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Abstract

The evaluation of grammar inference systems is clearly a non-trivial task, as it is possible to have more

than one correct grammar for a given language. The ‘looks good to me’ approach, carried out by

computational linguists analysing their own grammar inference system results, has prevailed for many

years. This paper explores why this method has been so popular, in terms of its strengths, and also why

it is no longer adequate as a reliable means to measuring performance. Corpus based methods, that can

be performed automatically, are investigated to see how they can meet the needs of this difficult

problem.

1 Introduction

In the past few years, the Natural Language Learning community have produced systems targeted at

the complex task of Grammar Inference (GI): automatically inferring or learning grammatical

descriptions of a language from a corpus of language examples. A low-level GI task is to group or

cluster words into tentative categories according to their distributional behaviour, e.g., Atwell and

Drakos (1987), Hughes and Atwell (1994) and Roberts (2002). A more ambitious aim of GI is to

propose grammatical phrase structure; a number of mature solutions have emerged, for example, GraSp

(Henrichsen 2002), CLL (Watkinson and Manandhar 2001a), ABL (van Zaanen 2001) and EMILE

(Adriaans 1992). All systems mentioned aim to be unsupervised, and thus can only rely on raw

(unlabelled) text for their learning process. Results from these systems are promising – a variety of

linguistic phenomena are induced.

Despite the advances in this field, the issue of thorough evaluation has been poorly address. Evaluation

within Natural Language Processing tasks in general is problematic, not least because there is no

obvious single correct output to measure against. For example, for PoS-tagging and parsing, different

linguists advocate different tagsets and parsing schemes, making it difficult to compare accuracy

metrics (Atwell 1996; Atwell et al. 2000). Ambiguity poses a similar threat in GI: the basic problem is

given a training corpus, there is no single correct grammar that represents it. In the majority of systems,

a ‘looks good to me’ approach has been used: success is illustrated by presenting some grammar

classifications or structures proposed by the system which appeal to the linguist’s intuition.

There is a need to develop methods for consistent evaluation of GI systems. Without a reliable way of

determining the performance of such systems, it will become increasingly difficult to assess how

competently they are doing the task they are supposed to do. Nor will it be trivial to compare two or

more systems, which would be very valuable in deciding which techniques and algorithms work best

for Natural Language Learning.

This paper investigates the feasibility of harnessing corpora that can be used to develop a standard

mechanism (which aims to be reliable and accurate) for evaluating GI systems in the future. The next

section explores the ‘looks good to me’ approach mentioned earlier to understand why it is so widely

used, its merits and any shortcomings. Section three introduces various approaches for evaluating GI.

A discussion takes place in section four to highlight important issues from the approaches reviewed in

this paper. Section five provides brings the paper to a close with a conclusion.
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2 Looks good to me

The success of this approach is essentially its apparent simplicity. A system performs its GI procedures

on a piece of unstructured text, and its resulting grammar can be analysed by a computational linguist,

generally the computational linguist who built the Grammar Inference system under scrutiny. A

qualitative evaluation takes place based on the linguistic intuitions of the evaluator, by highlighting

features or structures in the learner output which look “good”, or reminiscent of structures in a

recognised linguistic theory. Of course, the apparent simplicity is due to the fact that a linguist

possesses the required skills and experience to easily deduce whether the grammar in question contains

a plausible structure. Researchers who came into the field of GI from a computing/AI/machine

learning background are less likely to be as proficient at evaluating grammars using this approach.

‘Looks good to me’ is an important method of evaluation, and certainly should not be discredited just

due to its lack of automation. Verification of a system carried out independently by one or more

linguists would provide – in most cases – a more reliable measure of performance. It is also arguably

the most resource efficient, since it can be evaluated on different languages without the need of

structured corpora (van Zaanen 2001). Examples of this method in use can be found in. (Finch and

Chater 1992; Losee 1996; Vervoort 2000; Henrichsen 2002).

However, the method has many disadvantages. Evaluation of this nature is mainly conducted by the

developer of the system rather than someone independent to the work. Thus, there is a high chance of

bias whereby the systems successes are highlighted and shortcomings are glossed over, making it

almost impossible to gain an accurate picture of system performance. Even without any bias, the

process is time consuming and would rely on the subjectivity of the expert(s), and may also be prone to

unknown external factors that can affect humans. And finally, it does not offer the facility for

comparing different systems which would be of great benefit.

3 Automatic evaluation

Ideally, the process of evaluation should be performed automatically which will save on time and on

the necessity of an expert linguist in the chosen language. This section focuses on methods that

harness corpora for this purpose.

3.1 ‘Gold standard’ treebank

This method is currently the most common to be adopted. It works by extracting the original natural

language sentences from an existing treebank (the ‘gold standard’), and using it as input to a given GI

system. The structured sentences produced by the GI system are then compared to the structure found

in the original treebank. Common metrics include recall (measures the completeness of the learned

grammar) and precision (measures the correctness of the learned grammar) that can be calculated to

give an objective measure of system performance. This method has been used in (Brill 1993; Déjean

2000; van Zaanen 2001)

Although on the surface, this method appears sound, and simple to implement, there are in fact many

issues that cause it to be insufficient for it to be reliable and accurate. Treebanks are expensive (both

in time and money) to create, and so they are not in plentiful supply. The material within also tends to

be exclusive to a particular domain, e.g., the ATIS treebank consists of sentences on questions and

imperatives on air traffic, or the Penn Treebank is taken mostly from articles in the Wall Street Journal.

If a GI system is not designed to learn from raw text of the same genre or subject,, then it is not an ideal

candidate for a ‘gold standard’. The way in which the treebank has been structured poses a problem.

Just because it has been labelled the ‘gold standard’ does not necessarily mean that anything that

differs is wrong – it may simply be different, but equally correct. However, such differences will

clearly affect the measure of the systems’ performance. It does also beg the question about whether

certain treebanks are credible enough to be used for the purposes of evaluation. One must be confident

that the quality and validity of an annotated is sufficiently high, otherwise, it is pointless evaluating

systems with corpora that contain errors or are not well structured.
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On a slightly more technical level, a large step to overcome is the likely discrepancy between the actual

annotation schemes of the GI system to be evaluated and the ‘gold standard’. For example, an

increasingly common grammar being employed within GI is the categorial grammar (Ajdukiewicz

1935). However, there is no corresponding treebank whose annotation formalism uses CG, which

means the only useful measurements that can be acquired from this mismatch are metrics such as

crossing-brackets, but so much information is wasted. Therefore, a system of translation is required to

either convert the original treebank to the annotation scheme used by the GI system, or the other way

around, in order for a more precise comparison to commence.. This was the tactic taken by Watkinson

and Manandhar (2001b) in their evaluation of CLL, whereby they set about establishing a ‘gold

standard’ by translating the Penn Treebank annotation scheme into one using categorial grammar

markup .

3.2 Multi-annotated corpora

To overcome some of the main disadvantages of the ‘gold standard’ approach, the next logical step is

to develop a multi-annotated corpus, as exemplified in Atwell et al. (2000). The premise is that the

same corpus is parsed by a variety of systems, rather than merely one as all common treebanks are.

Providing all parses are trusted to be correct, then upon evaluation of a GI system, it is less likely to be

penalised just because it produces different but equally correct parses, because it is being compared to a

variety of such parses.

This step should make the evaluation fairer, however, it does add a new set of complexities. Not least

due to the aforementioned annotation translation problem, which multiplies for each unique scheme

used by the various parsers. Ideally, the same annotation would be used for all parses within the

treebank – the ‘gold standard’ annotation scheme. But this too is fraught with difficulties, especially as

it would be much simpler to accomplish a multi-annotated corpus by using off-the-shelf parsers.

Another issue is how to compare a given parsed sentence to be evaluated with a set of known correct

parses. The best case is that a perfect match will be found. The worse case is no match. However, for

many cases, it will be somewhere in between, where a number of partial matches are likely to exist. A

best match approach seems logical, i.e., of the candidate parses, the one that is the most similar is the

one that is then considered for the actual metric calculations.

3.3 Multi-corpora

In a similar vein to the above approach, the idea for using more than one corpus is primarily to avoid

the domain specific issue that was addressed earlier (see section 3.1). Unlike other corpora, such as the

Brown or LOB, which span many subjects in different contexts (newspaper articles, novels etc), well

known treebanks fail to compare in size and variety. Therefore, this method aims to take advantage of

smaller individual treebanks and combine into a single, large one. This would certainly make it fairer

for general purpose learning systems, although perhaps there is less of a need for more focused systems.

Having said that, an alternative tactic is to treat each of the contributing corpora as individual and each

as with the normal ‘gold standard’ method. You would then have a more detailed type of benchmark

style scoring system, where not only is there an overall performance measure against all the corpora on

test, it can also be seen on which type of corpora the GI system works best (or worse) on.

Of course, the most thorough approach would be if the smaller treebanks were also multi-annotated as

described in the previous section. A ‘multi-multi-annotated corpus’ – if you like – would be a

magnificent resource. This subtly shifts the aim of evaluation: the result or output is not a single overall

“accuracy score”, but an exploration of a range of parsing schemes and genres to highlight similarities

and differences between GI output and a variety of accepted linguistic analysis schemes. Ideally such

an analysis could be facilitated by a parsed-corpus exploration toolkit: a tool to compare parses in GI

output and linguist-annotated multi-multi-corpus, and automatically highlight differences.

4 Discussion
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There does not seem to be a perfect solution to the problem of reliable evaluation, whether it be manual

or automatic. GI and parsing is very subjective, and it is unlikely that a method will be created that

will satisfy everyone. However, what should be unanimous is that a system of evaluation needs to exist.

It may not be perfect, but at least a fair and consistent scheme can be created.

Unfortunately, it is clear that the most thorough automated evaluation approaches could be such a

burden to developers to implement that they will opt for a simpler approach. Which is why it may be

worthwhile to outsource the task of creating the ultimate ‘gold standard’ into a research project within

its own right. The creation of a collection of multi-annotated corpora as the central resource, as well as

a variety of translation interfaces for commonly used annotation schemes, that allow easy comparison

between output of a GI system and the ‘gold standard’ corpus. It could be packaged like an evaluation

toolkit – a black box that is publicly available, easily accessible, and simple to add on as the final phase

within the pipeline of the GI system.

Alternatively, a multi-multi-annotated corpus could be achieved by getting the GI community – or at

least a group of GI researchers – to work together, each contributing their preferered “target” analysis

schemes. Sutcliffe et al (1996) describes an analogous evaluation exercise for a range of (non-ML)

parsers: each researcher was asked to “bring along” their parser analyses of an agreed set of test

sentences to a joint workshop, and then highlight and discuss successes (and failings) of their systems.

Perhaps in a future GI workshop, GI researchers could be invited to bring along their preferred

evaluation treebanks to challenge each other, and to each present both “looks good to me” and

quantitative evaluations of systems for comparison.

5 Conclusion

The ‘looks good to me’ approach, despite the critical slant within this paper, is not an inferior one.

However, it will not meet the demands for robust NLL evaluation. Which is why corpus based

approaches have been presented as the most feasible and reliable way of essentially trying to emulate

‘looks good to me’ whilst eliminating bias and providing consistency.

There is a great need for researchers within the field to begin addressing accurate evaluation techniques.

The current ‘gold standard’ method (as described in section 3.1) is too basic and will simply favour GI

systems that behave similar to the way the ‘gold standard’ treebank was parsed. Greater flexibility is

required, and a method like the multi-multi-annotated corpus (see section 3.3) will be a beneficial

innovation to do just that. Instead of replacing “looks good to me”, the two approaches should be

combined, so that evaluation is no longer a simple quest for a single “score”, but instead an exploration

of strengths (and weaknesses) of GI systems.
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