are shown in detail in Figure 4b and
4c respectively. It can be seen that for low resistance values the system is
heavily damped: here only one positive real root for the resistance is found and
it corresponds to a maximum. This is the case in which the amplitude of the
oscillations is small and the system behaves like a linear harvester.

As the resistance increases, the amplitude of oscillation also increases and
the contribution of the nonlinear terms to the behavior of the harvester becomes
more influential. After the fold in the frequency response, more than one stable
solution appears for the oscillation and hence, also for the power. Of all the
possible solutions, only one corresponds to the absolute maximum, all the other
solutions (grey lines in the figures) are neglected.

This can be seen in more detail in Figure 4b and 4c, where the power versus
resistance at fixed frequency of excitation is shown. This corresponds to a cut
of the surface in Figure 4a with a plane perpendicular to the frequency axis.
For those frequencies where unstable branches exist, the cut reveals that the
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FIGURE 3: Power surface: the thin lines show the average harvested power per
cycle over a range of resistance values (the gray and red lines represents stable
and unstable solutions respectively). For each of these curves, the point at
which the harvested power is at a maximum for a given resistance is identified.
The locus of these points is shown as a projection onto the frequency-power,
frequency-resistance and resistance-power plane (thick black lines).

curves have both a maximum and a minimum (see Figure 4b). Interestingly
the resistance corresponding to the minimum quickly becomes very high as the
frequency is increased: in Figure 4c the minimum is beyond the resistance range
considered here.

Figure 4 also shows the reason why the optimal power and the optimal
resistance change with the frequency of excitation. In fact, unlike the linear
case, the power surface is skewed because of the influence of the resistance on
the peak position. This is clarified in more detail in the following section.

3.3 Physical interpretation

The relationship between resistive load and the response of a nonlinear harvester
is complicated. Unlike in a linear system, the resistance affects not only the
amplitude of the response but also the shape of the entire frequency response. In
the case of a harvester with a fixed hardening stiffness, for example, the damping
determines how much the resonant peak is “bent” and therefore the existence
of folding points and unstable branches. As previously discussed, the optimal
load depends on the frequency of excitation and it is therefore interesting to
consider. This leads to the question of what happens if the load is optimized at
input frequency Ω1 and the system is excited at a different frequency.

Figure (5) shows that when the load is optimized for a given frequency
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FIGURE 4: Power surface (a): the thin lines show the average harvested power
for a cycle over a range of resistance values. The thick black lines are the
intersections of the surface with two vertical planes at frequency f = 11.7 Hz
and f = 18 Hz. Panels (b) and (c) shows the curves in greater detail. Here the
dashed red lines are representative of the planes cutting through the unstable
region.
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Ω1 > ωn the resonant peak of the frequency response reaches its maximum at
Ω1. In other words, optimal resistance is such that the maximum amplitude of
oscillation occurs at the optimized frequency. This behavior indicates another
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FIGURE 5: Effect of the optimum resistance on the frequency response. When
the resistance is optimized for a given input frequency Ω, the peak of the fre-
quency response moves along the backbone of the system so that the frequency
at which maximum displacement occurs corresponds to the chosen input fre-
quency. (a) shows the frequency response of the system where the optimiza-
tion has been performed at (A) Ω1 = 11.5Hz (Ropt = 26.75 Ohm) and (B)
Ω2 = 14.5Hz (Ropt = 75 Ohm) . The response of the system open circuit is la-
beled with (C). (b) shows details of the curve (A) and (c) shows curve (B). The
dashed red curves represents the unstable branches whereas the stable solutions
are shown with black solid lines. The red and the black stars show the position
of the folding point and the maximum power respectively.

possible advantage of nonlinear harvesters: the degree of frequency tuning can
be achieved by modifying the load resistance, and without the need to employ
reactive loads as required for linear harvesters. The frequency range in which
the harvester can be tuned, in the case of a hardening stiffness, spans between
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ωn and the frequency at which the folding point at RL = ∞ occurs (i.e. the
range is limited by the mechanical damping of the system).

A drawback of this result is that the power output reaches its maximum
in the proximity of the folding point: in this region a low amplitude stable
oscillation exists and even a small perturbation can force the system toward
this undesirable response. A feedback control can be used to ensure that the
system remains on the high power branch, but the design of such a controller is
beyond the scope of this work.

The vicinity of the maximum achievable power to the folding point is a fea-
ture which can be used to simplify the numerical evaluation. This is discussed
in the next section and allows for rapid identification of the optimal load and
power for a given excitation frequency. Then in Section 3.5 a purely numer-
ical method is presented and used to assess the accuracy of the approximate
approach.

3.4 Simplified formula

In this section a simplified formula for the optimal resistance is presented. The
formula relies on the approximation that the maximum power is obtained when
the system is at resonance and therefore the external force is in phase with the
damping force. Using Equation (13) and splitting the conservative terms

(

ωn
2 − Ω2

)

U +
3

4
αU3 = 0 (21)

from the non-conservative forces and balancing the non-conservative force with
the external force the following equation is obtained

2 ζt ωn ΩU = −Ω2Yo. (22)

From Equation (21) a relation between the amplitude of oscillation U and the
frequency Ω is found

U =

√

4

3α
(ωn

2 − Ω2). (23)

This curve is termed the backbone curve and it gives information of the oscil-
lations the system would exhibit if it were unforced and undamped. By substi-
tuting Equation (23) into Equation (22) and recalling that the total damping
is the sum of the mechanical and the electrical damping (Equation (10)), an
expression for the optimal RL can be found

RL =
θ2

m

(

2 (Ω2 − ω2
n)

ΩY0

√

3α (Ω2 − ω2
n)− 2 ζm ωn (Ω2 − ω2

n)

)

. (24)

Equation (24) relates the optimal resistance to the other parameters of the
system. The accuracy is assessed in Figure 6 which shows a comparison of the
results previously shown in Figure 3 (thick black lines) with the curves obtained
from the simplified formulation (red dashed lines).

The formula gives accurate results over a frequency range spanning reso-
nance, i.e. over the region of primary interest. The reason for this is that
the simplified formula is based on the assumption that the maximum electrical
power is obtained when the excitation frequency is very close to the jump-down
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FIGURE 6: Simplified formula given in Equation 24: the projection of the lo-
cus of maximum power is projected in the frequency vs resistance plane (a),
frequency vs power (b) and resistance vs power (c). The solid black line rep-
resents the solution of the NLNF whereas the dashed red line represents the
solution found with the simplified formula.

frequency. Since all the other parameters are fixed, only one value of total
damping allows this to happen. The optimal resistance is therefore the resis-
tance that together with the mechanical damping, achieves the required total
damping and it is given by

RL =
θ2

cT − cm
. (25)

From Equation (24), rearranging the terms and simplifying leads to

RL =
θ2

mY0 Ω
√
3α

2
√

Ω2 − ω2
n

− cm

. (26)

13



By comparing Equation (25) and (26), it can be seen that

cT =
mY0 Ω

√
3α

2
√

Ω2 − ω2
n

. (27)

Note that if the system is linear (α = 0), this formula cannot be used: both the
numerator and the denominator of the expression for cT become zero. For this
case there is no jumping-down frequency and therefore the hypotheses behind
the simplification are not satisfied.

From the formula, it is clear that when Ω < ωn, no solution exists for the
case where α > 0 (i.e. the stiffness is hardening). This sets the lower limit
of the frequency range in which the formula can be used. The upper limit is
determined by the fact that the value of the resistance has to be positive, hence
cT > cm. This gives the validity region

Ω < ωn

(

1− 3

4

Y 2

0
m2 α

c2m

)

−

1

2

. (28)

The frequency domain of the formula can be seen clearly in Figure 6b, where
the formula provides results between approximately 10 Hz and 23 Hz.

3.5 Continuation method

The method used in this analysis is developed using the assumption of weak
nonlinearity. In order to verify the accuracy of the results, the theoretical rela-
tions are compared with numerical results. The system has been analyzed with
Auto07p, a software package based on numerical continuation of ordinary dif-
ferential equation, Doedel et al. 1997. Auto07p is capable of continuing periodic
orbits. The initial orbit for the continuation is computed by integrating Equa-
tion 12 with the ode45 routine provided by MATLAB. For the initial simulation
the frequency of excitation was set to 5 Hz and the load resistance to 1MOhm.
Such a high value of resistance is used to approximate open-circuit conditions.

First, continuation of the initial orbit is performed considering the resistance
RL as the varying parameter. Then, the solutions of the first continuation
are used as the initial solution for generating the relationship between power
(average over a period) and frequency response, see Figure 7b. For each curve,
the resistance is kept constant and the frequency is changed.

As noted in Section 3.3, the maximum power is delivered to the load almost
at the frequency where the fold in the frequency response occurs. Hence, the
envelope of the maximum power (black solid line in Figure 7 ) has been computed
via continuation of the orbit corresponding to the folding point for different
values of load resistance. This approximation is valid when the total damping
of the system is small, i.e. the load resistance is high. Note that it is not capable
of predicting the maximum power when no fold in the frequency response exists
(for this case, when the load resistance is lower than 10 Ohm). For RL > 10
Ohm the continuation method predicts two solutions: one for the upper fold,
corresponding to the high power solution and therefore of interest, and one for
the lower fold.

The maximum power has also been computed using time simulations step-
ping over the resonant frequency response. Using this as the benchmark, the
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FIGURE 7: Numerical continuation: (a) power reached at the folding point for
different values of resistance and (c) projection on the frequency-power plane. In
each figure both the stable (solid grey) and the unstable (dashed red) solutions
are shown. (b) shows the extent of the frequency region in which unstable
solutions exist.

maximum error due to approximating the maximum power to that at the fold
is less than 0.07% in a range of ±30 Ohm about the optimal resistance. In
the same resistance range, the difference between the solutions obtained using
Auto07p and the NLNF is 0.69 % (if the third harmonics are included in the
NLNF solution, 3% if these are neglected).

Figure 8 shows the comparison between the upper fold solution obtained
with Auto07p and the maximum power predicted using Equation (24). In this
case the difference between the two solutions never exceeds 5 %. This shows
that the simplified formula can be used for choosing the optimal load for the
device. In fact, as shown in Figure 8b, although the simplified model underes-
timates the optimum resistance value, the power-resistance curve has a small
derivative around its maximum which means that the power lost by selecting
the underestimate of the resistance is relatively small.
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FIGURE 8: Comparison between the analytical and the numerical results:
power achieved with the optimal resistance (a) and projection on the frequency-
power plane (b). In both figures the numerical continuation results are repre-
sented with dashed grey lines whereas the black solid line shows the analytical
results using the simplified formula.

4 Two parameter-optimization

So far in this paper, the effects of the resistance on the power output of a
nonlinear energy harvester have been investigated. In this section the effect
of changing both the resistance and the linear stiffness on the power output is
shown. In the literature, the selection of the stiffness of a linear harvester is
generally referred to as frequency tuning of the harvester (Challa et al. 2008, Kim
et al. 2000).

When specifying a harvester of known nonlinearity for a certain harmonic
excitation source two parameters, namely linear stiffness and resistance, are
relatively easy to adjust. A nonlinear harvester does not harvest maximum
power when excited at its linear natural frequency — this occurs at the nonlinear
resonant frequency. Nonetheless, it is possible to adjust the nonlinear resonant
frequency by altering the underlying linear natural frequency. Here, using the
same approach as for the previous discussion, the power output of the harvester
is now maximized by selection of both the resistance and the linear stiffness.

This optimization can be used both to design a harvester of known nonlin-
earity once the characteristics of the external forces are known, or to develop a
control strategy for devices which can be tuned to the external excitation.

4.1 Simplified formulas for two parameter-optimization

A possible solution for finding the maximum power when both the resistance
and the stiffness of the system are variable is to extend the simplified method
suggested in Section 3.4. By substituting Equation 24 into the expression for
the power and then finding the extrema of the new function with respect to ωn,
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the following expression for the optimal value of ωn is found

ω2

n = Ω2

(

1− 3

16

m2 Y 2

o α

c2m

)

. (29)

Note that this result is in agreement with the results found for the linear har-
vester. When α = 0 the optimal ωn is equal to the input frequency. When
the stiffness is changed according to Equation (29) the power that the harvester
provides is given by:

Popt =
1

8

Ω4Y 2

o m
2

cm
. (30)

This formula is the same as the maximum power obtainable from a linear har-
vester with variable stiffness Cammarano et al. 2010.

4.2 Numerical validation

The envelope of the maximum power provided by the simplified formula in
Equation 30 has been validated using a numerical procedure based on continua-
tion to solve Equation (8) directly. The procedure is identified by the following
steps.

1. A frequency Ωopt in the range [5-25] Hz is chosen as the frequency at
which maximum power is required (take 20Hz as an example, dashed line
in Figure 9a).

2. For a selected value of ωn the power vs frequency response is evaluated
(take ωn= 10Hz, light grey in Figure 9a). Here,the resistance is chosen
according to Equation (24) where Ω = Ωopt.

3. The power harvested at optimum power is found and its value is stored
for future comparison (grey bullet in the figure).

4. Further values of ωn are selected and the maximum between the peak
power and the maximum stored in the previous iteration is found by re-
peating steps 2 and 3.

5. The curve with the highest peak is the optimal response (black line in the
figure) and the peak power is the maximum achievable power at Ωopt (red
dot in the figure).

6. Farther values of Ωopt are considered and the envelope of the maximum
power is found (red solid line in the figure) by repeating steps 1-5.

Note that in the linear case, Ωopt and ωn coincide as shown in Figure 9b. In
the linear case the anlytical solution is exact. Figure 9c shows the comparison
between the numerical and the analytical results. The error between the numer-
ical and the analytical results is computed and shown in panel (d). Since the
analytical results coincide with the optimal power of a linear harvester, panel
(c) also provides a comparison between the linear and nonlinear harvester. As
shown, if a nonlinear harvester can be tuned and the electrical load optimized,
its power output is the same as that for an optimized linear harvester. Nev-
ertheless, advantages of the nonlinear behavior stand. For example, the power
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output of a nonlinear harvester drops more slowly than for the linear harvester
because of the distorted peak. If the nonlinear harvester has a fixed optimized
linear stiffness, its output would be the same as the linear one but the output is
more robust to small deviations in the frequency content. In the case of a tun-
able nonlinear harvester, instead, this could be beneficial for the tuning system.
In fact if the device is tuned only when the power drops below a fixed threshold,
the nonlinear device needs to be tuned less frequently than the equivalent linear
harvester. We note, however, the often cited drawback that with a nonlinear
device there are multiple solutions for some frequencies and it must be ensured
that the response remains on the upper branch.
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FIGURE 9: Two parameter optimization: Panel (a) and (b) show how the
power versus frequency curves change as ωn and RL are optimized for differ-
ent frequency of excitation in the nonlinear and linear case respectively. The
envelope of the maxima of the power achieved changing both the resistive load
and the stiffness of the harvester. The numerical results (solid black) and the
results obtained with the simplified formula (dashed red) are superimposed (c).
The percentage error introduced by the simplification is shown in (d).
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5 Conclusion and future work

This work investigates the optimum load for energy harvesters. After a brief
discussion on the optimum resistive load for a linear energy harvester, a method
to extend the concept to nonlinear harvesters has been shown.

The study presents both an analytical and a numerical method. The an-
alytical method utilizes the nonlinear normal forms technique and suggests a
simplification based on the observation that the harvester delivers maximum
power very close to the point at which the frequency response intersects the
backbone curve, i.e. one of the fold points of the frequency response curve.

The optimum resistive load was computed and a comparison between the
numerical and the analytical results was provided. The approximations made in
the analytical method introduce a small error with the estimation of the power
output and it provides a useful equation for estimating the resistive load for a
nonlinear harvester.

Lastly a two-parameter optimization aimed at finding the stiffness and the
resistive load that allow the harvester to generate maximum power was per-
formed. The envelope of all the frequency-power curves was computed numer-
ically and the result compared with the power values provided by a simplified
formula based on the analytical method. The difference between the analytical
and numerical result was never higher than 7%.

The simplified formula found with the analytical method is identical to that
for an optimized linear harvester: the authors want to stress the importance of
the implication of this result. Previous works have showed that the performance
of a linear harvester at resonance is always better than that of a nonlinear
harvester. However, for efficient performance over a range of input frequency,
a linear harvester requires a tuning mechanism. Here we show that if a tuning
mechanism is used on a nonlinear harvester, the power which can be harvested
is almost identical. On the other hand, the advantage of a wider frequency
bandwidth for nonlinear harvesters still stands, and this could be beneficial for
the implementation of the tuning system.
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