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ABSTRACT : In modern building construction floor spans are becoming longer 
and one way of achieving this is to use composite beams. In order to minimize the 
structural depth of the composite sections, and to produce lighter members for 
economy reasons, steel perforated beams are designed to act compositely with the 
floor slab in an Ultra Shallow Floor Beam (USFB). In the USFB the concrete slab 
lies within the steel flanges and is connected through the web opening, providing 
enhanced longitudinal and vertical shear resistance. There is an additional benefit 
in increased fire resistance. The aim of this project is to investigate, through finite 
element simulations and suitable tests, the contribution of concrete in composite 
cellular beams in resisting vertical shear when the concrete slab lies between the 
flanges of the steel section. The concrete between the flanges provides the load 
path to transfer the shear force. For the computational approach to the problem, a 
three-dimensional Finite Element (FE) model was created, in which contact 
elements were implemented at the interface of the concrete and steel. In an earlier 
experimental study, four specimens of composite beams of similar concrete 
strength were tested under monotonic loading in order to produce reliable results. 
One specimen was from a lower grade of concrete and was tested in order to 
calibrate the shear resistance and the failure mode. One bare steel perforated 
section with web openings was also tested as a comparison. The comparison 
between the experimental and the computational results leads to useful 
conclusions. The results for the composite beams show a significant increase in 
shear resistance. The shear enhancement demonstrated in this study can now be 
used in design practice.  
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placed under the tension steel flange. Strain gauges were used only for the bare 
steel beams and were recorded for monitoring purposes and for comparison with 
the FE model.  
 
 

 

Figure 3. Test specimen configuration. 
 
 
The steel section adopted for all tests was the UB305x165x40 of steel grade S275, 
with a web opening diameter, do, equal to 0.76 times the beam section depth. The 
distance between the openings and the support centre-line is equal to 1.3do and the 
beam is symmetrical about the mid-span centre-line. Five tests were conducted - 
three composite beams with similar concrete strengths at 14 days of curing, one 
with similar strength but after 52 days of curing (lower grade concrete) and a bare 
steel perforated beam. The specimens did not contain any reinforcement. A steel 
yield stress, fy, of 318.25 MPa was taken from an average of several tensile 
coupon tests.  The compressive concrete cubes’ strength of all specimens are 
shown in “Table 1” together with the failure loads from the tests. 
 

Table 1. Test results. 

Specimen 
USFB 

No.1

USFB 

No.2

USFB 

No.3

USFB 

No.4

Bare 

Steel 
14-Day Compressive 
Strength of Concrete, 

fcu, (MPa) 
27.9 26.8 25.3 

25.6 (@ 

52-Day) 
N.A. 

Ultimate Load 
Carrying Capacity 

fult., (kN) 
605 613 595 594 274 
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COMPUTATIONAL FE STUDY 
 
Introduction 

The analysis of general composite beams in flexure suggests that there is a close 
agreement between the test results and those from numerical simulations. For 
deeper beams working in flexure and shear where the contact surface is wider, 
there is a larger difference between predictions and test results, indicating that the 
problem is more complex. The use of FEM analysis to investigate the complex 
failure modes of USFBs is therefore appropriate as the problem is very complex.  
The model can be also used for further parametric studies. The ANSYS v11.0 FE 
programme was used in the analysis. 
 
FE Model 

A three-dimensional model was created with a fine mesh consisting of 68,569 
elements. Regarding crack modelling in concrete, several researchers have studied 
the effect of element size in the nonlinear analysis of reinforced concrete 
structures (Shayanfar et al., 1997; Choi & Kwak, 1990), and they have shown that 
the results are indeed dependent on the finite element mesh size. Symmetry was 
used in the modelling; however, in the case of symmetry at mid-span, the way that 
the supports are modelled greatly affects the behaviour of the model, and in 
particular the position of the concrete cracks. Modelling of boundary conditions is 
often the most critical aspect in achieving sensible, reliable data from a finite 
element model (Baglin & Scott, 2000). As long as the load and the supports are 
applied on the steel beam and not on the concrete, the force can be applied 
directly on specific areas representing the loading plate and the roller supports. In 
order to avoid stress concentration problems and highly distorted elements, the 
load was applied as a pressure on an area and the supports modelled as restrictions 
of the degrees of freedom on areas. 
 
It should be noted that in the analysis, no local buckling was allowed in the steel 
sections of the composite beams and hence the steel section is either plastic or 
compact. The structural configuration (i.e. two web openings well apart of each 
other) avoids failure of the beam by web-post buckling. This was confirmed by 
the experimental study. 
 
Element and Material Models 

Concrete: SOLID65 elements were used to model the concrete in ANSYS. The 
element is capable of plastic deformation and cracking in three orthogonal 
directions. These elements predict the non-linear behaviour of concrete materials 
using a smeared approach (William & Warnke, 1975) which has been adopted 
widely in recent years. It allows the elastic-plastic response of the reinforcement 
to be included in simulation. As no reinforcement is provided in the actual 
experiment, default values were kept for smeared reinforcement. Cracking and 
crushing are determined by a failure surface. The tensile strength is typically 8-
15% of the compressive strength (Kachlakev, 2002). The ultimate concrete 
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compressive and tensile strengths for each beam model were calculated using 
similar constitutive formulas published by various researchers. Herein, the 
concrete in compression was modelled as an elastic-plastic material both with and 
without strain softening in order to have a better comparison with the 
experimental work (“Table 2”).    
 
Steel: Typical SOLID45 elements were used to model the steel perforated beam 
with circular web openings. Steel was modelled as an elastic-plastic material with 
strain hardening and a bi-linear stress-strain relationship for both compression and 
tension. The Young’s Modulus and the Poisson’s Ratio of steel are taken as 
205GPa and 0.3 respectively, while the values of yield and ultimate strengths used 
in the analysis were found after calibration against the experimental results and 
are shown in “Table 2”. An ultimate strain of around 0.25 was assumed for mild 
structural steel (Liang et al., 2005).  
 
Shear Transfer Coefficient, β1,2: Also called shear retention factor, it varies 
between ‘0’; for no aggregate interlock and ‘1’ for full aggregate interlock. 
Various shear transfer coefficients were used in this study for both open and 
closed cracks. High values were entered for the closed crack (e.g. 0.9, 1.0) so as to 
prevent possible fictitious crushing of the concrete before proper load transfer 
could occur through a closed crack.  
 
Friction Coefficient, μ: No slip between concrete and steel was observed in the 
actual tests even after final failure was reached. Hence, a value of 1.0 (i.e. perfect 
bonding between steel perforated section and concrete) should be used for friction 
coefficient between the steel and concrete surface modelled in ANSYS. However, 
values from 0.0 to 0.9 were used in order to compare the results. The results 
showed an increase of stiffness in the strain results of the compressive top flange 
for beam with higher bond, but in the tensile flange the stiffness are almost 
identical. The reason for this could be the cracking of concrete in tensile zone 
which starts very early during the loading period.  
 
Solution Method: The full Newton Raphson procedure was mainly used, even 
though this required the stiffness of the structure to be recalculated for each 
iteration. This procedure proved to be generally economical because much larger 
incremental steps were found to be possible. The automatic load control scheme 
was also employed.  

 
Discussion and Comparison of Results 

Good correlation between the test and numerical solutions depends on the 
assignment of accurate linear and non-linear material properties for both 
materials. (Liang et al., 2005; Parvanova et al., 2004; Kaewunruen & 
Remennikov, 2006). The parametric study was performed and a number of 
numerical solutions were analysed in order to evaluate the sensitivity of the 
various parameters. Various concrete compressive strength values were used in 
order to investigate the shear capacity enhancement of the composite beams. In 
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addition, the concrete tensile strength was varied taking into consideration the 
mesh size of concrete finite element and value of fracture energy, Gf. Also, 
various values of concrete Poisson’s ratio, v, were examined, as they are related to 
the condition (i.e. quality) of concrete. In order to simulate the experimental 
composite beam accurately, a steel yield stress with a reduction of 10.5 to 16.8% 
compared to average web-flange yield stress values, was used in most of the FE 
analyses performed. It can be seen that the ultimate capacity of the composite 
beams is governed by the steel strength.  
  
The ultimate loads obtained from the parametric study were summarised in “Table 
2” and presented in categories according to concrete compressive strength. The 
concrete cylinder strength fc=21.12MPa was also examined as it is the average 
value of the cube compressive concrete strength from four different USFB 
specimens, as they have reported by Tsavdaridis et. al (2009). The loads reported 
were the last applied load steps before the solution diverges due to the numerous 
cracks and large deflections. As a comparison, the ultimate load of the 
experimental beams was around 600kN.  
 

Load Vs Deflection Relationships 

Deflections are measured at mid-span at the centre of the bottom face of the 
beams. The results are satisfactorily correlated with the experiments where it is 
found that up to the ultimate load level no significant steel deflection occurred. 
Thereafter, the yielding of the steel explains the large concrete strains following 
the formation of large cracks, while a considerable drop in the load capacity is 
observed. It should be mentioned that at the lower the concrete compressive 
strength, the more cracks developed, although the capacity of the USFB did not 
change significantly. In the experiments large steel deflections ensue once the 
post-elastic curvature has occurred. The last descending branch of the load-
deflection curve corresponds to a ‘failure mechanism’. In the experimental work, 
failure was accompanied by wide intensive diagonal concrete crushing with the 
concrete pulling away from the steel section. This part of the load-deflection curve 
was not modelled as it needs significant computation effort and it is beyond the 
scope of this research study.  Comparison of the load-deflection curves of some 
FE models presented in “Table 2” against the experimental test USFB No.1 are 
shown in Figure 4.    
 
The finite element load-deflection curves and their stiffness correlate closely with 
the experimental curves. Observing the load-deflection behaviour of USFB it is 
noticed that when the first bending cracks were developed the curve become 
suddenly flat. However, while monitoring the experiment a smooth curve is 
observed. According to Parvanova et al. (2004) the ANSYS cracking model 
option does not fully include tensile stress relaxation, as the fracture energy 
parameter, Gf, is not included in the model as an important material constant.     
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Table 2. Material Parametric study of USFBs. 

Steel Cont. Concrete Results Run 

fy 

(MPa) 

fult. 

(MPa) or 

ETan. 

μ 
fc 

(MPa) 

ft 

(MPa) 
ν β1,2 

Refer. 

Theory

Based 

Failure 

Load 

(kN) 

Code 

No. 

ULTRA SHALLOW FLOOR BEAM 

265* 410  1.0 26.70 1.86 0.20 0.3,1.0 † 617 59 

265* 410  1.0 26.70 1.86 0.17 0.3,1.0 † 627 3 

265* 410  0.8 26.70 1.86 0.17 0.3,1.0 † 611 7 

265* 410  0.3 26.70 1.86 0.17 0.3,1.0 † 548 8 

265* 410  1.0 26.70 1.86 0.15 0.3,1.0 † 547 58 

265* 410  1.0 26.70 1.86 0.15 0.6,0.6 † 555 16 

265* 410  1.0 26.70 1.86 0.15 0.1,0.9 † 607 18 

275** ETan.=200  0.8 26.70 1.86 0.15 0.1,0.9 † 618 25 

265* 410  1.0 26.70 1.86 0.15 1.0,1.0 † 635 19

265* 410  1.0 26.70 1.86 0.00 1.0,1.0 † 648 20 

355* 530  1.0 26.70 1.86 0.20 0.3,1.0 † 617 11 

355* 530  1.0 26.70 1.86 0.17 0.3,1.0 † 590 12 

355* 530  0.0 26.70 1.86 0.17 0.3,1.0 † 470 13 

265* 410  1.0 32.00 3.083 0.15 0.3,1.0 § 629 31 

265* 410  0.8 32.00 3.083 0.15 0.3,1.0 § 615 32 

265* 410  0.5 32.00 3.083 0.15 0.3,1.0 § 565 33 

265* 410  0.9 32.00 3.524 0.2 0.3,1.0 ¥ 588 C1 

275* 410  0.9 32.00 3.524 0.2 0.3,1.0 ¥ 611 C4 

285* 350  0.9 32.00 3.524 0.2 0.3,1.0 ¥ 641 C5 

285** ETan.=20  0.9 32.00 3.524 0.2 0.3,1.0 ¥ 622 C6 

355* 499  0.9 32.00 3.524 0.2 0.3,1.0 ¥ 742 B1 

275* 410  0.9 20.00 2.786 0.2 0.3,1.0 ¥ 577 B5

275* 410  0.6 20.00 2.786 0.2 0.3,1.0 ¥ 563 B6 

355* 499  0.9 20.00 2.786 0.2 0.3,1.0 ¥ 730 B2 

355** ETan.=20  0.9 20.00 2.786 0.2 0.3,1.0 ¥ 734 B3 

355* 530  0.9 20.00 2.786 0.2 0.3,1.0 ¥ 733 B4 

275* 410  0.9 21.12 1.839 0.3 0.3,1.0 # 545 B9 

275* 410  0.9 21.12 2.863 0.2 0.3,1.0 ¥ 584 B10 

275* 410  0.4 21.12 2.863 0.2 0.3,1.0 ¥ 508 C8 

275* 410  1.0 21.12 2.863 0.2 0.3,1.0 ¥ 591 B11 

STEEL PERFORATED 

318.25* 430  --- --- --- --- --- --- 352 75 

265* 410  --- --- --- --- --- --- 331 60 

355** ETan.=2000  --- --- --- --- --- --- 352 61 

*MISO – Multi-linear Isotropic Hardening Plasticity is adopted 

**BISO – Bi-linear Isotropic Hardening Plasticity is adopted 
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Figure 4. Force-deflection curves comparison between experimental test (USFB No.1) 
and various numerical solutions from “Table 2”. 
 
 
Crack Patterns for Concrete – Failure Mode 

As it is aforementioned many numerical tests were performed simulating this 
particular composite beam using different constitutive options and parameters. It 
can be seen that the flexural and the diagonal (flexural-shear) cracks affect the 
failure mode and the ultimate load carrying capacity. In Figure 5 the crack 
development is shown at four different load steps in order to show the crack 
propagation.  
 
Nonlinear numerical solutions were capable of replicating the full range cracks 
including the pure flexural, flexural shear and the critical shear crack. Smeared 
cracks are spread over the high shear stress region and occur mostly at the ends of 
the beam between the support and loading area (Figure 6). The path of shear 
cracks follows the trajectory of the principal stresses and can also be seen in the 
experimental study. The finite element program accurately predicts that the 
composite beams fail in shear and also numerous cracks occur at mid-span rather 
than underneath the loading location.  
     
Analytically, diagonal shear failure begins with the development of few vertical 
flexural cracks at the mid-span, followed by a destruction of the bond between the 
bottom steel flange and the concrete. A critical shear diagonal crack develops in 
the vicinity of the web opening of the steel perforated beam.  
 
Finally, the slip between steel and concrete, when using a value other than 1 for 
the friction coeficient, is obtained together with the contact surface condition for a 
typical USFB subjected to flexural loading and are presented in Figure 7.   
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CONCLUSIONS 
 

The results of the ANSYS FE analyses generally show very well agreement with 
observations and data from the experimental full-scale beam tests conducted 
previously by the authors at City University London. The parametric study 
conducted, and the variation of parameters illustrates how the Ultra Shallow Floor 
Beam behaves. These FE models can now be used in further studies to develop 
design rules for USFBs.  
 
Based on the analytical study presented in this paper, the following conclusions 
can be drawn:  
 
• Due to the concrete infill the ultimate vertical load carrying capacity of the 

USFBs doubled when compared to the corresponding bare steel beam. 

• The results agree with the experiments in that in composite beams the 
concrete fails first before any significant distortion of steel web occurs. 

• All cracks in the FE analysis seem to develop at a higher load compare to 
that observed in the experiments. This was probably due to micro-cracks 
in the experimental specimens. 

• Whilst the concrete compressive strength affects the strength of the 
USFBs, the ultimate load carrying capacity is dominated by the steel 
strength. 

• Numerous researchers have published different constitutive formulas that 
model the concrete material properties. A sensitivity study of these 
constitutive relations found that they affect the load carrying capacity of 
USFBs differently.   

• The values of these material parameters and some “correction” factors 
were obtained to accurately simulate the experimental tests for USFBs.   

• The shear resistance of USFB section with perforated steel section with 
large web openings and without reinforcement consists of contributions 
from the concrete in compression and aggregate interlock. 

• USFBs behave as fully bonded composite elements and this correlated 
well with experiments. 

 
 

REFERENCES 
 

ANSYS (2009), User’s Manual Revision 11, ANSYS, Inc., Canonsburg, PA 

BS EN 197: Part 1: 2000. Cements. Composition, specifications and conformity 
criteria for common cements, BSI, UK, (2000)  

Clawson, W.C. & Darwin, D., “Tests of composite beams with web openings”. J. 
Struct. Div. ASCE, Vol. 1, No 108 (1982) 145-162 



 12

Darwin, D. & Donahey, R.C., “LRFD for composite beams with unreinforced 
web openings”. J. Struct. Div. ASCE, Vol. 3, No 114 (1988) 535-552 

Donaheym, R.C. & Darwin, D., “Web openings in composite beams with ribbed 
slabs”. J. Struct. Div. ASCE, Vol. 3, No 114 (1988) 518-534 

Hirst, M.J.S. & Yeo, M.F., “The analysis of composite beams using standard 
finite element programs”. Comput. Struct., Vol. 3, No 11 (1980) 223-237 

Narayanan, R., Al-Amery, R.I.M. & Roberts, T.M., “Shear strength of composite 
plate girders with rectangular web cut-outs”. J. Constr. Steel Res., Vol. 2, No 12 
(1989) 151-166 

¥ Kachlakev D. & Miller T., “FE Modeling of Reinforced Concrete Structures 
Strengthened with FRP Laminates”, Oregon State University, Department of 
Transportation, Final Report SPR 316 (2001)   

# Kaewunruen, S. & Remennikov, A., “Nonlinear finite element modelling of 
railway prestressed concrete sleeper”, in Proceedings of the 10

th
 East Asia-Pacific 

Conference on Structural Engineering and Construction  (Bangkok Thailand 
August 3-5, 2006), Bangkok, Thailand (2006) 323-328 

§ Liang, Q.Q., Uy, B., Bradford, M.A. & Ronagh, H.R., “Strength analysis of 
steel-concrete composite beams in combined bending and shear”, J. Struct. Eng., 
Vol. 131, No  10 (2005) 1593-1600 

† Parvanova, S.P., Kazakov, K.S., Kerelezova, I.G., Gospodinov, G.K. & Nielsen, 
M.P., “Modelling the nonlinear behaviour of R/C beams with moderate shear span 
and without stirrups using ANSYS”, Faculty of Civil Eng., Sofia, Research for the 
National Science Fund under the contract № TH-1406/04, Techical Report (2004)    

Roberts, T.M. & Al-Amery, R.I.M., “Shear strength of composite plate girders 
with web cutouts”. J. Struct. Eng., Vol. 7, No 117 (1991) 1897-1910 

Tsavdaridis, K. D. "Failure modes of composite and non-composite perforated 
steel beams sections with various shapes and sizes of web openings", PhD thesis 
in preparation (supervised by Dr. C. D’Mello), School of Engineering and 
Mathematical Sciences, City University, London, (2010)  

Tsavdaridis, K.D., D’Mello, C. & Hawes, M., “Experimental study of ultra 
shallow floor beams with perforated steel sections”, 11

th
 Nordic Steel 

Construction Conference (Malmö Sweden September 2-4, 2009) NSCC2009 
Press, Malmö, Sweden (2009) 

Wang, A.J. & Chung, K.F., “Advanced finite element modelling of perforated 
composite beams with flexural shear connectors”. J. Struct. Eng., Vol. 30, No 10 
(2008) 2724-2738 

William, K.J., & Warnke, E.P., “Constitutive model for triaxial behaviour of 
concrete”, in Proceedings of International Association of Bridge and Structural 
Engineering Conference (Bergamo Italy, 1974) ISMES Press, Bergamo, Italy 
(1974) Vol.19., 174   


