
This is a repository copy of The effect of alkyl chain length on the level of capping of 
silicon nanoparticles produced by a one-pot synthesis route based on the chemical 
reduction of micelle.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/81355/

Version: Accepted Version

Article:

Ashby, SP, Thomas, JA, Coxon, PR et al. (4 more authors) (2013) The effect of alkyl chain 
length on the level of capping of silicon nanoparticles produced by a one-pot synthesis 
route based on the chemical reduction of micelle. Journal of Nanoparticle Research, 15 
(2). 1425. ISSN 1388-0764 

https://doi.org/10.1007/s11051-013-1425-8

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


1 

The effect of alkyl chain length on the level of 

capping of silicon nanoparticles produced by 

a one-pot synthesis route based on the 

chemical reduction of micelle 

Shane P. Ashby1, Jason A. Thomas1, Paul R. Coxon1, Matthew Bilton2, Rik 

Brydson2, Timothy J. Pennycook3,4 and Yimin Chao*,1 

1 Energy Materials Laboratory, School of Chemistry, University of East Anglia, 
Norwich, NR4 7TJ, UK 
2 Institute for Materials Research, School of Process, Environmental and 
Materials Engineering, University of Leeds, Leeds, LS2 9JT, UK  
3 SuperSTEM Laboratory, STFC Daresbury Campus, Warrington WA4 4AD, UK 
4 Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, 
UK 

*Email: y.chao@uea.ac.uk 
ABSTRACT 

Silicon nanoparticles (SiNPs) can be synthesized by a variety of methods. In many cases these 

routines are non-scalable with low product yields or employ toxic reagents. One way to overcome 

these drawbacks is to use one-pot synthesis based on the chemical reduction of micelles. In the 

following study trichloroalkylsilanes of differing chain lengths were used as a surfactant, and the 

level of capping, surface bonding and size of the nanoparticles formed has been investigated. FTIR 

results show that the degree of alkyl capping for SiNPs with different capping layers was constant, 

although SiNPs bound with shorter chains display a much higher level of Si-O owing to the 

reaction of the ethanol used in the method with uncapped sites on the particle. SiNPs with longer 

chain length capping show a sharp Si-H peak on the FTIR, these were heated at reflux with the 

corresponding 1-alkene to fully cap these particles, resulting in a reduction/disappearance of this 

peak with a minimal change in the intensity of the Si-O peak. Other techniques used to analyze the 

surface bonding and composition, XPS, 1H-NMR, and EDX, show that alkyl capped SiNPs have 

been produced using this method. The optical properties showed no significant change between the 

different capped SiNPs. 
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Introduction 

Silicon is used as a primary building block in semiconductor electronics and as a 

result is widely available, and relatively cheap (Boukai et al., 2008, Hochbaum et 

al., 2008). Other advantages of silicon include its low toxicity and low 

environmental impact (Boukai et al., 2008, Hochbaum et al., 2008). These are 

major factors which have helped drive interest in the synthesis and application of 

SiNPs over the past twenty years (Ahire et al., 2012, Wilson et al., 1993, Kang et 

al., 2011, Chao et al., 2007). Quantum confinement effects give SiNPs interesting 

optical, electronic and mechanical properties (Reboredo and Galli, 2005, Pavesi 

et al., 2000, Chao et al., 2006, O'Farrell et al., 2006, Rosso-Vasic et al., 2008). 

These are responsible for their wide range of potential applications including use 

in electrical devices, photovoltaic applications and bioimaging (Moore et al., 

2011, Alsharif et al., 2009, Nishiguchi and Oda, 2002, Ostraat et al., 2001, Wang 

et al., 2011b, Warner et al., 2005a, Wang et al., 2012). 

 Currently, one of the most effective methods of synthesis of SiNPs uses 

electrochemical etching to produce H-terminated porous silicon which is then 

broken into nanoscale clusters and their surfaces capped using a suitable 

method, such as hydrosilylation (Kelly et al., 2011). The resulting SiNPs are of 

high purity with limited surface oxidation. However a major hindrance is the use 

of HF in the initial etching step, which is corrosive and highly toxic. 

Owing to this drawback, recent developments in the synthesis of SiNPs are 

moving away from electrochemical etching, and more towards chemical and 

physiochemical based methods such as inverse micelle and plasma synthesis 

(Wilcoxon et al., 1999, Mangolini et al., 2005, Neiner et al., 2006). 
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Early methods made use of surfactants, such as tetraoctylammonium bromide in 

toluene, to form inverse micelles, within which seeds of SiCl4 are formed (Warner 

et al., 2005b, Wilcoxon and Samara, 1999). The SiCl4 is reduced using a strong 

reducing agent such as LiAlH4. This reduces Si-Cl bonds within the seed to Si-Si 

and further reduces the Si-Cl bonds at the seed surface to Si-H, thus forming 

hydrogen capped SiNPs (Warner et al., 2005b, Wilcoxon and Samara, 1999). 

These are capped by a suitable capping method, such as palladium catalyzed 

hydrosilylation, and the surfactant removed (Warner et al., 2005b, Wilcoxon and 

Samara, 1999). However, the removal of surfactant is not a trivial task and due to 

the surfactant and the byproducts of such methods the particles produced are 

not as pure in comparison to other methods, such as the aforementioned 

electrochemical etching. The development of inverse micelle based methods is 

appealing because of the general monodispersity obtained, the potential of the 

use of these types of methods for size control and the fact that these 

experiments can be performed at room temperature and pressure. 

 In early 2011 a one-pot method was developed by Wang and co-workers that 

used trichloro(hexyl)silane as a surfactant which, on reduction, formed the SiNP 

capping layer (Wang et al., 2011a). This method results in a much higher yield 

over other inverse micelle syntheses as no surfactant removal is required, 

limiting loss of product. However, the resulting SiNPs show an increased 

proportion of oxide species, against SiNPs formed through electrochemical 

methods, which is attributed to incomplete capping of the SiNPs surface 

followed by oxidation of Si-H (Wang et al., 2011a). 

In this study, a number of different ligands (hexyl, octyl, dodecyl and octadecyl) 
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have been tested to develop a picture of how the results of this method vary as 

the carbon chain on the surfactant is altered (Scheme 1). The major points of this 

work are: the level of capping, surface bonding and the size of the particles 

produced. Additional steps have been introduced to this method accordingly, 

such that optimum capping is achieved for each different alkyl chain. 

 

Scheme 1 Reaction scheme for the synthesis of SiNPs by the chemical reduction of micelles of 

tetrachlorosilane and trichloro(alkyl)silane surfactant 

Experimental 

Materials 

Toluene (Fisher, 99.9 %) dried over sodium wire, ethanol (Sigma-Aldrich, 99.8 %) 

and hexane (Fisher. 99.9 %). Lithium aluminium hydride solution (Fisher, 1M in 

THF), silicontetrachloride (Sigma-Aldrich, 99 %), Trichloro(hexyl)silane (Sigma-

Aldrich, 97 %), Trichloro(dodecyl)silane (Sigma-Aldrich, 95 %), 

Trichloro(octyl)silane (Sigma, 97 %), Trichloro(octadecyl)silane (Sigma, 90 %) all 

stored under nitrogen.  

Synthesis of alkyl-capped SiNPs  

Dry toluene (50 ml) was degassed by ten repetitions of  1 minute sonication 

under vacuum. To this an alkyl-SiCl3 based surfactant (0.7 mmol) and SiCl4 (0.1 

mL, 0.7 mmol) were introduced and dispersed by vigorous shaking for 1 min 

followed by sonication for 30 mins. This was then reduced using a 1M LiAlH4 
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solution in THF (4 mL, 4 mmol) which was added dropwise over 5 minutes and 

ultrasonicated for 120 minutes. Ethanol (40 mL) was introduced to the reaction 

mixture, followed by ultrasonication for 60 minutes. All solvent was removed to 

give a white powder, which contained a mixture of byproduct and SiNPs. This 

was dissolved in hexane, filtered out using a PVDF syringe filter (450 nm) and 

dried in vacuo to give a clear pale yellow oil (~120 mg).  

 The dodecyl and octadecyl capped SiNPs were subjected to a further 

functionalisation step. The functionalised SiNPs were ultrasonicated for 5 

minutes in a 0.04 M solution of the corresponding 1-alkene in toluene (10 ml). 

This mixture was heated under reflux conditions for 5 hours and dried to give 

dodecyl and octadecyl capped SiNPs as clear pale yellow oil.(Lie et al., 2002) 

 The samples have been analyzed using FTIR spectroscopy, X-ray 

photoemission spectroscopy (XPS), 
1
H-NMR spectroscopy, UV/vis absorption 

spectroscopy, photoluminescence (PL) spectroscopy, Energy-dispersive X-ray 

spectroscopy (EDX),  transmission electron microscopy (TEM), high resolution 

transmission electron microscopy (HRTEM), and aberration corrected scanning 

transmission electron microscopy (STEM). 

FTIR spectroscopy 

FTIR spectra were collected using a Perkin-Elmer Spectrum 100 ATR FTIR 

spectrometer. The gelatinous sample was placed on the crystal to take the 

measurement and the background was corrected by taking a spectrum of the 

clean crystal. 
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XPS measurement 

XPS measurements were taken using a SCIENTA SES200 electron energy analyzer 

at beamline D1011 (MAXLab, Lund, Sweden). A few drops of a suspension of 

SiNPs in dichloromethane were cast onto a clean gold substrate. This was 

transferred immediately into a load-lock attached to ultra high vacuum (UHV) 

chamber. The typical base pressure of this chamber was maintained at 

approximately 1 × 10
-9

 mbar. For all photoemission spectra, the binding energies 

(BEs) are referred to the Au 4f7/2 line as measured on a gold foil in direct 

electrical contact with the sample, which lies at a BE of 84 eV. 

1H-NMR spectroscopy 

1
H-NMR measurement of the samples dissolved in CDCl3 were taken using a 

Varian 400 MHz NMR spectrometer. These samples were measured relative to 

chloroform from the lock solvent (CDCl3). 

UV/Vis absorption spectroscopy, photoluminescence and quantum 

yield 

The UV/vis absorption spectra for samples dissolved in hexane in a quartz 

cuvette (10 mm × 10 mm) were taken with a Perkin-Elmer 35 UV/Vis double-

beam spectrophotometer. The scan range was 200-700 nm at a rate of 900 

ŶŵͼŵŝŶ-1
. The background was corrected by subtracting the spectrum for the 

blank solvent.  

The photoluminescence (PL) spectra were taken for samples dissolved in hexane, 

in a quartz cuvette (10 mm × 10 mm), using a Perkin-Elmer LS55 
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spectrophotometer with emission slit width of 5 nm. The excitation wavelength 

was set at 280 nm.  

The quantum yield (QY) was calculated with equation (1), by preparing solutions 

of the sample at varying concentrations in hexane, and measuring the 

absorbance at 340 nm and the area under the emission peak for each 

concentration. Only samples with an absorbance between 0.1 and 0.01 were 

used. The absorbance was plotted against the area and compared to a reference 

of known quantum yield (quinine sulphate, 54.6 % at 340 nm excitation).  The 

reference was prepared in 1M H2SO4 solution at different concentrations and the 

procedure repeated as above. The gradient of both the sample and the reference 

were used in the following equation to give the quantum yield of the sample.  

ܳ ൌ ܳோ ቀ ீௗீௗೃቁ ቀఎమఎೃమቁ    (1) 

where Q is the quantum yield of SiNPs, QR is the quantum yield of the reference 

fluorophore of known quantum yield, ɻ is refractive index of sample, ɻR is 

refractive index of reference. Grad is the gradient from a plot of integrated 

fluorescence intensity against absorbance. The refractive indicies used were 

those of the pure solvent. 

HRTEM and TEM imaging  

HRTEM studies were performed with a Philips CM200 FEGTEM microscope. 

Atomic number contrast (Z-contrast) STEM imaging was performed on a Nion 

UltraSTEM 100, operated at 100 kV using a cold field emission electron source, 

and a corrector capable of neutralizing aberrations up to fifth order. TEM 

samples were prepared by dropcast SiNPs solution onto graphene substrate. The 
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solvent was evaporated and TEM micrographs were typically taken at different 

spots of each grid. Samples were baked at 135 
o
C for approximately 7 hours in a 

turbo backed vacuum oven prior to STEM imaging to reduce contamination. 

Results & Discussion 

FTIR analysis suggests that capped SiNPs are formed, see Figure 1(a-d). This is 

determined by presence of Si-C peaks at approximately 1464 and 1260 cm
-1

 and 

C-H peaks at approximately 2922 and 2852 (Lie et al., 2002, Sato and Swihart, 

2006). Other peaks observed in these spectra are Si-H peak at 2148 cm
-1

 and Si-O 

peaks at 1094 and 1018 cm
-1

 (Lie et al., 2002). The Si-O peaks cannot be 

distinguished in the longer chain alkyl capped SiNPs and show as a broad peak, 

see Figure 1 c) and d). 

 Comparison of FTIR spectra from each sample (Figure 1) shows that, 

relative to that of the Si-C bending vibrational peak at 1464 cm
-1

, the intensity of 

the Si-O peaks is less for the samples produced using longer chained surfactants. 

The relative intensity of this peak is equivalent to that observed for alkyl capped 

SiNPs synthesized by electrochemical etching (Lie et al., 2002). These results also 

show that the relative intensity of the Si-H peak is greaterfor the SiNPs capped 

with longer alkyl chains. This suggests that when using a longer chain length of 

surfactant (R=12, 18) the level of oxidation is lower than when using a short 

chain length (R=6, 8).  
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Figure 1 FTIR spectrum for each of a) hexyl-, b) octyl-, c) dodecyl- and d) octadecyl-capped 

SiNPs.  
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Initial analysis of the product of this method attributed the high oxide levels 

observed in the hexyl capped SiNPs to the Si-H bonds undergoing oxidation with 

long term exposure to air (Wang et al., 2011a).  The FTIR spectra were taken 

immediately after drying so there has been minimal exposure to air and in 

addition FTIR aging of another partially passified SiNP (dodecyl) shows no 

significant oxidation of the Si-H functionalities after 1 week (see supplementary 

information). However we observe rapid oxidation in the octyl and hexyl 

samples. It has been shown that the introduction of a protic solvent such as 

water or a primary alcohol can lead to oxidation by the solvent. The quenching 

step of LiAlH4 introduced ethanol in to the reaction flask prior to exposure to air. 

Previous FTIR data of alkoxy SiNPs show a relatively sharp Si-O-C peak, observed 

at 1091cm
-1

,
 
rather than the typically broad Si-O peak observed in most alkyl 

capped SiNPs (Shirahata et al., 2009, Holmes et al., 2001, Pettigrew et al., 2003). 

The spectra for the alkoxy SiNPs have similar-shaped oxide profiles as those for 

both the hexyl- and octyl-capped SiNPs. This suggests that the higher oxide 

observed in these two samples is a result of the reaction of ethanol with the 

exposed Si-H surface, which would be as a result of incomplete surface capping. 

This reaction can occur at room temperature when stirred vigorously (Holmes et 

al., 2001). The longer chain capping layers act as a steric barrier to the ethanol 

preventing reaction with the Si-H sites and thus lower Si-O levels observed.  

The alkoxy capping can be observed in
1
H-NMR spectra of samples displaying high 

oxide levels. On the 
1
H-NMR of the octyl-capped SiNPs a small quartet can be 

observed at 3.66 ppm representing the CH2 protons and a small broadened 

triplet 1.32 ppm which represents the CH3 protons on the ethoxy capping (Figure 
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3). These features are absent from the NMR spectrum of the dodecyl-capped 

SiNPs, which is included in the supplementary information. The 
1
H-NMR also 

supports the alkyl capping of SiNPs. This spectrum shows three proton 

environments, one at 0.55 ppm which is characteristic of a CH2 attached to a 

silicon, as it is shifted upfeild from the other CH2 protons which are shown at 

1.18 ppm, and the CH3 peak is observed at 0.78 ppm. These peaks show the 

same positioning as would be expected for the equivalent alkylsilane, but the 

sharp peak observed at 3.4 ppm with alkylsilane attributed to Si-H is absent. 

  

Figure 2 1H-NMR spectrum obtained from octyl-capped SiNPs dissolved in CDCl3 

 

An extra capping step was used as a result of the higher levels of Si-H observed in 

the FTIR. The FTIR spectra obtained from these samples after further reflux with 

corresponding 1-alkene are shown in Figure 3a) & b), and show a small increase 

in the relative intensity of the Si-O peaks, but a significant reduction in the 

intensity of the observed Si-H peak at 2125 cm
-1

.   

The increase in oxide levels after the reflux step can not be attributed to ethoxy 

capping due to the absence of ethanol and the shape of the peak, but the 

increased temperature and the presence of gases and contaminants in the 
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reagents and solvents (e.g. water) would lead to furtheroxidation thus explaining 

the results observed.  

 

Figure 3 FTIR spectrum for each of a) dodecyl-, b) octdecyl-capped SiNPs obtained after 

additional reflux with corresponding 1-alkene 
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energy window. The remaining 85.8 % is from Si-C and Si-O at the particle 

surface. Of this remainder 63.8 % is from Si-C and 22 % is Si-O meaning an 

estimated 75 % of the available surface has undergone alkyl capping. This 

compares favourably with H-terminated Si(111) surfaces bound by organic 

monolayers where 50 % surface coverage is typical (Sieval et al., 2001, Wallart et 

al., 2005). In Figure 4b), the C1s spectrum for dodecyl-capped SiNPs is fitted with 

two components: C-C at 285.18 eV and Si-C at 286.68 eV. 91.8 % of the spectrum 

area is from C-C within the carbon chains and the remaining 8.2% is made up by 

the Si-C where the passivating layer is bound to the silicon center. The ratio of 

the area of the spectrum represented by each component is close to 1:11, which 

is the exact ratio of Si-C to C-C bonds in the capped SiNPs. 

 

 

Figure 4  XPS spectra obtained from dodecyl capped SiNPs: a) Si2p and b) C1s. Both 

photoelectron spectra were collected with an incident photon energy of  630 eV 
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Figure 5 shows room temperature PL, UV/Vis spectra (Figure 5a), and quantum 

yield measurement. The integrated emission intensity for the dodecyl-capped 

SiNPs versus the corresponding UV/Vis absorbance at the same excitation 

wavelength is plotted in Figure 5b. Shown alongside is the PL emission intensity 

for the quinine sulfate reference. The quantum yield calculation (see 

supplementary information) gives a value of 14 % at room temperature from the 

ratio of the gradients of the linear fits to quinine sulfate and SiNPs, and the 

known quantum yield of quinine sulfate (54.6%) at 340 nm, as reported 

previously, where typical values for SiNPs lie between 4 % and 25 % (Wang et al., 

2011a, Wang et al., 2011b, Dickinson et al., 2008). 

 

 

Figure 5 Room temperature photoluminescence and UV/Vis absorption spectra of dodecyl capped 

SiNPS in hexane a); integrated photoluminescence intensity against absorbance for diluted 

dodecyl-capped SiNPs in hexane and quinine sulphate in 1M H2SO4 solution b). Both were 

collected under identical excitation conditions 

 

250 300 350 400 450 500 550 600

a) In
te

n
s
ity

 (a
rb

. u
n

its
)

 PL - Emission

 UV/Vis

A
b

s
o

rb
a
n

c
e

Wavelength (nm)

 

0.00 0.02 0.04 0.06 0.08 0.10

b)

 

Quinnine Sulfate

Gradient= 1544680

In
te

g
ra

te
d

 I
n

te
n

s
it

y

Absorbance at 340 nm

Dodecyl capped SiNPs

Gradient= 218501



15 

Interestingly, the differences in capping layer did not greatly affect the optical 

properties or the size of the SiNPs. Each sample shows an identical UV/vis 

absorption peak at 280 nm and in each case the PL emission spectrum shows 

emission in the blue region at a wavelength of between 400 and 407 nm under 

excitation of 280 nm, Figure 5a). This shows there are no significant changes in 

optical properties between the differing lengths of the capping layers used.  

 

 

Figure 6  a) STEM image showing the distribution of sizes of hexyl capped SiNPs obtained from 

the reduction of hexyltrichorosilane/SiCl4 micelles, inset: high resolution Z-contrast STEM image 

of an individual SiNPs showing it to be crystalline, b) histogram showing size distribution of 

alkyl-capped SiNPs. 
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TEM and STEM images show a similar distribution of sizes for all the samples 

produced. A Z-contrast STEM image showing the distribution of sizes of hexyl 

capped SiNPs obtained from the reduction of hexyltrichorosilane/SiCl4 micelles is 

displayed in Figure 6a). Figure 6b) contains a histogram showing the size 

distribution of all the particles produced, and the mean diameters and standard 

deviations for each type of capping are shown in Table 1. The particles vary in 

size from 2.0 nm to 10 nm, with a peak number of counts at 4 nm in particle 

diameter. The mean diameter differs for each capping agent (surfactant) used 

and for hexyl, octyl and dodecyl shows a pattern of increasing mean size with 

increasing chainlength. However, the octadecyl surfactant breaks this pattern. It 

is to be expected that the surfactant will affect the size as shown in the results, 

but the way in which the increase of alkyl chain affects size requires further 

study, since these results do not show a definitive pattern. In addition, high 

resolution STEM imaging show that the particles are crystalline in nature, while 

EDX analysis confirms that the particles are silicon-rich (supplementary material). 

A Z-contrast STEM image showing the lattice fringes is shown in the inset of 

Figure 6a). The measured lattice fringe spacing in these crystalline particles is 

0.31 nm, corresponding to the (111) interplanar spacing of the diamond cubic 

structure of silicon. 

Table 1 The mean diameter and standard deviation of SiNPs from a sample of 100 particles 

 

Capping Mean diameter (nm) Standard deviation (nm) 

Hexyl 6.05 1.62 

Octyl 6.31 1.61 

Dodecyl 6.47 1.94 

Octadecyl 6.21 1.71 
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The origin of the photoluminescence observed in Figure 5a) is complicated by the 

combination of both indirect and direct band gap transitions present in SiNPs 

(Holmes et al., 2001). However, there is strong theoretical evidence suggesting 

that 1-2 nm SiNPs with a hydrogen or carbon-terminated surface have direct 

band gap optical transitions that lead to photoluminescence in the blue region 

(Zhou et al., 2003, Warner et al., 2005b). 

Conclusions 

To summarize, the one-pot synthesis of alkyl-capped SiNPs, is viable for a wide 

range of capping (surfactant) chain lengths. The level of alkyl capping, despite 

initial appearances, is broadly consistent for all capping layers, although those 

capped with shorter chain length surfactants show a raised level of Si-O. This is 

because the ethanol used in the synthetic method is able to react with the 

uncapped Si-H on the surface of the particle. We have shown that the silicon 

nanoparticles produced by this method are crystalline and capped with alkyl 

chains.  
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