This is an author produced version of An ontology-based multi-level robot architecture for learning from experiences.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/81158/

Proceedings Paper:
An Ontology-based Multi-level Robot Architecture for Learning from Experiences

S. Rockel, B. Neumann, J. Zhang
University of Hamburg
{rockel, neumann, zhang}@informatik.uni-hamburg.de

K. S. R. Dubba, A. G. Cohn
University of Leeds
scksrd, a.g.cohn@leeds.ac.uk

Š. Konečný, M. Mansouri, F. Pecora, A. Saffiotti
Örebro University
{sky, mmi, fpa, asaffio}@aass.oru.se

M. Günther, S. Stock, J. Hertzberg
University of Osnabrück
{mguenthe, sestock, jhertzbe}@uos.de

A. M. Tomé, A. Pinho, L. Seabra Lopes
University of Aveiro
{ana, apa, lsl}@ua.pt

S. von Riegen, L. Hotz
HIT eC e.V.
{svriegen, hotz}@informatik.uni-hamburg.de

Abstract
One way to improve the robustness and flexibility of robot performance is to let the robot learn from its experiences. In this paper, we describe the architecture and knowledge-representation framework for a service robot being developed in the EU project RACE, and present examples illustrating how learning from experiences will be achieved. As a unique innovative feature, the framework combines memory records of low-level robot activities with ontology-based high-level semantic descriptions.

1 Introduction
In this paper, we give an overview of goals and current work in the project RACE1 (Robustness by Autonomous Competence Enhancement). The main thrust of RACE is to develop a framework and methods for learning from experiences. The ability to conceptualize stored experiences and to adapt plans and behaviour according to experiences is clearly a desirable asset of intelligent robots. It can help robots to expand their knowledge about a complex world, adapt to changes, and cope with new situations.

To achieve this goal, experiences are recorded as semantic spatio-temporal structures connecting high-level representations, including tasks and behaviours, via their constituents at lower levels down to the sensory and actuator level. In this way, experiences provide a detailed account of how the robot has achieved past goals or how it has failed, and what sensory events have accompanied the activities.

Work in RACE therefore combines research from several communities: (1) an ontology-based multi-level knowledge-representation framework has been devised connecting actuator and sensory experiences with higher-level semantic structures, (2) reasoning facilities for both symbolic and quantitative knowledge are in place to deal with hybrid and diverse knowledge, (3) scene descriptions are enriched by high-level semantic interpretations, (4) learning procedures are being devised exploiting all levels of recorded experiences, and – last, but not least – (5) all this is integrated with a state-of-the-art robot platform (a PR2).

The experimental domain used in RACE is a restaurant environment where the robot serves guests. A typical task is to fetch a mug from a counter, bring it to a guest and place it on the table in the proper position. After several experiences, the robot learns how to deal with guests at tables and positions not encountered before.

In the next section, we present the architecture of the integrated robot system. The robot memory is a central component for storing multi-level factual knowledge in a coherent way, in particular experiences comprising instructions, plans, activities, perceptions, and failures. We then describe the OWL-based ontology structure which is connected to a constraint system for temporal, spatial and resource reasoning. We also provide details about the representation of concrete scenarios and experiences.

In Section 3, we present several approaches for learning from experiences which are being developed in ongoing research. As one example, we show how repeated detailed instructions for serving a guest can be generalized to cover new situations.

2 Architecture and Knowledge Representation Framework

In this section, we present the main components of the modular RACE architecture and describe important features of the knowledge representation and reasoning (KR&R) framework. Most components exist as prototypes, the integration is currently underway.

2.1 Architecture of the RACE Robot System

The central piece of the RACE architecture (Figure 1) is the Blackboard, the contents of which are similar to what can be found in an ABox in Description Logics. The Blackboard keeps track of the evolution of both the internal state of the

1RACE is funded by the EC Seventh Framework Program theme FP7-ICT-2011-7, grant agreement no. 287752.
The robot provides continuous data about its own status (such as joint angles) as well as data from its various sensors. Then the symbolic perception/propiroception modules discretize this information into symbolic timestamped Fluents; example outputs of these modules indicate whether the robot’s gripper is open, closed, or moving, or the qualitative spatial location of a piece of cutlery observed by the robot’s RGB-D camera. While the outputs refer to discrete, symbolic entities (such as servingArea1), these entities may have quantitative properties (such as the spatial polygon that servingArea1 represents).

The robot’s conceptual knowledge is stored in the OWL ontology (Section 2.2). The ontology provides a common representation format from which the domain knowledge of all other reasoners is generated. For instance, the HTN planning domain is extracted from the conceptual knowledge about robot activities. Similarly, the OWL ontology feeds the spatial, temporal and ontological reasoners as well as the high-level scene interpretation. These reasoners enrich the basic experiences in the Blackboard with higher-level semantic information and can also be queried directly by other modules. For instance, if the robot’s task is to serve coffees, temporal inference may tell it that the act of delivering coffees must be scheduled before the coffees become cold. Similarly, metric spatial reasoning can endow the robot with the ability to discern exactly where to place a dish when serving (between the fork and the knife of a well-set table).

Experience extraction and conceptualization support a long-term learning loop. The history of Fluents in the Blackboard is continuously observed by the Experience Extractor to detect and extract potentially relevant experiences, based on plan structure, user feedback, pauses, similarity with stored experiences, and conceptualizations and novelty.

Experiences are then used to improve future performance by employing several learning methods. Taking the experiences from the Blackboard as input, the Conceptualizer (Section 3.2) modifies the ontology, resulting in more robust and flexible future plans.

2.2 Structure of the Ontology

The robot’s conceptual knowledge about the world and the restaurant domain is represented in OWL 2 DL, extended by constraints. The ontology is structured into an Upper Model with generally useful concepts (e.g., Occurrence, RobotActivity, PhysicalEntity) and a Domain Model with concepts specific for the restaurant domain. A large part of the domain concepts describes occurrences which may happen as robot or guest activities. As an example, consider the robot activity of moving an object from one place to another, described below in Manchester OWL Syntax:
Class: MoveObjectFromTo
EquivalentTo:
RobotActivity
AND (hasObject EXACTLY 1 PhysicalEntity)
AND (hasFromOn EXACTLY 1 On)
AND (hasToOn EXACTLY 1 On)
AND (hasEmptyHand ATLEAST 1 EmptyHand)
AND (hasGetObjectFrom EXACTLY 1 GetObjectFrom)
AND (hasMoveObjectTo EXACTLY 1 MoveObjectTo)

In addition to the properties listed above, the concept inherits the properties hasAgent, hasStartTime, hasFinishTime from superclass concepts. Note that \(n \)-ary relations with \(n > 2 \) are reified to be representable in OWL DL: Relation types (e.g., On, At, Before) are defined as concepts with the arguments as properties.

Apart from being embedded in the taxonomical hierarchy of OWL, occurrence concepts can be constituents of compositional hierarchies. For example, MoveObjectFromTo has GetObjectFrom and MoveObjectTo as parts, which are further decomposed until primitive robot activities are reached. Concepts consisting of several occurrences are called aggregates. Compositional hierarchies defined in the ontology are transformed into corresponding hierarchies of planning methods and operators for the HTN planner.

OWL DL allows to refer to quantitative data types (used here mainly for temporal and spatial information), but provides only rudimentary ways to express constraints, e.g., on durations or locations. In our architecture, constraints are represented as special OWL classes which are evaluated by a temporal or spatial reasoner, see the next section.

2.3 Constraint Processing

Much of the conceptual knowledge of the robot (whether learned or provided by first principles) is relational in nature. It is often qualitative, e.g., knowing that desserts are served after the main course, or that forks and knives should be placed, respectively, on the left and right side of plates. However, this knowledge is useful for the robot if it can be instantiated in observed situations. This entails the need for attaching metric information deriving from observations to qualitative conceptual knowledge. For instance, the robot may need to infer, based on qualitative relations describing well-set tables, where to place a fork in the specific case of a particular table on which a dish is present. This requires identifying an admissible area for placing the fork in the reference frame of the table, given the specific placement of the dish in the scene.

Given these requirements, many of the reasoning services provided by the RACE KR&R framework are based on constraint processing techniques. Specifically, qualitative temporal knowledge is represented as relations in Allen’s Interval Algebra (Allen 1984). When applicable, these qualitative representations are augmented with metric constraints (van Beek 1990). This allows the robot to perform useful operations such as abductive reasoning to infer context using temporal relations (Pecora et al. 2012), determining earliest and latest bounds for carrying out a task, and performing temporal execution monitoring.

Reasoning about qualitative temporal relations is achieved through path consistency checking and backtracking search in Allen’s qualitative temporal calculus. Metric temporal constraint reasoning occurs through two solvers, namely a Temporal Constraint Satisfaction Problem solver and a Simple Temporal Problem solver (Dechter 2003). Variables in these types of problems represent time points, which allow the capture of information regarding events. Pairs of time points combined with a constraint on their temporal separation allow the representation of intervals, which capture information about actions carried out by the robot and states of the environment (e.g., the minimum and maximum duration of a picking action, or the nominal bounds on the duration of a meal).

Intervals and temporal constraints are also the basis for reasoning about the use of reusable resources. These are resources with a given limited capacity, which is decreased when an activity using this resource is executed. The cumulative use of a resource in any interval of time may not exceed its capacity. The framework implements a scheduling algorithm based on meta-CSP reasoning (Cesta, Oddi, and Smith 2002) which resolves over-consumption of resources by imposing temporal constraints which sequence activities in time. The algorithm, which builds on the framework’s simple temporal problem solver, enables the robot to refine the temporal bounds of planned activities so as to achieve resource-feasible plan execution. This is an important capability for a waiter robot – for instance, the maximum weight that can be carried by the robot can be modeled as a limited capacity resource.

Another important aspect of the robot’s knowledge is related to spatial relations. The RACE KR&R framework provides qualitative and metric spatial reasoning tools that can be invoked, as for temporal reasoning, to refine the robot’s knowledge, refine plan execution with quantitative information, or interpret observations. These include the Region Connection Calculus RCC-8 (Randell, Cui, and Cohn 1992), the Directional Calculus (Goyal 2000), and CORE-9 (Cohn, Renz, and Sridhar 2012) which for rectangular regions (such as object bounding boxes) subsumes and improves the expressiveness of both the above calculi as well as the Rectangular Algebra (RA), a spatial calculus which extends Allen’s Interval Algebra to two dimensions (Balbiani, Condotta, and Del Cerro 1999). Augmented spatial constraints in RA which capture spatial relations in metric space are reasoned with the combined use of two metric Allen’s Interval constraint reasoners. This allows the robot to leverage, similarly to the temporal case, abductive reasoning for scene interpretation (e.g., answering the question “is the table well set?”), plan refinement (e.g., determining the area in which a dish should be placed given the other objects on the table), and plan execution monitoring (e.g., detecting that it is impossible to place the dish on the table because of clutter).

2.4 Representing Basic Experiences

Experiences are the main source of information used for learning how to achieve a more robust robot behaviour. They arise from robot activities and can be directly exchanged between the modules through ROS messages as well as stored for future use in the Blackboard using the YAML format.
The YAML experience format essentially consists of occurrences relevant for the behaviour of the robot, coded as "Fluents" and structured similarly to ABox entries of a DL. The following example of a Fluent represents a primitive action of moving the left arm to the side:

```yaml
!Fluent
Class_Instance: [MoveArmToSide, moveArmToSide1]
StartTime: [61.142, 61.142]
FinishTime: [66.306, 66.306]
Properties:
  - [hasArm, Robot Arm, leftArm]
  - [hasResult, ActivityResult, succeeded]
```

The field `Class_Instance` contains the concept in the ontology and the name of the individual. It is followed by two intervals indicating the earliest and latest start and finish times of the Fluent. By using time intervals, we can also represent constrained or indefinite time points, as pointed out in 2.3. In the example above, the action of moving the arm has been performed successfully, which is indicated by the set finish time and the `hasResult` property. Note that activity instances such as `moveArmToSide1` can be property fillers of higher-level aggregates.

Fluents can describe different kinds of information as part of an experience. First, we have the primitive activities and states of the robot, e.g., motion of the robot base or the position of the robot’s arm. Also perception results such as detected objects or guests are stored. Furthermore, experiences are enriched by higher-level descriptions obtained from the HTN and a scene interpretation module. In addition to real occurrences, the HTN plan itself as well as information about success or failure of the execution is included, reflecting the “mental state” of the robot. We will store the complete plan hierarchy from the overall task down to the operators with their pre- and postconditions. When the plan is executed, success or failure information and timestamps for the start and finish time will be added to the single actions, the higher level tasks and the plan itself. Finally, the user will be able to provide instructions to the robot and give feedback on the execution of a task.

3 Experience-Based Learning

We now describe some of the learning approaches which are being explored and will be investigated using the RACE system as experimental platform.

3.1 A Learning Scenario

We first present a simple scenario in the restaurant domain which will be used as a first-year demonstrator in Project RACE, and illustrate representations and learning approaches for dealing with this scenario.

Scenario A: A restaurant floor plan as shown in Figure 2 where the robot knows the position of mug1 on the counter, the position of table1, the position of guest1 north of table1, and the regions for manipulation, sitting and placing. The robot is instructed to move to counter1, grasp mug1, move to the manipulation region west of table1, and place mug1 at the placement region north of table1. The robot is told that this is a ServeGuest activity.

![Initial floor plan for counter1, table1, robot trixi](image)

Figure 2: Initial floor plan for counter1, table1, robot trixi (R), mug1 (M) and guest1 (G) in Scenario A

Scenario B: The same as Scenario A, except guest2 is sitting south of table1 and the robot is instructed to move to the east of table1 and place mug1 at the south of table1. Again, the robot is told that this is a ServeGuest activity.

Scenario C: Guest3 is sitting east of table1 and the robot is simply instructed: Do a ServeGuest to guest3.

The idea is to let the robot discover a generalization of the ServeGuest experiences in Scenarios A and B which will subsume the task in Scenario C.

3.2 Learning about robot activities

This approach can be described as *(Constrained Generalization)*. The idea is to generalize from experiences and to simultaneously constrain the generalization by commonalities discovered in the experiences. For Scenarios A and B, the unconstrained generalization would describe a ServeGuest for any combination of SittingRegion, PlacingRegion and ManipulationRegion. By discovering common properties or relations in the experiences such as “WithinReach PlacingRegion SittingRegion”, the over-generalization can be constrained and will correspond to the desired learning results.

For this approach, a large repertory of potentially interesting relations is required; a strategy for choosing common relations is a research issue. In general, several learning experiences may be required to distinguish, for example, between irrelevant common guest properties (e.g., colour of garment) and relevant location relations.

The knowledge representation framework of RACE is designed to support Constrained Generalization. Two steps are required: Conceptualization of individual experiences and construction of a constrained least common subsumer (CLCS).

In the conceptualization step, the occurrence instances of an experience are transformed into concepts by abstracting from quantitative time. In addition, a new aggregate concept is introduced (in our example ServeGuest) with the top-level activities of the experience as properties (MoveBase, GraspObject, MoveBase, PlaceObject).

The second step (CLCS construction) has two features: (i) Disjunctions are not allowed, hence different individuals are generalized to their closest common superclass.

```plaintext
guest1, guest2 \(\Rightarrow\) Guest
placingRegionNorthTable1, placingRegionSouthTable1 \(\Rightarrow\) PlacingRegionTable1
```

(ii) Generalizations are constrained by additional properties or relations, to be discovered as commonalities of the underlying experiences.
3.3 Learning about objects and scenes

In order to adapt to different environments and tasks, robots need to categorise physical objects and acquire vocabulary about them. Although the acquisition of visual object categories is a long-standing research problem, the project will approach it from a long-term (or lifelong) perspective and with emphasis on domain open-endedness, i.e. there is no pre-defined set of categories. So, in the above learning scenario, if the robot does not know what a mug looks like, it may ask the user to point to one. Such situation provides an opportunity to collect a training instance for learning. The baseline is a purely memory-based learning approach, in which known instances are stored in memory, and recognition of new instances is based on analyzing similarities with stored instances. An RGB-D camera will be the main source of information for detecting, learning and classifying objects. Objects themselves are represented through a combination of shape models and bag-of-feature models. Finally, acquired object category knowledge is fed into the hybrid knowledge representation and reasoning framework.

In turn, object category knowledge forms the basis for scene recognition. Many scenes have similar structure, or at least elements with structural similarities (the structure of a restaurant, the restaurant table layout, etc.). We will investigate how such knowledge can be acquired in an unsupervised way, through observation and exploration. We will build on our existing work in this area whereby areas of the scene are distinguished semantically via qualitative trajectory analysis and by clustering based on the spatial relationships between qualitatively different parts of the scene. Scene knowledge can also be acquired through human-robot interaction, where the human describes the composition of concrete scenes in terms of objects and spatial relationships. In the case of restaurant table layouts, the robot can realize a certain table layout based on human instructions and then conceptualize the outcome.

3.4 Learning about environment activities

Apart from robot activities and object shapes, it is also possible to learn different aspects of the world such as the hierarchical spatial layouts of buildings, rooms, tables and chairs and cutlery on a table, object categories based on their functionality and affordance etc. Note that there is also a temporal dimension in some of the concepts that can be learned such as the changes in the cutlery layout as a dinner progresses from starters to desserts. These scenarios are modeled using different spatial relations like RCC-8 etc. among objects as explained in Section 2.3, and the relations are linked using Allen’s temporal relations to capture the dynamic changes in the relations. For example the RCC-8 relation between mug1A1 and counter1 in Figure 2 is NTPP(mug1, counter1) (i.e. mug1 is non-tangential proper part of counter1). The computed spatio-temporal relational data is stored in the Blackboard and will be used for learning.

Learning in this project will be done in supervised and unsupervised settings. In the supervised setting, learning is done by: learning by observing and learning by doing. In both cases, instructions and feedback from a teacher are necessary and will be provided through the User Interface module as shown in Figure 1. In learning by observing, the tasks are performed by the teacher, and the robot passively observes the tasks. The teacher gives supervision annotations in the form of concept names: ServeGuest, MakeCoffee etc. Learning in this case uses spatio-temporal generalization techniques, Inductive Logic Programming and relational graph-based methods (Dubba, Cohn, and Hogg 2010; Sridhar, Cohn, and Hogg 2010). In learning by doing, the robot is given detailed instructions (list of goals) to perform a high-level task, and then the teacher names what high-level task the robot performed. The instructions also constitute feedback on whether the task was performed correctly or not: they give the robot opportunity to learn and adapt by reasoning why the task went wrong, by comparing experiences derived from contents of the Blackboard during the wrongly executed task with that of a correctly executed task.

In unsupervised learning, the robot mines the Blackboard extracting interesting patterns and anomalous sections for future use such as categories of objects, repetitive occurrences and groups of tasks etc.

4 Related Work

Since several diverse research areas are related to this work and due to space limitations, we can only address most relevant previous works in this section.

The idea of autonomous learning from examples has been around from the very beginning of AI (Hunt and Havland 1963), and symbolic methods using generalization and discovery also date back several decades. However, the context of an embodied robot acting in space and time poses many new challenges. One is to use a formal ontology for knowledge representation for support of reusability and shareability. Our approach is similar to work in RoboEarth (Waibel et al. 2011), where experiences are also represented using OWL. A major goal in RoboEarth is to obtain a sharable representation of the environment by combining the experiences of many robots, while our focus is on using the experiences of a single robot to improve its performance as a service robot.

CogX’s Dora (Wyatt et al. 2010) is similar to the RACE architecture insofar as both have a blackboard, incorporate a planner and use ontological descriptions of space. The main difference is that Dora is concerned with filling in gaps in its knowledge, specifically by active exploration of unknown space, and therefore has a more elaborate multi-layered representation of space, while the main focus of RACE is improving the robustness of the robot’s behaviour based on experiences. For this reason, the blackboard uses one unified representation format (OWL), and even the planning domain is stored in the blackboard and will be subject to modification later in the project.

In contrast to the approaches above, the DyKnow knowledge processing framework (Heintz, Kvarnström, and Doherty 2010) omits a blackboard in favor of information streams. Although not central to our system, streams also play a role: the RACE architecture is built on top of the
stream-based ROS framework, thereby inheriting its support for distributed processing and reconfiguration. Also, our blackboard provides filtered streams of new or updated fluents, obviating the need for polling.

Other related projects are XPERO where the emphasis was on active robot experimentation to enable inductive learning (http://www.xpero.org/), and COGNIRON which was centered on HRI and learning from demonstration (Fritsch et al. 2005).

There have been several proposals for how to structure ontology-based multi-level KR for robots (Suh et al. 2007; Galindo et al. 2005). In our approach, knowledge is essentially structured around compositional hierarchies where high-level representations build on lower-level constituents, as proposed in research on activity recognition (Neumann and Moeller 2006; Fusier et al. 2007), but we also consider special activity concepts (e.g., resources and goals) as proposed, for example, in (Chen and Nugent 2009).

The connection between symbolic processing and quantitative data has been under discussion in many works. Our approach extends OWL to connect to constraints as DL-type concrete domains and following the constraint-based reasoning framework laid out in (Günther et al. 2012).

5 Outlook

In its first year of activities, the RACE project has defined an architecture and KR framework for integrating multiple types of knowledge and multiple reasoners. We believe that these will provide an ideal substrate to address the next grand challenge of RACE: making robots autonomously record, analyse and learn from their experiences.

References

Cohn, A. G.; Renz, J.; and Sridhar, M. 2012. Thinking inside the box: A comprehensive spatial representation for video analysis. In Proc. of KR.

Dubba, K.; Cohn, A.; and Hogg, D. 2010. Event model learning from complex videos using ILP. In ECAI, 93–98.

