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In analogy with the pom-pom model, we introduce a simple model for comb polymers

with multiple side-arms attached to a linear backbone by considering a set of coupled

equations describing the stretch in the individual inter-branch backbone segments.

The stretch equations predict a sudden onset of backbone stretch as the flow rate is

increased. Drag-strain coupling smooths this transition to some extent. For a series

of well characterized polyisoprene and polystyrene combs, we find good agreement

with the experimentally determined transient stress growth coefficients in uniaxial

extension.
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I. INTRODUCTION

Understanding and predicting the rheological consequences of molecular structure in en-

tangled branched polymers remains a formidable challenge with scientific and technological

implications. Compared to linear entangled polymers, long-chain branching exhibits distinct

linear and nonlinear viscoelastic response, characterized by hierarchical relaxation, weaker

shear thinning with faster onset and strain hardening at low rates [Mendelson, Bowles, and

Finger, 1970; Samurkas, Dealy, and Larson, 1989; Wood-Adams et al., 2000; Hatzikiri-

akos, 2000; Kasehagen and Macosko, 1998; Dealy and Larson, 2006; Das et al., 2006a;

McLeish, 2008; Read et al., 2011]. These phenomena play a key role in the processing of

commercial polymers. It is desirable to achieve full control of industrial processes and even-

tually design in silico specific classes of branched polymers with desired properties for given

applications. To this end, it is important to understand the molecular origin of different

rheological phenomena [Read et al., 2011].

To accomplish this ambitious task, it is important to use model, well-characterized

polymers and mesoscopic modeling. Significant advances have been made in both fronts.

Concerning the former, branched polymers with controlled structure can be obtained via

high-vacuum anionic synthesis and thorough characterization often involving combination

of Size Exclusion Chromatography with Temperature Gradient Interaction Chromatography

[Chambon et al., 2008; Li et al., 2010; Chen et al., 2011; Snijkers et al., 2011; Hutchings

et al., 2012]. On the other hand, the linear viscoelasticity of model branched polymers is well

described by invoking the different relaxation mechanisms (reptation, contour length fluc-

tuations, dynamic tube dilution) and the concept of hierarchical relaxation (outer branches

relax first, inner branches follow) in the tube model [Doi and Edwards, 1986; Ball and

McLeish, 1989; Milner and McLeish, 1997; McLeish, 2002]. Accurate, parameter-free pre-

dictions encompass a range of complex molecular structures including H-polymers, combs,

pom-pom polymers and Cayley trees [McLeish and Larson, 1998; Blackwell, Harlen, and

McLeish, 2001; Kapnistos et al., 2005; Inkson et al., 2006; Van Ruymbeke et al., 2010;

Ahmadi et al., 2011]. This predictive toolbox was generalized for random branching (which

is relevant to commercial polymers) and led to the development of the Hierarchical model

[Larson, 2001; Larson et al., 2007] and the BoB algorithm [Das et al., 2006a]. Of particular

mention is the latest development with BoB where the polymerization reactions were incor-
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porated and linked to structure via a stochastic approach, hence also linking polymerization

to flow properties [Read et al., 2011; Das et al., 2014].

Despite these significant advances, modeling nonlinear rheology is less developed. Impor-

tant contributions at different level of coarse graining include the pom-pom model [McLeish

and Larson, 1998] and the molecular-stress function (MSF) approach [Wagner and Rolón-

Garrido, 2008; Rolón-Garrido et al., 2009]. Interestingly, these models are highly successful

in predicting data with ill-defined commercial polyethylenes. In this respect, we note BoB’s

ability to do so as well [Read et al., 2011; Das et al., 2014]. However, linking molecular char-

acteristics and nonlinear response in well-defined molecular structures remains an unresolved

problem. The issue is that structures like pom-pom are relatively simple in the sense that a

backbone has two branch points at its extremities. In such a case, the increased amount of

chain stretch can be explained by the fact that the segment between two branch points is

not free to relax its stress until the branches have fully retracted. Eventually, branch point

withdrawal occurs since it becomes entropically favorable to withdraw branches instead of

stretching further the backbone [McLeish and Larson, 1998]. Given this sound physical pic-

ture, the challenge is to generalize this case for multiple branch points along the backbone,

where the stretch should propagate toward the center of the molecule.

Recently, attempts in this direction had been reported by using concepts of tube pressure

in extension and the MSF [Nielsen et al., 2006; Rolón-Garrido et al., 2009]. However, the

tube pressure has been recently criticized [Ianniruberto and Marrucci, 2012] as not providing

a consistent description of hardening, for example in the case of linear polymer blends.

Hence, building-up on the pom-pom ideas and developing molecular constitutive models for

polymers with multiple branch points remains a formidable task, which we address in the

present work.

The simplest class of molecules having multiple branch-points are comb polymers with a

linear backbone and multiple side-arms. Comb polymers are not just of academic interest,

because random synthesis techniques invariably produces mostly comb-like architectures

when the branching probability is not too high [Das et al., 2006a]. The main difference

between the ideal combs to be considered in the present paper, and comb-like molecules

produced via random synthesis, is that in the former the side arms are of relatively uniform

length, whilst random synthesis usually produces side arms with a wide distribution of

lengths. In addition, the side arms are randomly distributed along a backbone, also for ideal
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combs.

For a comb polymer, while each of the backbone segments constrained between branch-

points are capable of sustaining stretch, the maximum stretch that the different segments

can sustain are different [Marrucci et al., 2008; Snijkers et al., 2013]. The connectivity along

the molecule couples the evolution of the stretch in different backbone segments. This leads

to a Rouse-like dynamics of the stretch evolution in flow.

The rest of the paper is organized as follows: In Sec. II we consider a comb molecule

and develop the coupled equations that describe stretch evolution in flow. The comb is the

simplest class of multiply-branched molecule, so a large number of rheological measurements

already exist in the literature and we use previously published rheological data on a set of

polyisoprene and polystyrene combs to compare predictions from our model (Sec. III). We

conclude this paper with a discussion about how our model may be extended for more generic

molecular topologies in Sec. IV.

II. GENERALIZED POM-POM STRETCH EQUATIONS FOR COMB

POLYMERS

We consider a comb polymer with a linear backbone having Zb entanglements (i.e. units

of entanglement molar mass Me) and assume that it is grafted uniformly with na side arms,

each having Za entanglements. For the time being, we assume that na is odd (na = 2ns − 1,

where 2ns is the number of backbone segments). In tube theory [Doi and Edwards, 1986],

it is common to consider the averaged dynamics of the molecule, and in this approximation

we can think of the central branch-point as the fixed origin about which the backbone

stretches. Fig. 1 shows the numbering scheme of the branch-points and the contour lengths

of the backbone segments. Since, both halves of the backbone about the central branch-

point behave the same way, we only consider one half in the following. The assumption of

uniform grafting ensures that all backbone segments between branch-points have the same

equilibrium tube contour lengths leq.

At time-scales longer than the side-arm retraction time τa, the branch-points act like

localized drag points. The friction coefficient ζ depends on the backbone tube diameter a(t)
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FIG. 1. (a) Cartoon of a seven arm comb polymer: We label branch-points starting from the

center of the molecule. The equilibrium contour lengths of all the backbone segments between the

branch-points are considered to be the same. In flow, the contour length of the backbone segment

between the branch-points i and i− 1 is li. (b) The dynamics of the branch-point i is determined

by the balance of the viscous force and the elastic force at i.

considered to describe the branch-point diffusion and is given by [Das et al., 2006a]

ζ(t) =
2kBTτa
p2a(τa)2

(

a(t)

a(τa)

)2

. (1)

Here, the parameter p describes the average hop size in units of the tube diameter a(τa) at

the time scale τa. With the terminal relaxation time being τd (from eventual reptation of

the molecules), for flow rates ǫ̇ between 1/τd and 1/τa, only the backbone segments between

branch-points are stretched. We determine the stretch of the segments from force balance

at each branch-point. There are two forces to consider: the drag force due to the relative

velocity of the branch-point with respect to the tube velocity, and the elastic force from the

neighboring backbone segments.

Considering branch-point i (Fig. 1b), we define its curvilinear velocity along the tube

axis, relative to the central branchpoint, to be vi. The difference between vi and the velocity

of the surrounding tube matrix at the branch-point gives rise to a viscous force

fv = −ζ

[

vi − (K : S)
i
∑

j=1

lj

]

. (2)
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Here, K is the velocity gradient tensor, S is the average tube orientation, and the contraction

K : S gives the fractional rate of increase in tube length. The segments li+1 and li provide

an elastic force

fe = k (li+1 − leq)− k (li − leq) , (3)

with k being the spring constant describing the Hookean elastic response of the backbone

segments. From rubber-elasticity theory k = 3kBT/Zsa
2, with Zs being the number of

entanglements in one backbone segment between two branch-points. Setting fv + fe = 0, we

find the branch-point velocity

ζvi = k (li+1 − li) + ζ (K : S)
i
∑

j=1

lj. (4)

The difference of velocity between the branch-points i and i− 1 gives the rate of change of

the contour length of the segment between the two branch-points as

ζ
dli
dt

= ζ (vi − vi−1)

= k (li+1 − 2li + li−1) + ζ (K : S) li. (5)

Dividing by the equilibrium segment lengths leq and defining the dimensionless stretch λi ≡

li/leq we arrive at
dλi

dt
=

1

τseg,0
(λi+1 − 2λi + λi−1) + (K : S)λi. (6)

Here, we defined the time τseg,0 ≡ ζ/k that determines stretch relaxation between backbone

segments separated by branch-points. The outermost two segments on the backbone do not

contribute to the stretch. Thus λns
is always one.

We can approximately include the effect of local (≤ tube diameter a) displacement of

branch-point from tension difference between the two sides of a branch-point, leading to

so-called “drag-strain coupling” [Blackwell, McLeish, and Harlen, 2000]. For small displace-

ments, considering the probability distribution of displacement to be Gaussian, the position

of the branch-point can be considered as a Brownian walk in a quadratic potential [Doi

and Edwards, 1986]. Balancing the force from this localizing potential to the elastic force at

branch-point i, the effective contour length of the side-arm at i that participates in relaxation

by retraction, is reduced by a factor proportional to |λi − λi+1|. Exponential dependence

of the retraction time-scale on the side-arm length leads to an effectively shorter segmental

stretch relaxation time from this drag-strain coupling as

τseg(i) = τseg,0 exp (−2|λi − λi+1|) . (7)
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The factor 2 in the exponent of Eq. 7 deserves brief explanation. In the original work

[Blackwell, McLeish, and Harlen, 2000] a factor 2/q appeared in the exponent of the drag

strain coupling term, where q was the number of arms in the pom-pom. This factor was later

corrected to 2/(q−1) (see e.g. [Hassell et al., 2009] for possibly the earliest explicit mention

of this correction). The reason, as explained in [McLeish, 2002], arises due to a quadratic

interpolation of the effective retraction potential for the branchpoint, between its equilibrium

position and a linear potential with slope proportional to (q−1) at large depths of retraction.

In the present case, the effective value of q is 2 (from three-functional branchpoints). So,

for consistency with earlier work on drag-strain coupling, the factor 2/(q − 1) appearing

in the exponent is 2. Incorporating this drag-strain coupling, the equations for the stretch

dynamics become

dλi

dt
=

1

τseg,0

[

e2|λi−λi+1| (λi+1 − λi)− e2|λi−1−λi| (λi − λi−1)
]

+ (K : S)λi. (8)

For large deformations, it is possible that the stretch variable in adjacent backbone seg-

ments may differ by more than one, i.e. |λi−λi+1| > 1. A force balance argument, comparing

the tension in the side arm and two backbone segments, indicates that such a situation is

unsustainable, and “branchpoint withdrawal” occurs, in which the side arm is pulled into,

and oriented along, the backbone tube (this type of force balance argument is equivalent to

that made for branchpoint withdrawal in the pom-pom model [McLeish and Larson, 1998]

and more generally when considering the “priority” variable in randomly branched poly-

mers [Bick and McLeish, 1996; Read and McLeish, 2001]). The branch-point encounters a

constant maximum force in such large deformation and hence an equivalent linear confining

potential. In a general polymer, with different lengths of side arms, it might be that the con-

ditions for branchpoint withdrawal are first fulfilled at internal segments along the backbone.

In general, this could lead to quite complicated dynamics, since the resulting retraction of

one backbone chain segment becomes a source of additional stretch of neighboring chain

segments, possibly leading to internal cascades of branchpoint withdrawal. Fortunately in

the present simple comb case, the dynamics are much more straightforward and branchpoint

withdrawal occurs first from the outer segments, moving inwards through the molecule. In

this case, it is sufficient, in the numerical implementation of the model, to ensure that the

stretch λi in segment i is always less than or equal to λi+1 + 1 [Inkson et al., 1999; Black-

well, McLeish, and Harlen, 2000; Marrucci et al., 2008]. For the present regular combs,

7



this ensures that the more general branch point withdrawal criterion of |λi − λi−1)| ≤ 1 is

enforced. For irregular combs, more care would be required in numerical implementation of

the model.

As with the original differential version of the pom-pom equations [McLeish and Larson,

1998], we determine the orientation tensor S by working with an auxiliary tensor A satisfying

the upper convected Maxwell model [Bird, Armstrong, and Hassager, 1987]

∂

∂t
A = K ·A+A ·KT −

1

τo
(A− I) , (9)

with τo being the orientational relaxation time. The orientation tensor S is given by

S(t) =
A(t)

trace [A(t)]
. (10)

For simplicity, we assume the orientation to be identical for all backbone segments on a

given comb. In practice, this will not be exactly true and the outermost segments will be

less oriented. However since the terminal relaxation of the comb is via reptation of the linear

backbone, this mode dominates the orientation relaxation and most segments will have a

similar orientation, i.e. the approximation is not such a bad one. A possible extension of

the model would be to allow different backbone segments to relax orientation at different

rates.

The total stress for a comb in a nonlinear flow is found by summing over the contributions

from stretched backbone segments, and is given by

σ(t) =
3g

ns − 1

ns−1
∑

i=1

λ2

i (t)S(t). (11)

Here, from the assumption of uniform grafting, we consider each segment of the backbone

contributes equally to the modulus g.

Having defined the constitutive model for a single comb, we wish to make comparison

with experiments on real comb samples. In the spirit of the multimode version of the original

pom-pom model, we describe that the linear viscoelasticity of the comb molecules with a

set of nM Maxwell modes, such that the α-th mode is characterized by a modulus gα and a

relaxation time τo,α. Note that the linear data are well described by hierarchical tube mod-

eling [Kapnistos et al., 2005; Kirkwood et al., 2009]. The modes with the fastest relaxation

times correspond to stress contributions from the side-arms (and the outermost of the back-

bone). We model the nonlinear response of these modes using the non-stretching version
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of the pom-pom model. The slowest modes correspond to comb-backbone relaxations, and

(for simplicity) we model the nonlinear response for each of these modes using a separate

instance of the above comb model. We detail below our criterion for assigning a given mode

to be comb or non-stretching. Assuming there are kN non-stretching modes, and nM − kN

comb modes, the total stress is obtained from

σ = 3

kN
∑

α=1

gαSα(t) +
3

ns − 1

nM
∑

α=kN+1

ns−1
∑

i=1

gαλ
2

i,α(t)Sα(t). (12)

Here, Sα(t) is average tube orientation experienced by the fraction that contributes to the

α-th Maxwell mode evaluated from Eqns. 9 and 10 with the orientational relaxation time as

τo,α. For the comb modes, we consider equal contribution to the modulus from each of the

internal segments of the backbone with λi,α being the stretch on the i-th backbone segment

that contributes to the α-th Maxwell mode.

III. COMPARISONS WITH EXPERIMENTS

To compare with our model predictions, we use published experimental data on a set

of well-characterized and well-studied anionically synthesized polyisoprene (PI) [Kirkwood

et al., 2009] and polystyrene (PS) [Roovers, 1979] combs. These set of combs have been stud-

ied by multiple authors concentrating on different flow experiments. Roovers and Graessley

[1981] studied the linear viscoelastic properties of the PS combs. Kapnistos et al. [2005] re-

visited and extended the linear viscoelastic measurements and developed an analytical model

for linear relaxation in comb polymers. Kapnistos et al. [2009] looked at the nonlinear re-

sponse after large step strain in a subset of the PS combs at different dilution. Kirkwood

et al. [2009] measured the stress response in both small angle oscillatory shear and in non-

linear step strain for the PI combs with short (unentangled to barely entangled) side arms.

Most recently Lentzakis et al. [2013] used both the PS and PI combs to measure the uniaxial

extensional response. Lentzakis et al. [2013] also reported gel-permeation chromatography

to confirm the stability of the molecules since synthesis, and, temperature-gradient interac-

tion chromatography to confirm the narrow distribution of the combs. We use the data set

from [Lentzakis et al., 2013] to compare with our theoretical modeling. Table I summarizes

the molecular architecture of the comb polymers used in this work.

Briefly, the extensional rheology measurements were performed at 170◦C for the polystyrene

9



Sample Mb Ma na τ
(a)
a τ

(b)

seg,0 τ
(c)

seg,0

(kg/mol) (kg/mol) (s) (s) (s)

PI211 157 6.3 8.6 0.003 0.25 0.22

PI254 120.5 18.8 7.1 0.9 20 28

PI472 370 5.8 17.6 0.003 0.45 0.3

PS622 275 11.7 30 0.013 0.04 0.09

PS642 275 47 29 2.2 1.0 4.6

PS712 860 6.5 30 0.0016 0.025 0.07

PS722 860 11.7 28 0.0029 0.12 0.12

PS732 860 25.7 26 0.04 0.90 1.4

PS742 860 47 29 0.7 20.0 14.3

TABLE I. Molecular characteristics of the combs used in this work. The backbone molar mass Mb,

side-arm molar mass Ma, and the number of side-arm na for the PI combs are from [Kirkwood

et al., 2009] and the PS combs from [Roovers, 1979]. (a) Side-arm retraction time estimated from

the phase angle. (b) Values used for the segmental stretch relaxation times to fit the experimental

data with our model. (c) Estimates from Eqn. 13.

combs and at 0◦C for the polyisoprene combs using an SER fixture [Sentmanat, 2004]

mounted on an ARES 2KFRTN1 strain-controlled rheometer (TA, USA). Due to the limi-

tations inherent in SER, experiments are limited to a maximum Hencky strain of 4, and a

steady-state tensile growth coefficient could not be unambiguously determined. Therefore,

the modeled data can only be compared to the experimental data in a limited Hencky strain

range. On the other hand, a wide range of extensional rates (especially in the high-rate

limit) was obtained [Lentzakis et al., 2013].

In applying our model, we start by fitting the linear viscoelastic moduli measured from

small amplitude oscillatory shear (SAOS) with approximately three Maxwell modes per

decade in frequency range of the experimental data. The Maxwell times were chosen to be

uniform in log-scale. We use a least-square fit to the viscous and elastic responses along

with a regularization term [Press et al., 1992] to ensure that all gM are positive and gM(tM)

are smooth (Appendix A details the fitting procedure). For combs with long side-arms, the
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FIG. 2. Experimental data (symbols) and model predictions for the start-up stress growth coeffi-

cients in extensional flow at the indicated rates for the PI combs. Insets show the phase angle with

arrows indicating frequency that determines τa.
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phase angle (δ) shows a distinct peak in the time-scale of arm retraction τa in the SAOS

data. When the side-arms are not long enough, there is a change of slope in the phase angle.

For each of the experimental resins, we select τa from the peak/point of change in slope in

the phase angle. We expect these estimates for τa to have large uncertainty (up to a factor

2) [Bačová et al., 2014].

Though the side-arms and the backbones in the resins have very small polydispersity,

the synthesis procedure places the side-arms at random positions on the backbone and the

number of side-arms vary between molecules [Chambon et al., 2008; Lentzakis et al., 2013].

However, with a large number of side-arms, as in the present case, the distribution of number

of arms is sharp about the mean. Consideration of an uniform comb with average number

of side-arms placed with uniform spacing provides reasonably good description of the ar-

chitecturally polydisperse resin [Chambon et al., 2008]. We consider this idealized uniform

comb with regular spacing and the number of side-arm set to the nearest odd integer to the

experimentally determined average number of arms to apply our model. This is likely to

provide a good description in the present case with large number of side-arms. But more

detailed analysis that captures this architectural polydispersity probably will be needed to

describe combs with only a few side-arms. Because of the distribution of inter-branch seg-

ment lengths, at intermediate extension rates, locally it is possible for the order of arm

retraction to deviate from strict "outside first" scenario considered here. However, with

the large number of side-arms, globally the picture of branch-point withdrawal proceeding

generally from outside to the center of the molecule will remain valid (i.e. typically branch-

points towards the outside of the molecule retract before those on the inside, even if the

precise order is not monotonically from the outside to the inside). In this sense our model

captures the “average” behavior.

As noted above, we require a criterion to decide which of the Maxwell modes are to

be assigned as stretching, or comb-modes, in Eqn. 12. We treat the Maxwell modes with

relaxation times faster than the arm retraction time (τo,α < τa) as non-stretching (λi = 1

for all i). All slower modes are treated as comb-modes. We also tested alternative criteria

for assigning the modes. For example, one can estimate the shear modulus associated with

entangled comb backbones after the side arms have relaxed; one then assigns, as “comb-

modes”, the slowest Maxwell modes such that their total shear modulus amounts to the

estimated modulus of the diluted backbones. The final results for the predicted start-up
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stress growth coefficients (transient viscosity η+E ) are not strongly sensitive to the chosen

criterion.

The time-scales of the Maxwell modes define the orientation relaxation times of the modes.

We keep the segmental stretch relaxation time τseg,0 as a global fitting parameter (i.e. we use

the same value of τseg,0 for all comb modes for a given resin). We use the analytically known

solution for A in uniaxial extension and numerically solve the coupled stretch equations

(Eqn. 8) by using a fifth order Cash-Karp Runge-Kutta method with adaptive step-size

[Press et al., 1992].

Figs. 2-4 show the experimental data (symbols) and model predictions (lines) for the

start-up stress growth coefficients in uniaxial extension for combs at a number of extension

rates. Insets in the plots show the phase angle with arrows pointing the angular frequency

that determines τa. For each of the combs, we varied τseg,0 to best fit the data giving

particular attention to the rate at which strain-hardening shows-up for the first time.

For PS642 (Fig. 3b), we show predictions with τa = 2.2 s (solid lines) and τa = 1.25 s. In

our calculations, decreasing τa results in assigning more modes as stretching modes. This

results in increased stress with decreasing τa for rates comparable or more than 1/τa. Note

that τa for most of the resins considered are much lower than that of PS642. Thus, most of

the resins considered here show little dependence on the exact value of τa used.

Where the experimental rates span the onset of strain hardening (PI211, PI472, PS712,

PS722, and PS732) only values of τseg,0 in a limited range describes the data well. For PS712

(Fig. 3c), we show predictions with τseg,0 = 0.025 s (solid lines) and τseg,0 = 0.07 s (dashed

lines). The solid lines show an onset of strain hardening at ǫ̇ = 0.3/s consistent with the

experimental data. The dashed lines show the onset at a lower rate (ǫ̇ = 0.1/s. While the

stress is sensitive to τseg,0 at rates close to the onset of strain hardening, the stress does not

depend on τseg,0 either at rates much higher than this critical rate (where all the backbone

segments are maximally stretched) or at rates much lower than this critical rate (where none

of the backbone segments are stretched).

The present experiments with the SER fixture cannot unambiguously suggest the occur-

rence of maximum extensional viscosity or steady state values. But the predictions from

the model are in reasonably good agreement with the data given its crude assumptions.

The highest experimental rates are comparable to the inverse of the bare Rouse time of

the molecules [Lentzakis et al., 2013] and we are likely to underestimate the stress there.
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At such rates there is not sufficient time for branchpoint withdrawal; chains then stretch

beyond the limit normally set by branchpoint withdrawal. We consistently underpredict the

stress for PI472 (Fig. 2c) for all rates that show strain hardening. It is possible to improve

the predictions for the maximum of η+E to some extent by increasing τseg,0 and decreasing τa.

However, such change of parameters also change the rate at which strain hardening shows

up for the first time.

Assuming, in Eqn. 1, that the relevant tube diameter for both the branch-point friction

and the stress relaxation is the backbone tube diameter at the end of side-arm retraction,

a(τa), we can estimate τseg,0 as

τseg,0 ≃
2

3

Zsτa
p2

φα
bb, (13)

where φbb ≃ (Zb − 2Za)/(Zb + naZa) is the weight fraction of backbone material, and α

is the dilution exponent. We estimate Zs as Zs ≃ Zb/(na + 1). In Table I, we show

values of τseg,0 used in the fitting procedure and estimated from Eq. 13 assuming α = 1,

Me(PI) = 4.1 kg/mol, Me(PS) = 12.9 kg/mol, and p2 = 1/40. Note that the definition

of Me used here includes a (4/5) prefactor [Fetters et al., 1994; Kapnistos et al., 2005;

Kirkwood et al., 2009]. The values of α and p2 used here were found to describe the linear

relaxation of a number of different resins with different level of branching and with different

chemistries [Das et al., 2006a,b; Chambon et al., 2008; Read et al., 2011; Hutchings et al.,

2012]. Our estimates for τa from visual inspection of the phase angle could give an error of

a factor 2 [Bačová et al., 2014]. We use a single segment length Zs; though the synthesis

procedure should create a wide distribution of Zs. The value of p2 can be different by a

factor of 2 from the value used here and may depend on the architecture/chemistry [Bačová

et al., 2014]. Considering these uncertainties, the agreements between the fit values and the

estimates from Eq. 13 are satisfying. This is even more remarkable (and perhaps surprising)

because some of the PS combs have barely entangled side-arms with inter-branch point

backbone sections that are shorter than the entanglement molecular weight. With respect

to the comb polymers with unentangled side branches, it is worth brief further comment.

Whilst our model was developed for entangled side branches, it is to be expected that it is

possible to match some aspects of data for the unentangled side-arm cases. In the absence

of branch-point withdrawal (i.e. for small stretches), the stretch dynamics given by Eqn. 6

are effectively a discrete version of a Rouse-chain in a tube, and could equally well describe

the extensional rheology of a linear polymer (i.e. a comb with zero length arms) - the onset

14
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FIG. 3. Experimental data (symbols) and model predictions for the start-up stress growth coeffi-

cients in extensional flow at the indicated rates for (a) PS622, (b) PS642, and (c) PS712. Insets

show the phase angle with arrows indicating frequency that determines τa.
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rate for extension hardening is simply the inverse of the Rouse time. For this reason we

would expect to be able to model the onset of extension hardening at low strains. However,

for unentangled branches, we would not expect branchpoint withdrawal to play a role. For

reasons still not completely understood, experimentally short side-branches seem to provide

larger friction than predicted from star-arm retraction theory [Zhou and Larson, 2007; van

Ruymbeke et al., 2007; Kirkwood et al., 2009]. This has been often modeled by artificially

increasing the length of the side-arm in theoretical calculations. The fact that our estimated

timescales from Eqn. 13 are at all close to the fit values, and that the predicted extent of

extension hardening is at approximately the correct level, suggests that tube-based models

continue to provide reasonable description even when side-arms are barely entangled (with

some modifications like artificially increasing the length of the side-arms or as in the present

case by treating τseg,0 as a fitting parameter). Of course, we cannot rule out the possibility

that the apparent agreement, even for the combs with barely entangled side-arms, is a co-

incidence. We note, that beyond the time-scale of arm retraction, the backbones remain

well-entangled for all the resins.
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FIG. 5. Steady state stretch in different backbone segments in extensional flow at the indicated

rates for a 27 arm comb mode with τa = 0.07 s, τseg,0 = 0.6 s, and τo = 10
3 s. The index increases

from the central segments towards outside of the comb molecule. The plot on the left is predictions

without drag-strain coupling (Eqn. 6) and the plot on the right is including drag-strain coupling

(Eqn. 8) in the stretch evolution equations.

Overall, the agreement between model predictions and experiment, and the self-consistency

of the model parameters, are encouraging. So, it would seem to be a meaningful exercise
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FIG. 6. Schematic representation of branch withdrawals in extensional flow (flow direction along

the arrows).

to examine the internal dynamics of the stretch variables within the comb-model during

start-up flow. We investigated the stretch dynamics in detail for a 27 arm comb mode with

τa = 0.07 s, τseg,0 = 0.6 s and τo = 103 s. Fig. 5 shows the steady state stretch in different

parts of the backbone for a range of extension rates; during start-up extensional flow, the

stretch increases until it reaches this steady state value. So, in some sense, the curves in

Fig. 5 represent a flow-rate-dependent priority for the backbone segments, i.e. a maximum

value for the stretch which depends upon the flow rate, as suggested previously [Read et al.,

2011]. Towards the outside of the molecule it is clear that the maximal stretch is set by the

branchpoint withdrawal limit; at higher rates the outermost segment has a stretch of 1, the

next one in a stretch of 2, the next a stretch of 3, such that there is a linear envelope to the

maximum stretch. This linear envelope to the maximum stretch was previously suggested

for comb polymers by [Marrucci et al., 2008]. However, there is an additional subtlety in our

model. Once the outermost branchpoints are withdrawn, they no longer contribute friction

to the remaining stretch dynamics in Eqns. 6 and 8. Thus, the effective friction is confined

to the remaining central part of the molecule, comprising segments with non-withdrawn

branchpoints; this section has a progressively faster relaxation time as more of the outer

branchpoints are withdrawn. This situation is depicted schematically in Fig. 6, in which

the outermost branches are in the withdrawn configuration, whilst the only friction arises

from the hopping on the non-withdrawn inner branches. As a result, at intermediate flow

rates, a steady state is reached in which stretching due to the flow is balanced by relaxation

of this central section of the backbone. At these intermediate rates, although the center of
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the comb initially begins to stretch strongly during the flow start-up, it does not reach the

maximum stretch implied by the simple linear envelope obtained at higher flow rates.

In the absence of drag-strain coupling (Fig. 5a), this region of intermediate flow rates is

quite narrow. Increasing the rate from 0.01 /s to 0.03 /s results in a transition from nearly

unstretched to almost fully stretched conformation. With typical experimental measure-

ments at rates separated by a factor of 3, it predicts a sharp critical value of strain rate

above which nearly unstretched molecules reach their maximum stretch (except for the very

center of the molecule). Drag-strain coupling (Fig. 5b) smooths this transition significantly.

Fig 7 shows the steady-state stretch in the central segment as a function of the extension

rate. With drag-strain coupling there is about a decade of ǫ̇ in which a concept of flow-rate

dependent priority [Read et al., 2011] is valid for the central segment. The range of validity

of such a picture is much lower for the outerlying segments.

0.001 0.01 0.1 1
εo

0

5

10

15

λ 1

FIG. 7. Steady state stretch in the central segment for the comb molecule considered in Fig. 5 as

a function of extension rate ǫ̇. Without drag-strain coupling (circles), there is a very short range

of ǫ̇ in which the segment reaches its maximum stretch from essentially unstretched conformation.

Drag-strain coupling (squares) smooth out this transition to some extent.
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IV. CONCLUSIONS

We have presented a simple model, based on an extension to the pom-pom model, that

captures the coupled stretch dynamics in a comb polymer under nonlinear flow (uniaxial

extension). We use this self-consistent model to match, successfully, extensional data for a

series of polystyrene and polyisoprene combs. Our strategy is to match the linear rheology

of the resins with a Maxwell mode spectrum, and then to treat each of these Maxwell modes

as either a non-stretching mode or as a comb mode. We use the side-arm retraction time

τa to divide the modes in this way. Since the experimental extension rates were typically

are much slower than τa (ǫ̇τa ≪ 1), reassigning a few additional modes as non-stretching

mode does not significantly alter our predictions. Matching the extensional data requires a

single fit parameter τseg,0 for stretch diffusion in the backbone. We also demonstrate that

our fitted values for this are physically reasonable (in the context of branchpoint hopping

dynamics) across all the resins considered.

By examining, in detail, the stretch dynamics for a single mode of the model (Fig. 7),

we conclude that the model is consistent with the concept of flow-dependent priority [Read

et al., 2011; Das et al., 2014]. However, the local criteria for stretch dynamics implemented

in [Read et al., 2011; Das et al., 2014] rested on the assumption that for highly polydisperse,

randomly branched resins there is a wide distribution of relaxation times for side-arms. In

the present (comb) case, all side arms are essentially the same length and have the same

relaxation time. The result is that the dynamics of stretch relaxation along the backbone is

more collective, with several branchpoints contributing to the modes of stretch relaxation.

Predictions from the numerical algorithm of [Read et al., 2011; Das et al., 2014] fail to

capture the sharp onset of strain hardening with the extension rate that is observed in the

experimental data for these monodisperse combs. It might be that further refinements to

that scheme, allowing for collective modes of stretch relaxation, would be able to capture

the present comb data whilst improving the predictions for more polydisperse resins having

both segment and architecture polydispersity.

ACKNOWLEDGEMENTS

We gratefully acknowledge support from the EU (FP7 ITN DYNACOP grant 214627).

20



APPENDIX: RESOLVING SMALL AMPLITUDE OSCILLATORY SHEAR

DATA IN MAXWELL MODES

We resolve the experimental small amplitude oscillatory shear (SAOS) data to nM

Maxwell modes with the α-th mode having weight gα and (given) relaxation time τα by

minimizing the cost function

Q ≡
∑

ω







(

G′(ω)−
∑

α

gα
ω2τ 2α

1 + ω2τ 2α

)2

+

(

G′′(ω)−
∑

α

gα
ωτα

1 + ω2τ 2α

)2






− λ
∑

α

g2α, (A1)

with respect to the set of gα. Here G′(ω) and G′′(ω) are the elastic and viscous modulus

measured in SAOS at angular frequency ω. We have included an extra quadratic term in

the weights gα with a positive prefactor λ in Q to ensure that all the weights are positive.

Variation with respect to gβ gives

∑

α

aα,βgα − bβ = 0, (A2)

with

aα,β =
∑

ω

{

ω2τατβ
(1 + ω2τ 2α)(1 + ω2τ 2β)

[

ω2τατβ + 1
]

}

− λδα,β,

bβ =
∑

ω

{

G′(ω)
ω2τ 2β

1 + ω2τ 2β
+G′′(ω)

ωτβ
1 + ω2τ 2β

}

(A3)

To fit SAOS response between a maximum angular frequency ωmax and a minimum

angular frequency ωmin, we set nM to be 3 times the number of decades between ωmin and

ωmax. We choose τM as equally distributed in log-scale between 1/ωmax and 1/ωmin. Starting

from a small λ = 10−6, we solve the matrix equation A2 via Gauss-Jordan elimination with

full pivoting. If any of the gα were found to be negative, we increase λ by a factor 1.1 till all

gα are positive. This procedure also leads to reasonably smooth variation of gM with τM .

The highest frequency experimental data was found to be harder to fit with Maxwell

modes (which is not surprising given that the longitudinal Rouse modes can not be viewed

as exponentially decaying modes). We limit our fitting procedure at frequencies below the

high frequency cross-over of G′ and G′′. We can fit the high frequency data at the expense

of introducing extra oscillation in recalculated moduli from the set of computed Maxwell

modes. In either case, the response from such high frequencies do not affect the start-up

extensional response in which we use the Maxwell modes.
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The Maxwell modes used for the resins are provided in tables A1 and A2. The SAOS

data (symbols) and recalculated result using the Maxwell modes for PS742 are shown in

Fig A1. Fig A2 shows a plot of the weights gM as a function of times τM for PS742. For

PS742, the final λ used in Eq. A2 was 0.1 and average deviation of recalculated moduli

from the experimental data were within 5%. These numbers are representative for all the

resins. Our choice of regularly (and densely) spaced τα stems from our use of these times

as the separator between the stretching and the non-stretching modes. Note that there are

a number of studies that have approached this inversion problem in a much more rigorous

fashion [Mead, 1994; Cho and Park, 2013; Takeh and Shanbhag, 2013]. However, for

our present need the simple minimization scheme presented here describes the data with

sufficient accuracy.
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FIG. A1. Experimental SAOS response and calculated viscoelastic moduli from the Maxwell modes

in table A2 for PS742.
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PI211 PI254 PI472 PS622 PS642

τM gM τM gM τM gM τM gM τM gM

(s) (Pa) (s) (Pa) (s) (Pa) (s) (Pa) (s) (Pa)

1.15e-5 1.06e+5 4.02e-6 3.54e+5 5.29e-6 1.84e+5 5.02e-5 9.17e+4 2.00e-5 2.06e+9

3.00e-5 2.25e+5 9.95e-6 6.51e+5 1.27e-5 3.62e+5 1.30e-4 1.89e+5 5.14e-5 3.99e+9

7.84e-5 2.77e+5 2.46e-5 6.26e+5 3.07e-5 4.50e+5 3.34e-4 2.24e+5 1.32e-4 3.91e+9

2.05e-4 1.60e+5 6.09e-5 1.67e+5 7.39e-5 2.56e+5 8.63e-4 1.27e+5 3.40e-4 1.26e+9

5.34e-4 6.18e+4 1.51e-4 2.37e+4 1.78e-4 7.36e+4 2.23e-3 6.21e+4 8.73e-4 1.63e+8

1.39e-3 4.21e+4 3.72e-4 5.56e+4 4.29e-4 3.79e+4 5.74e-3 4.39e+4 2.24e-3 2.36e+8

3.64e-3 4.64e+4 9.21e-4 4.83e+4 1.03e-3 5.18e+4 1.48e-2 3.03e+4 5.77e-3 2.62e+8

9.50e-3 3.47e+4 2.28e-3 2.97e+4 2.49e-3 5.05e+4 3.82e-2 1.71e+4 1.48e-2 3.09e+8

2.48e-2 2.00e+4 5.63e-3 3.45e+4 6.00e-3 3.30e+4 9.87e-2 1.01e+4 3.81e-2 3.88e+8

6.47e-2 1.78e+4 1.39e-2 4.56e+4 1.44e-2 1.73e+4 2.55e-1 7.66e+3 9.79e-2 3.87e+8

1.69e-1 2.10e+4 3.45e-2 4.88e+4 3.48e-2 1.01e+4 6.57e-1 6.90e+3 2.52e-1 3.20e+8

4.41e-1 2.26e+4 8.52e-2 4.43e+4 8.39e-2 8.54e+3 1.69e+0 7.07e+3 6.47e-1 2.07e+8

1.15e+0 2.46e+4 2.11e-1 3.76e+4 2.02e-1 8.97e+3 4.37e+0 7.74e+3 1.66e+0 8.91e+7

3.00e+0 2.81e+4 5.21e-1 3.17e+4 4.87e-1 1.06e+4 1.13e+1 7.35e+3 4.27e+0 3.23e+7

7.83e+0 3.40e+4 1.29e+0 2.13e+4 1.17e+0 1.25e+4 2.91e+1 4.55e+3 1.10e+1 2.14e+7

2.04e+1 3.96e+4 3.19e+0 1.40e+4 2.82e+0 1.38e+4 7.51e+1 1.25e+3 2.82e+1 1.85e+7

5.33e+1 3.57e+4 7.89e+0 1.15e+4 6.80e+0 1.50e+4 1.94e+2 6.15e+0 7.25e+1 1.52e+7

1.39e+2 2.02e+4 1.95e+1 1.01e+4 1.64e+1 1.72e+4 5.00e+2 1.58e+1 1.86e+2 1.11e+7

3.63e+2 5.43e+3 4.82e+1 9.15e+3 3.95e+1 1.97e+4 – – 4.79e+2 4.04e+6

9.48e+2 2.22e+2 1.19e+2 9.40e+3 9.51e+1 2.24e+4 – – 1.23e+3 8.76e+4

2.48e+3 1.60e+1 2.95e+2 9.54e+3 2.29e+2 2.76e+4 – – 3.16e+3 3.50e+4

– – 7.30e+2 6.51e+3 5.52e+2 3.48e+4 – – – –

– – 1.81e+3 2.34e+3 1.33e+3 3.59e+4 – – – –

– – 4.46e+3 2.85e+1 3.20e+3 2.55e+4 – – – –

– – – – 7.72e+3 1.08e+4 – – – –

– – – – 1.86e+4 2.50e+3 – – – –

– – – – 4.48e+4 1.03e+2 – – – –

TABLE A1. Maxwell times and weights for PI211, PI254, PI472, PS622, and PS642.
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PS712 PS722 PS732 PS742

τM gM τM gM τM gM τM gM

(s) (Pa) (s) (Pa) (s) (Pa) (s) (Pa)

2.00e-5 4.93e+5 2.00e-5 7.78e+4 2.00e-5 3.67e+5 2.00e-5 2.69e+5

4.73e-5 7.82e+5 5.12e-5 1.68e+5 4.83e-5 6.00e+5 5.12e-5 5.00e+5

1.12e-4 5.39e+5 1.31e-4 2.25e+5 1.16e-4 4.19e+5 1.31e-4 3.74e+5

2.65e-4 9.57e+3 3.36e-4 1.53e+5 2.81e-4 6.76e+3 3.36e-4 8.92e+3

6.26e-4 3.81e+4 8.62e-4 7.22e+4 6.78e-4 1.10e+4 8.62e-4 1.12e+4

1.48e-3 8.85e+4 2.21e-3 3.83e+4 1.64e-3 5.61e+4 2.21e-3 4.69e+4

3.50e-3 3.06e+4 5.66e-3 2.79e+4 3.95e-3 2.91e+4 5.66e-3 2.18e+4

8.28e-3 1.85e+4 1.45e-2 2.01e+4 9.52e-3 3.25e+4 1.45e-2 1.96e+4

1.96e-2 7.11e+3 3.71e-2 1.27e+4 2.30e-2 3.74e+4 3.71e-2 2.75e+4

4.63e-2 5.70e+3 9.52e-2 8.23e+3 5.54e-2 2.76e+4 9.52e-2 2.74e+4

1.09e-1 8.92e+3 2.44e-1 6.30e+3 1.34e-1 1.73e+4 2.44e-1 2.55e+4

2.59e-1 6.56e+3 6.25e-1 5.66e+3 3.23e-1 8.46e+3 6.25e-1 2.09e+4

6.12e-1 6.31e+3 1.60e+0 5.42e+3 7.79e-1 3.66e+3 1.60e+0 1.20e+4

1.45e+0 8.48e+3 4.10e+0 5.63e+3 1.88e+0 3.01e+3 4.10e+0 4.69e+3

3.42e+0 1.03e+4 1.05e+1 7.21e+3 4.53e+0 3.32e+3 1.05e+1 2.56e+3

8.10e+0 1.34e+4 2.69e+1 9.54e+3 1.09e+1 4.44e+3 2.69e+1 2.56e+3

1.92e+1 1.66e+4 6.90e+1 1.14e+4 2.64e+1 3.94e+3 6.90e+1 2.12e+3

4.53e+1 1.88e+4 1.77e+2 1.31e+4 6.37e+1 4.10e+3 1.77e+2 2.48e+3

1.07e+2 1.21e+4 4.53e+2 1.46e+4 1.54e+2 7.13e+3 4.53e+2 2.90e+3

2.53e+2 2.09e+4 1.16e+3 1.33e+4 3.71e+2 8.51e+3 1.16e+3 2.94e+3

5.99e+2 3.01e+4 2.97e+3 8.04e+3 8.94e+2 8.51e+3 2.97e+3 3.66e+3

1.42e+3 1.50e+4 7.62e+3 2.64e+3 2.16e+3 6.74e+3 7.62e+3 2.93e+3

3.35e+3 3.99e+3 1.95e+4 3.78e+2 5.21e+3 4.28e+3 1.95e+4 1.40e+3

7.92e+3 2.25e+3 5.00e+4 1.05e+1 1.26e+4 4.17e+3 5.00e+4 1.19e+3

TABLE A2. Maxwell times and weights for PS712, PS722, PS732, and PS742.
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