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On the influence of a translating inner core in models of outer core

convection

C. J. Daviesa,∗, L. Silvaa, J. Mounda

aSchool of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK

Abstract

It has recently been proposed that the hemispheric seismic structure of the inner core can
be explained by a self-sustained rigid-body translation of the inner core material, resulting
in melting of the solid at the leading face and a compensating crystallisation at the trailing
face. This process induces a hemispherical variation in the release of light elements and
latent heat at the inner-core boundary, the two main sources of thermochemical buoyancy
thought to drive convection in the outer core. However, the effect of a translating inner
core on outer core convection is presently unknown. In this paper we model convection
in the outer core using a nonmagnetic Boussinesq fluid in a rotating spherical shell driven
by purely thermal buoyancy, incorporating the effect of a translating inner core by a time-
independent spherical harmonic degree and order 1 (Y 1

1 ) pattern of heat-flux imposed at the
inner boundary. The analysis considers Rayleigh numbers up to 10 times the critical value for
onset of nonmagnetic convection, a parameter regime where the effects of the inhomogeneous
boundary condition are expected to be most pronounced, and focuses on varying q∗, the
amplitude of the imposed boundary anomalies. The presence of inner boundary anomalies
significantly affects the behaviour of the model system. Increasing q∗ leads to flow patterns
dominated by azimuthal jets that span large regions of the shell where radial motion is
significantly inhibited. Vigorous convection becomes increasingly confined to isolated regions
as q∗ increases; these regions do not drift and always occur in the hemisphere subjected to a
higher than average boundary heat-flux. Effects of the inner boundary anomalies are visible
at the outer boundary in all models considered. At low q∗ the expression of inner boundary
effects at the core surface is a difference in the flow amplitude between the two hemispheres.
As q∗ increases the spiralling azimuthal jets driven from the inner boundary are clearly
visible at the outer boundary. Finally, our results suggest that, when the system is heated
from below, a Y 1

1 heat-flux pattern imposed on the inner boundary has a greater overall
influence on the spatio-temporal behaviour of the flow than the same pattern imposed at
the outer boundary.
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1. Introduction1

Free thermal convection of the inner core, driven by either radiogenic heating (Jeanloz2

and Wenk, 1988) or secular cooling (Buffett, 2009), has been proposed to explain the ob-3

served cylindrical anisotropy in inner core P-wave velocity (Morelli et al., 1986; Woodhouse4

et al., 1986). For this proposition to be viable the inner core must be (at least partially)5

unstably stratified. Such a stratification may arise if the inner core temperature gradient6

exceeds the adiabatic gradient at the relevant pressure-temperature conditions; previous7

models suggest this may be true at present and was more likely in the past (Buffett, 2009;8

Deguen and Cardin, 2009, 2011). Recent work suggests that the thermal conductivity of9

the outer core is significantly higher than previously thought (Pozzo et al., 2012; de Koker10

et al., 2012), which may affect the viability of thermal inner core convection, although these11

calculations pertain to the liquid phase only. Another possibility is that the inner core is12

compositionally unstable, which may arise if the amount of light element that remains in the13

solid on freezing decreases with time (Deguen and Cardin, 2011; Alboussière and Deguen,14

2012). In reality the net inner core density gradient is determined by a combination of15

thermal and chemical effects. Uncertainties in key parameters such the cooling rate at the16

inner core boundary (ICB), the core-mantle boundary (CMB) heat-flux, and the partition17

coefficients of the various light elements in the core prevent an unequivocal determination18

of the inner core stratification and so inner core convection remains a realistic possibil-19

ity. If the inner core does convect the preferred model likely depends on the bulk viscosity20

(Deguen and Cardin, 2011). If the viscosity is sufficiently large the inner core could un-21

dergo a translational mode of convection involving an eastward drift of inner core material22

(Monnereau et al., 2010; Alboussière et al., 2010). This mode has been used to explain an23

observed asymmetry in seismic velocities between eastern and western hemispheres (Tanaka24

and Hamaguchi, 1997; Niu and Wen, 2001; Waszek et al., 2011) and the existence of a seis-25

mically slow layer in the bottom ∼ 150 km of the outer core (Souriau and Poupinet, 1991;26

Kennett et al., 1995; Zou et al., 2008).27

Convection in the outer core is driven by a combination of thermal and chemical buoyancy28

forces that in turn result from the Earth’s slow cooling (e.g. Buffett et al., 1996; Gubbins29

et al., 2003, 2004). These buoyancy forces are likely to be strongest near the base of the30

outer core (Davies and Gubbins, 2011) where inner core growth due to freezing of the liquid31

iron alloy releases latent heat (Verhoogen, 1961), and a light component of the outer core32

mixture, probably oxygen (Alfè et al., 1999), remains in the liquid to provide a source of33

compositional buoyancy (Braginsky, 1963). Models of outer core convection usually assume34

that light element and latent heat release at the ICB are spherically symmetric and that35

convection is driven uniformly from below (e.g. Braginsky and Roberts, 1995; Anufriev36

et al., 2005); however, the translational mode of inner core convection requires freezing in37

the western hemisphere and melting in the eastern hemisphere (Monnereau et al., 2010;38

Alboussière et al., 2010). The asymmetry arises because the eastward drift of inner core39

material induces a west to east density gradient with heavy material on the freezing western40

side; hydrostatic adjustment shifts the centre of mass of the inner core eastward so that the41

eastern part of the inner core is above the melting temperature, leading to localised melting42
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(Alboussière et al., 2010). Outer core convection is then driven non-uniformly from below:43

in the western hemisphere, release of latent heat and light elements create outward buoyancy44

fluxes that drive convection; in the eastern hemisphere, latent heat is absorbed and no light45

elements are released, thereby creating a negative buoyancy flux.46

In this paper we investigate the possible influence of a translating inner core on outer47

core convection using a simple model of a rotating fluid-filled spherical shell. To incorporate48

hemispherical variations induced by a translating inner core we note that the turnover time49

of outer core convection, τc = d/U ∼ 102 yrs (Gubbins, 2007), is much shorter than both the50

turnover time of the translational mode, τic = l/vt ∼ 108 yrs, and the timescale for inner core51

growth τg = l/vg ∼ 109 yrs (Labrosse et al., 2001). Here d is the outer core shell thickness,52

U a characteristic outer core velocity, l the inner core radius, vt ∼ 10−10 m s−1 (Alboussière53

et al., 2010) a characteristic translational velocity and vg ∼ 10−11 m s−1 a characteristic54

inner core growth rate. We therefore assume that, on the timescales associated with outer55

core convection, both the ICB and the thermochemical anomalies resulting from translation56

are stationary and can be modelled as a time-independent bottom boundary condition in the57

outer core convection simulation. We further assume that this boundary condition takes the58

form of a fixed flux. The outer core is well-mixed on timescales associated with inner core59

convection, implying that the latter should be modelled with an isothermal and chemically60

homogeneous ICB. Outer core convection must then respond to lateral variations in thermal61

and chemical fluxes at the ICB induced by the translating inner core. The bottom boundary62

condition is specified by the pattern and amplitude of thermochemical flux.63

In this paper we approximate the pattern of hemispherical melting and freezing by a Y 1
164

spherical harmonic. The amplitude of the anomaly is measured by q∗, the ratio of the peak-65

to-peak variation and the average flux through the boundary (see §2 for the mathematical66

definition). Estimates of q∗ for the Earth are highly uncertain. The thermal contribution67

depends on physical properties of the inner and outer cores, some of which are known to68

within a factor of 3 at the relevant pressure-temperature conditions (Stacey, 2007), and69

gross quantities such as the CMB heat-flux, which can only be estimated to within a factor70

of 3–4 at present (Lay et al., 2009) and vary significantly over time (e.g. Nimmo et al.,71

2004; Nimmo, 2007). The chemical contribution depends on the relative abundance of light72

elements in both cores (i.e on the part of the ICB density jump not due to the phase change)73

and on mixing properties of the core alloy, which are likely to be non-ideal (Helffrich, 2012)74

and exhibit complex dependencies on partition coefficients (Alboussière et al., 2010; Deguen75

and Cardin, 2011).76

A simple estimate of q∗, q∗e , can be obtained by neglecting chemical effects and assuming77

that the only thermal buoyancy source at the ICB is latent heat (thus neglecting secular78

cooling and the effect of the adiabat, both of which are likely to be smaller than the latent79

heat (Davies and Gubbins, 2011)). The average ICB heat-flux per unit area, qL, is then80

(Gubbins et al., 2003)81

qL = ρiL
dri

dt
= ρiLvg, (1)

where ri is the ICB radius, ρi the inner core density, and L the latent heat. An expression82

for the maximum heat-flux is obtained by replacing vg with the translation velocity, vt, in83
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(1). Assuming that the absolute value of the maximum and minimum heat-flux anomaly84

are equal gives the estimate85

q∗e =
2vt

vg

. (2)

Using values from Alboussière et al. (2010) gives present-day estimates in the range 1 . q∗e .86

30 for a CMB heat-flux ranging from 8–11 TW. We vary q∗ in our simulations to exhibit87

the dependence of the convection on this parameter.88

This paper is organised as follows. In §2 we describe the numerical model used to89

simulate convection in the outer core. In §3.1 we present models with a laterally-varying90

Y 1
1 inner boundary condition and a spherically symmetric outer boundary condition. We91

discuss the changes in spatio-temporal behaviour that emerge as q∗ is varied and conduct a92

detailed analysis of the mechanisms that drive large-scale flows in our models. In §3.2 we93

briefly discuss models with a laterally-varying Y 1
1 outer boundary condition and a spherically94

symmetric inner boundary condition and compare to the results obtained in §3.1. Discussion95

and conclusions are presented in §4.96

2. Methods97

We consider a model of convection in a rotating spherical shell that incorporates lateral98

variations in the thermodynamic boundary conditions. A Boussinesq fluid of constant ther-99

mal diffusivity, κ, constant coefficient of thermal expansion, α, and constant viscosity, ν, is100

confined to a rotating spherical shell of thickness d = ro − ri. Here ri and ro are respectively101

the inner and outer boundary radii in spherical polar coordinates, (r, θ, φ). The fluid rotates102

about the axial z-axis with angular velocity Ω. To relate our results to previous studies and103

to avoid double diffusive effects, which we regard as an unnecessary complication at this104

stage, we consider a chemically homogeneous system heated from below, the analogue of105

outer core convection driven by latent heat release at the inner boundary with no composi-106

tional buoyancy. With no flow, the basic steady state temperature, T0, is maintained such107

that ∇T0 = −(β/r2)r̂, where β measures the amplitude of the basic state radial temperature108

gradient, r is the radial position vector and a hat denotes a unit vector. The total tempera-109

ture field T = T0 + T ′, where T ′ is the deviation from the basic state temperature. Scaling110

length by the shell thickness, d, time by the thermal diffusion time, d2/κ, and temperature111

by β/d, the nondimensional perturbation equations are112

E

Pr

(

∂u

∂t
+ (u · ∇)u

)

+ z × u = −∇P̄ + RaT ′r + E∇2u, (3)

∂T ′

∂t
+ (u · ∇)T ′ = ∇2T ′ + u · (βr−2)r̂, (4)

∇ · u = 0. (5)

The pressure gradient ∇P̄ , is removed from the problem by taking the curl of (3). The113

Ekman number E, Prandtl number Pr, and modified Rayleigh number Ra are114

E =
ν

2Ωd2
, P r =

ν

κ
, Ra =

αgβ

2Ωκ
, (6)
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where g is the gravitational acceleration at the outer boundary. Gravity varies linearly with115

radius. The radius ratio, ri/ro, of the shell is set to 0.35.116

The fluid velocity u is decomposed into toroidal and poloidal components,117

u = ∇× T r + ∇×∇×Pr. (7)

The toroidal, T , and poloidal, P , scalars along with the temperature T ′ are expanded in118

spherical harmonics Y m
l (θ, φ). The radial dependence of all variables is computed using119

finite differences.120

We use no-slip and impenetrable inner and outer boundaries, requiring121

u(ri) = u(ro) = 0. (8)

We also fix the heat-flux on both boundaries. Lateral variations in heat-flux on the inner122

boundary (IB) and outer boundary (OB) are modelled using the method described in (Gib-123

bons et al., 2007). In all models the pattern of the boundary variation is a Y 1
1 spherical124

harmonic. The amplitude of the anomalies is measured by the parameter q∗, defined as125

the ratio of the peak-to-peak variation in boundary heat-flux and the average boundary126

heat-flux127

q∗ =
qmax − qmin

q0

=
2qmax

q0

, (9)

where qmax and qmin are the maximum and minimal values of the boundary anomaly. q0 is a128

nondimensional measure of the average boundary heat-flux per unit area, q0 = (1/r2), and129

is approximately a factor of 8 larger at the IB than at the OB. Hence, to impose the same130

value of qmax at the IB and OB requires that the value of q∗ is 8 times larger in the variable131

OB heat-flux calculation compared to the variable IB heat-flux calculation.132

The governing equations (3)–(5) are solved using a pseudo-spectral method. Detailed133

descriptions of the code are given in Willis et al. (2007) and Davies et al. (2011).134

3. Results135

Table 1 lists all simulations conducted for this work. In order to facilitate comparisons136

and to elucidate the effect of the laterally-varying IB condition, we fix the values of E and Pr137

and vary Ra and q∗. For simplicity we use the value Pr = 1 throughout. The Ekman number138

is the major computational challenge. The lowest value of E used in a numerical simulation139

is ∼ 5×10−7 (Kageyama et al., 2008); very few models have been conducted in this parameter140

regime, which is still many orders of magnitude higher than the value E ∼ 10−15 appropriate141

to Earth’s outer core. We fix E = 10−5, which is low enough for rotation to dominate in142

our calculations but high enough to conduct a suite of simulations run for long enough143

to obtain time-averages that span many time units. At this value of E a linear stability144

analysis (see Gibbons et al. (2007) and Davies et al. (2009) for details) with our chosen145

boundary conditions and value of Pr shows that the most unstable azimuthal wavenumber,146

mc = 9, and the corresponding value of the critical Rayleigh number, Rac = 25.5, for the147

onset of non-magnetic convection with homogeneous boundaries (q∗ = 0). We focus on the148
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parameter range 3Rac ≤ Ra ≤ 10Rac, where we expect the influence of the inhomogeneous149

boundary condition to be most pronounced. If boundary effects are not important in this150

regime we would anticipate that they be less significant in the core where Ra is likely to be151

many times supercritical (Gubbins, 2001; Davies and Gubbins, 2011).152

All simulations were started from the same initial condition with u = 0 and arbitrary153

three dimensional seed perturbations superimposed on the basic state temperature profile.154

The spatial resolution required to achieve a given level of spectral convergence increases with155

Ra. At the lowest values of Ra we found that Nmax = 90 radial points and maximum har-156

monic degree Lmax = 84 produced a drop of four orders of magnitude between wavenumbers157

with highest and lowest energy. At the highest values of Ra, Nmax = 120 and Lmax = 128158

were required to obtain the same convergence.159

For the subsequent discussion we define the dimensionless kinetic energy K = KT +KP ,160

where the toroidal and poloidal components are given respectively by161

KT =
1

2

〈

|∇ × T r|2
〉

,

KP =
1

2

〈

|∇ ×∇× Pr|2
〉

,

and angled brackets indicate a time average over the length of the run quoted in Table 1.162

The zonal part of the toroidal energy, Kz
T , is obtained by retaining only the m = 0 harmonic163

coefficient.164

Our choice of nondimensionalisation means that the Péclet number, Pe = Ud/κ =165
√

2K/Vs, where Vs is the volume of the spherical shell, measures the amplitude of the166

velocity U . With all other parameters fixed, increasing Ra leads to an increase in Pe while167

the ratios KT /K and Kz
T /K remain relatively constant in the parameter range considered168

(Table 1). Increasing q∗ with all other parameters fixed shows a general increase in Pe (see169

also Figure 1), a slight increase in KT /K and little variation in Kz
T /K, which is a small170

fraction of the total energy in all models.171

In the next two sections we analyse the models in Table 1 in detail. In the subsequent172

discussion φ = 0◦ corresponds to the rightmost edge of the equatorial projections and is173

the longitude of minimum heat-flux; the maximum heat-flux is imposed at φ = 180◦. The174

western hemisphere, which is subject to a higher than average heat-flux, is defined as the175

region 90◦ < φ ≤ 270◦ and the eastern hemisphere, which is subjected to a lower than176

average heat-flux, is defined as the region −90◦ < φ ≤ 90◦.177

3.1. Y 1
1 inner boundary condition178

Figure 2 shows four models with Ra = 90 that differ only by the value of q∗. The179

snapshots are taken at time t = 11 of Figure 1a. With homogeneous boundaries (q∗ = 0)180

the familiar pattern of spiralling columnar rolls aligned with the rotation axis, a feature of181

moderate Pr and low Ra convection, is obtained (Zhang, 1992). The prograde drift speed182

of the columns varies with radius and hence the convection is characterised by different183

wavenumbers at different distances from the rotation axis (e.g. Sun et al., 1993; Tilgner184
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and Busse, 1997). The pattern of temperature anomalies in the equatorial plane is well-185

correlated with radial velocity. The m-spectrum of kinetic energy (Figure 1) is characterised186

by a peak at m = 0, and broad peaks around the most unstable mode and its overtones.187

Imposing a Y 1
1 heat-flux variation at the inner boundary significantly alters the large-188

scale flow pattern as q∗ is increased above zero. For Ra = 90 we identify three broad flow189

regimes. For q∗ ≤ 0.6 the homogeneous flow pattern is modulated by the presence of the190

Y 1
1 boundary anomaly. Figure 2 shows that, for q∗ = 0.6, the velocity field in the western191

hemisphere has a higher amplitude and a larger characteristic azimuthal wavenumber than192

in the eastern hemisphere. The columnar rolls drift in the prograde sense in this model,193

but accelerate when passing through the eastern (low heat-flux) hemisphere and decelerate194

when passing through the western hemisphere. Similar behaviour was found by Zhang195

and Gubbins (1993) in a convection model with lateral variations at the OB. Temperature196

anomalies near the IB are predominantly negative in the region 0◦ < φ ≤ 180◦ and positive197

in the region 180◦ < φ ≤ 360◦; a similar phase shift of temperature anomalies with respect198

to the boundary anomalies has been observed in models of convection with lateral OB199

variations (Olson, 2003).200

For 0.6 < q∗ ≤ 1.4 the m = 1 mode becomes dominant in the m-spectrum of the kinetic201

energy (Figure 1) and convection columns are absent in parts of the eastern hemisphere.202

Very weak radial motions are observed between −90◦ < φ ≤ 0◦ as shown in Figure 2 for203

q∗ = 1.4. This region is characterised by strong prograde and retrograde azimuthal jets that204

are established near the IB at φ ≈ 180◦ and spiral outwards, terminating when they reach205

the OB. Strong vertical and radial gradients in azimuthal velocity are evident in the region206

spanned by the jets. The pattern of temperature anomalies is dominated by an m = 1207

component and strong gradients in the region where the jets are formed.208

Finally, for q∗ > 1.4 the flow patterns are almost stationary as suggested by the kinetic209

energy time-series in Figure 1a. Figure 2 for q∗ = 4.2 shows that the azimuthal jets become210

stronger and have greater lateral extent than at lower values of q∗. The amplitude of vertical211

and radial gradients in azimuthal velocity in the region spanned by the jets also increase212

with q∗. Strong upwelling and downwelling regions are visible in the plot of ur near the213

locations where the azimuthal jets are initiated and terminated due to interaction with the214

OB, but away from these regions the radial velocity is very weak. Temperature gradients215

are strong in the region where the azimuthal jets are formed and departures from the basic216

state are significant across broad regions of the shell.217

The large-scale flow patterns described above for q∗ ≥ 1.4 are reminiscent of those found218

by Grote and Busse (2001) and Busse et al. (2003) in simulations of rotating convection219

with homogeneous boundaries. In their models, convection columns are sheared by a strong220

azimuthal zonal (m = 0) flow driven by Reynolds stresses; the zonal flow dominates in large221

regions of the shell where radial motion is severely inhibited. Although a large-scale shear is222

apparent in our models for q∗ ≥ 1.4 there are three factors suggesting that it is driven by a223

different mechanism to that described by Grote and Busse (2001). Firstly, our values of Ra224

are much smaller than those used by Grote and Busse (2001); indeed, with a homogeneous225

IB condition and Ra = 90, Figure 2 shows that convection columns are not confined to a226

particular longitudinal band. Secondly, the region where convection columns are observed in227
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the Grote and Busse (2001) simulations is not fixed in space, in contrast to our models where228

this region remains in the western hemisphere. Finally, our models contain only ∼ 1/10th229

of the total energy in zonal components (Table 1), suggesting that the shear generated by230

large-scale nonzonal flows could greatly exceed shear generated by the zonal flow. We now231

explore these three points in detail by investigating the mechanisms that drive the azimuthal232

flows observed for q∗ ≥ 1.4 (Figure 2). We first consider the azimuthal zonal flow, which we233

denote uz
φ, and then focus on the nonzonal azimuthal flow, which is denoted unz

φ hereafter.234

There are two main driving mechanisms for uz
φ (e.g. Cardin and Olson, 1994; Aubert235

et al., 2003). The first is due to Reynolds stresses arising from the convection columns,236

which drive a zonal flow with cylindrical symmetry that tends to be strongly retrograde237

near the IB (Busse, 1970; Cardin and Olson, 1994) and slightly retrograde (Cardin and238

Olson, 1994) or prograde (Glatzmaier and Olson, 1993) near the OB. The second driving239

force for uz
φ arises because more heat is lost in equatorial regions than polar regions, which240

sets up axisymmetric latitudinal temperature gradients that drive zonal flows with shear in241

the vertical z direction. To distinguish between these two mechanisms we follow Glatzmaier242

and Olson (1993) and define the geostrophic wind as the portion of the zonal flow that243

is uniform in the axial direction and the remainder, which contains vertical shear, as the244

ageostrophic wind. We compute uz
φ by retaining only the m = 0 component of the velocity245

field, and the geostrophic wind, [u]zφ by averaging this flow over z. The averaging operation246

denoted by square brackets is defined by247

[] =
1

2L

∫

−L

L

dz, L =
√

r2
o − s2, (10)

where s = r sin(θ) is cylindrical radius. Figure 3 shows uz
φ and [u]zφ for q∗ = 1.4 and 4.2.248

The zonal flow is westward (retrograde) near the tangent cylinder (the imaginary cylinder249

parallel to the rotation axis that touches the inner core equator) for all values of q∗ including250

q∗ = 0. Near the OB, uz
φ is slightly prograde at mid-latitudes for low values of q∗; for q∗ ≥ 2.8251

the prograde uz
φ at mid-latitudes is approximately half the value of the retrograde flow near252

the IB. These features are also reflected in the profiles of [u]zφ in Figure 3. Increasing q∗253

produces a mild increase in uz
φ, presumably due to nonlinear interaction with the large-scale254

boundary forcing, and also causes an increase in [u]zφ; the ratio [u]zφ/u
z
φ does not show a255

strong dependence on q∗ for the particular Ra we have considered. We conclude that, for256

the models considered, the geostrophic and ageostrophic contributions to the zonal flow are257

comparable.258

Our models contain a large-scale nonzonal azimuthal flow, unz
φ , that dramatically in-259

creases in amplitude as q∗ increases (compare the meridional sections in Figures 2 and 3).260

The variation of uφ with z seen in both Figures suggests a significant thermal wind exists261

in our models, as has been found in other simulations with inhomogeneous boundary condi-262

tions (e.g. Zhang, 1992; Sreenivasan, 2009). Taking the curl of equation (3) with the viscous263

force and acceleration term omitted gives264

∂u

∂z
+ Ra∇× (Tr) −

E

Pr
∇× [(u · ∇)u] = 0; (11)
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omitting the contribution from the divergence of the Reynolds stress (the last term) gives265

the thermal wind balance. Figure 4 shows the terms in (11) and their sum for q∗ = 4.2.266

For this model the first two terms in (11) are over an order of magnitude larger than the267

last term. The remainder after summing terms on the left-hand side of (11) is close to zero268

outside the tangent cylinder as shown in the rightmost column of Figure 4. These results269

imply that a thermal wind balance holds for the model with q∗ = 4.2. Further calculations270

(not shown) indicate that this balance holds well for all models conducted at Ra = 90.271

Sumita and Olson (2002) noted that regions where ∂uφ/∂z > 0 and where |uφ| decreases272

with z imply uφ < 0 if the thermal wind balance applies. Similarly, ∂uφ/∂z > 0 and |uφ|273

increasing with z implies uφ > 0; ∂uφ/∂z < 0 and |uφ| decreasing with z implies uφ > 0;274

∂uφ/∂z < 0 and |uφ| increasing with z implies uφ < 0. The meridional sections shown in275

Figure 5 for q∗ = 4.2 indicate that the above relations are reasonably well-satisfied and276

further calculations for models that contain large-scale azimuthal jets (see Figure 2) give277

similar results. These results suggest that, in the models described above, the dominant278

driving force for the nonzonal azimuthal flow, unz
φ , is a thermal wind. Furthermore, Figure 4279

indicates that a thermal wind is the dominant driving force for the ageostrophic contribution280

to the azimuthal zonal flow, uz
φ.281

Figures 3 and 5 show that changes in sign of uz
φ and unz

φ occur at almost the same (cylin-282

drical) radii in regions where radial flow is weak and azimuthal flow dominates, suggesting283

that shear due to the zonal flow is reinforced by shear due to the nonzonal azimuthal flow284

driven by the inhomogeneous boundary. This explains why convection columns are not con-285

fined to a particular longitudinal band in models with no boundary forcing: shear in the286

zonal flow alone is not strong enough to break down the convection columns. The region287

where the columnar rolls can persist is determined by the amplitude of the shear produced288

by uz
φ and unz

φ . For q∗ ≥ 2.8, ur and unz
φ are both strongest above the maximum IB heat-flux289

at φ = 180◦, but the shear due to the strong unz
φ is sufficient to break down convection290

columns directly east of the maximum heat-flux until unz
φ weakens sufficiently for columns291

to reemerge around φ = 0◦. At lower values of q∗ the unz
φ driven by the thermal wind is292

not strong enough to shear convection columns in the western hemisphere where the high293

heat-flux drives strong radial motions; however, in the eastern hemisphere, the combined294

action of zonal and nonzonal azimuthal flows dominates over the relatively weak radial mo-295

tions. This explains why the region where convection columns persist is always located in the296

hemisphere where the IB heat-flux is higher than the average. Finally, our analysis suggests297

that the large-scale azimuthal flows in the models described above are driven predominantly298

by a thermal wind; Reynold’s stresses play a secondary role.299

For Ra = 150 and Ra = 225 we did not obtain quasi-stationary solutions for any value300

of q∗ considered. Higher values of Ra lead to more energy in small-scales compared to those301

with Ra = 90, but the large-scale features are very similar to those described above for302

Ra = 90. Figure 6 shows time-averaged flow patterns with q∗ = 1.4 and Ra = 90, 150, 225.303

Instantaneous and time-averaged flows for Ra = 90 show the same basic features, as could be304

anticipated by comparing the time-averaged and instantaneous velocity spectra in Figure 1.305

Interestingly, the time-averaged flow for q∗ = 1.4 indicates that upwellings and downwellings306

in the western hemisphere, with a characteristic lengthscale much smaller than that of the307
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imposed boundary anomaly, occur in preferred locations. The superposition of scales in308

flows forced by inhomogeneous outer boundary conditions was noted by Davies et al. (2009).309

Equatorial sections for Ra = 150 and 225 reveal large-scale nonzonal azimuthal flows similar310

to those studied in detail for Ra = 90 and q∗ = 4.2; indeed, applying the same analysis to311

these cases suggests that the mechanisms inferred to drive the zonal azimuthal flow uz
φ, and312

the nonzonal azimuthal flow unz
φ , are the same as those discussed for models with Ra = 90.313

Increasing Ra for fixed q∗ does not change the amplitude of unz
φ significantly, but strengthens314

uz
φ (Table 1) due to increased Reynolds stresses and axisymmetric latitudinal temperature315

gradients. The combined shear due to uz
φ and unz

φ (which are well-correlated as above)316

produces similar large-scale effects at Ra = 150, 225 as for Ra = 90. These results suggest317

that the behaviour described for solutions with Ra = 90 is broadly characteristic of the318

behaviour across the range of Ra considered.319

3.2. Y 1
1 outer boundary condition320

In this section we briefly discuss the effect of imposing a Y 1
1 boundary anomaly at the OB321

with a homogeneous IB. The model parameters are the same as used in §3.1, but we consider322

only Ra = 90 . Simulations were conducted with q∗ = 11.2 and q∗ = 34.2 (see Table 1),323

corresponding to OB anomalies that are equal in magnitude to the IB anomalies imposed in324

the models with q∗ = 1.4 and 4.2 respectively. No quasi-steady solutions were obtained for325

models with Y 1
1 OB anomalies at Ra = 90, unlike models with Y 1

1 IB anomalies where such326

solutions were obtained for Ra = 90 and q∗ ≥ 2.8. Simulations at higher values of Ra were327

not conducted, but quasi-steady solutions are not anticipated based on the results of §3.1.328

Figure 7 shows a snapshot of the flow pattern for Ra = 90 and q∗ = 34.2. Temporal329

variations are most apparent outside the tangent cylinder near the IB, where a sequence of330

columnar rolls reminiscent of the pattern of homogeneous (q∗ = 0) convection (see Figure 2)331

drift predominantly in the prograde sense. A cluster of rolls are located beneath the OB332

under the region of high heat-flux and remain in this location for the length of our simulation333

(6 time units). A previous study (Davies et al., 2009) with an imposed Y 2
2 OB condition334

found two such clusters. These results suggest that the number of clusters is determined335

by the azimuthal wavenumber of the imposed boundary anomaly. Large-scale nonzonal336

azimuthal flows are generated near the OB but do not penetrate all the way to the IB.337

Figure 8 shows the φ-component of the thermal wind balance (equation (11)) for Ra = 90338

and q∗ = 34.2. Both terms are large and tend to balance near the OB; however, the339

amplitude of the thermal wind decreases significantly with depth. Conducting the analysis340

of §3.1 suggests that the large-scale nonzonal azimuthal flows near the OB are driven by the341

thermal wind resulting from the OB heat-flux anomalies; these flows are much stronger than342

those obtained with a Y 1
1 IB condition (see Table 1), which we attribute to the larger surface343

area of the OB giving rise to a stronger thermal wind. Azimuthal flows are much weaker and344

contain more small-scale structure at depth where the thermal wind is weak. This, together345

with the fact that the homogeneous system is driven from below, suggests that the effects346

of OB anomalies do not penetrate far enough into the shell to stop fluid near the IB from347

drifting, as it would do in the absence of boundary anomalies. For this particular model348

it appears that the Y 1
1 OB condition has less overall influence on the spatial and temporal349
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characteristics of the flow than a Y 1
1 IB condition. We attribute this to the fact that, in our350

simulations, the IB condition is imposed in the same location as the buoyancy source for351

free convection.352

4. Discussion and conclusions353

We have performed numerical simulations to investigate the effects of a translating inner354

core on outer core convection. The novel feature of our model is that convection in the355

outer core is driven non-uniformly from below. Many previous studies have investigated the356

effects of laterally-varying outer boundary conditions on rotating convection (e.g. Zhang,357

1992; Zhang and Gubbins, 1993; Davies et al., 2009) and magnetic field generation (e.g.358

Olson and Christensen, 2002; Willis et al., 2007; Sreenivasan, 2009) in spherical shells. By359

contrast, laterally-varying inner boundary conditions have received very little attention, save360

for an investigation into possible long-term asymmetry in the geomagnetic field by Olson361

and Deguen (2012). Studies with laterally-varying outer boundary conditions generally use362

a pattern of boundary anomalies inferred from seismic tomography, a complex combination363

of spherical harmonics, or the largest harmonic in this pattern, which is Y 2
2 . Conversely, the364

large-scale pattern imposed by inner core translation is a spherical harmonic Y 1
1 . Motivated365

by these issues, we used an idealised nonmagnetic model of thermally-driven convection in366

a rotating spherical shell designed to highlight the effects of the imposed Y 1
1 inner boundary367

heat-flux. Nonmagnetic models reduce computational costs, allowing a suite of simulations368

to be conducted, and afford theoretical simplifications compared to geodynamo simulations.369

Our results for the simpler hydrodynamic problem will hopefully guide future research into370

geodynamo models with laterally-varying inner boundary conditions.371

The suite of simulations conducted for this work use an Ekman number that is low enough372

for the dynamics to be rotation-dominated and focus on low Rayleigh numbers, where the373

influence of the boundary condition is expected to be prominent. Higher Rayleigh numbers374

could lead to a weakening of boundary effects at the values of q∗ (which measures the375

amplitude of boundary anomalies) used in this work, but higher values of q∗ may lead to376

significant boundary effects even when the Rayleigh number is highly supercritical. Such a377

regime cannot be ruled out given the significant uncertainties in the value of q∗ appropriate378

for the Earth.379

In our models, increasing q∗ with all other parameters fixed leads to significant changes in380

the large-scale flow pattern compared to the solution with a homogeneous inner boundary381

(q∗ = 0). The most striking feature is the development of spiralling azimuthal jets that382

span large portions of the shell. Radial motion tends to be weak where the azimuthal jets383

are strong. Vigorous convection becomes increasingly confined to localised regions as q∗384

increases; these regions do not drift and are always located in the hemisphere where the385

boundary heat-flux is higher than the average.386

We explored the processes responsible for generating the localised regions of convection387

that emerge at large q∗, focusing on shear generated by the large-scale zonal and nonzonal388

azimuthal flows. Zonal flows generally account for only a small fraction of the total kinetic389

energy in our models, partly due to our use of no-slip boundary conditions (Christensen,390
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2002) and partly due to choice of relatively low Ra. The energy in the zonal flow remains a391

small fraction of the kinetic energy for all values of q∗ considered. Large-scale nonzonal az-392

imuthal jets significantly increase in amplitude with q∗ and tend to dominate the zonal flows393

when the boundary forcing is strong. Our analysis suggests that the large-scale nonzonal394

azimuthal jets are driven by a thermal wind resulting from the boundary anomalies and that395

the shear generated by these jets leads to the destruction of columnar convection rolls (that396

would otherwise exist in the absence of boundary anomalies) in regions where the shearing397

flow is much greater than the amplitude of the radial flow. Thermal winds were found to be398

more important for driving large-scale flows than Reynold’s stresses at high values of q∗.399

Applying a Y 1
1 heat-flux pattern at the outer boundary, with a spherically symmetric400

inner boundary, appears to exert a weaker influence on fluid far from the inhomogeneous401

boundary compared to a model with the same parameter values and a Y 1
1 inner boundary402

condition. We suggest that this occurs in the model because outer boundary effects are403

weakest where the buoyancy force driving homogeneous convection is strongest. Models404

with inhomogeneous inner and outer boundaries designed to simulate outer core-mantle and405

outer core-inner core interactions are needed to further explore this potentially significant406

result.407

The effects of the inner boundary condition are visible in instantaneous and time-averaged408

surface flows even for low values of q∗. Figure 9 shows that the surface expression of the409

lateral inner boundary anomalies is an amplitude difference between the flow in the eastern410

and western hemispheres. The amplitude difference increases with q∗. At the highest values411

of q∗ there is a clear signature of the large-scale azimuthal flows that are generated near412

the inner boundary and spiral outward. Close correspondence between magnetic and non-413

magnetic flows found in models with laterally-varying outer boundary conditions (e.g. Willis414

et al., 2007) raise the possibility that flows of this type may arise in geodynamo models.415

This may be the case if the Lorentz force does not significantly alter the largest scales of416

the flow.417

Our principle conclusion is that the presence of thermal inner boundary anomalies can418

significantly affect the dynamics of convection in a rotating spherical shell. This result419

appears consistent with the models of Olson and Deguen (2012), which include the effect420

of a magnetic field but operate at lower rotation rates than those considered here. Future421

work is needed to assess the role of laterally-varying thermal inner boundary conditions at422

rapid rotation rates with the inclusion of the magnetic field.423
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Ra q∗ Pe KT (KT /K) Kz
T (Kz

T /K)

90 0 38.6 8851 (0.82) 1529 (0.14)
90 0.3 37.2 8162 (0.81) 1258 (0.12)
90 0.6 39.1 9093 (0.82) 1342 (0.12)
90 1.4 45.1 12534 (0.84) 1571 (0.10)
90 2.8 58.2 21689 (0.88) 4014 (0.16)
90 4.2 62.2 24784 (0.88) 4372 (0.16)
90* 11.4 62.8 23972 (0.83) 3814 (0.13)
90* 34.2 79.5 40287 (0.87) 15653 (0.34)
150 0 65.6 26125 (0.83) 3362 (0.11)
150 0.3 65.3 25869 (0.83) 3555 (0.11)
150 0.6 70.1 30392 (0.85) 4855 (0.14)
150 1.4 73.4 33677 (0.86) 5659 (0.14)
150 2.8 77.8 38179 (0.86) 6656 (0.15)
150 4.2 81.8 42048 (0.86) 7881 (0.16)
225 0.3 90.5 48935 (0.82) 7538 (0.13)
225 0.6 89.0 47127 (0.82) 7125 (0.12)
225 1.4 94.2 53996 (0.83) 7811 (0.12)
225 2.8 102.3 64679 (0.84) 11481 (0.15)

Table 1: Convection simulations used in this work. All simulations use Pr = 1 and E = 10−5. Ra is
the Rayleigh number based on the average boundary heat-flux. All models employ a Y 1

1
inner boundary

condition and a spherically symmetric outer boundary condition except those denoted with an asterisk, which
employ a Y 1

1
outer boundary condition and a spherically symmetric inner boundary condition. Velocity is

measured in units of the Péclet number, Pe = Ud/κ =
√

2K/Vs, where Vs = 14.59 is the nondimensional
volume of the spherical shell. K is the total kinetic energy; KT the toroidal kinetic energy; and Kz

T
the

zonal toroidal kinetic energy. Each run spans six thermal diffusion time units following an initial transient
phase.
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Figure 1: a) kinetic energy plotted against time for different values of q∗ (top). Time is measured in units
of d2/κ. b) and c) kinetic energy as a function of harmonic degree l and order m plotted up to degree and
order l = m = 30 at time t = 11 in a) (solid lines) and averaged over the period of time shown in a) (dashed
lines). Other parameter values are E = 10−5, Pr = 1, Ra = 90. Note that spherical harmonics up to degree
and order 80 were retained in the solutions and spectra are ploted up to l = m = 30 for clarity.
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Figure 2: Snapshots of simulations at t = 11 in Figure 1a. From top to bottom: models with q∗ = 0, 0.6, 1.4
and 4.2. Other parameter values are E = 10−5, Pr = 1, Ra = 90. From left to right: ur in the equatorial
plane; uφ in the equatorial plane; temperature perturbation with the spherically symmetric (Y 0

0
) component

of the spherical harmonic expansion removed; uφ in the meridional plane at φ = 270◦. φ = 0◦ corresponds to
the rightmost edge of the equatorial sections and is the longitude of minimum heat-flux; maximum heat-flux
is imposed at φ = 180◦.
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Figure 3: Snapshots of the azimuthal component of the zonal flow, uz
φ, for q∗ = 1.4 (left) and q∗ = 4.2

(middle). Snapshots of the vertically (z) averaged azimuthal component of the zonal flow, [u]zφ, as a function
of radius for various values of q∗ (right). Snapshots are taken at t = 11 in Figure 1a. Other parameter
values are E = 10−5, Pr = 1, Ra = 90.

Figure 4: Snapshots, taken at t = 11 in Figure 1a, of the θ (top) and φ (bottom) components of equation
(11) for a model with E = 10−5, Pr = 1, Ra = 90, q∗ = 4.2 and a Y 1

1
inner boundary condition. The first

two columns show the thermal wind balance. The plots show ∂uθ/∂z (column 1, top), −(Ra/r sin θ)∂T/∂φ
(column 2, top), ∂uφ/∂z (column 1, bottom) , and (Ra/r)∂T/∂θ (column 2, bottom). Column 3 shows the
θ (top) and φ (bottom) components of the term (E/Pr)∇× [(u ·∇)u] in equation (11). Column 4 shows the
remainder after adding the fields in columns 1–3. All images are volume rendered with the equatorial plane
highlighted for clarity. Boundary layers have been removed from the plots as they are sources of vorticity,
which tend to obscure features in the bulk of the shell.
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Figure 5: Snapshots of the azimuthal component of the nonzonal (m 6= 0) flow, unz
φ , at φ = 180◦ (left), 225◦,

270◦ and 315◦ (right) for q∗ = 4.2. Snapshots are taken at t = 11 in Figure 1a. Other parameter values are
E = 10−5, Pr = 1, Ra = 90.

Figure 6: Time-averaged flows for E = 10−5, Pr = 1 and q∗ = 1.4. ur (top) and uφ (bottom) in the
equatorial plane for Ra = 90 (left), 150 (middle), and 225 (right). Time-averages span 6 time units, which
are measured in units of d2/κ. φ = 0◦ corresponds to the rightmost edge of the plots and is the longitude
of minimum heat-flux; maximum heat-flux is imposed at φ = 180◦.
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Figure 7: Snapshots of ur (left) and uφ (right) in the equatorial plane for Ra = 90 and q∗ = 34.2 with a
Y 1

1
outer boundary condition. φ = 0◦ corresponds to the rightmost edge of the plots and is the longitude

of minimum heat-flux; maximum heat-flux is imposed at φ = 180◦. Other parameter values are E = 10−5,
Pr = 1, Ra = 90.

Figure 8: Snapshots of the φ component of the thermal wind balance (first two terms in equation (11)) for
a model with E = 10−5, Pr = 1, Ra = 90 and q∗ = 34.2 with a Y 1

1
outer boundary condition. The plots

show ∂uφ/∂z (left), (Ra/r)∂T/∂θ (middle), and the remainder after adding the fields in columns 1 and 2
(right). All images are volume rendered with the equatorial plane highlighted for clarity. Boundary layers
have been removed from the plots as they are sources of vorticity, which tend to obscure features in the bulk
of the shell.
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Figure 9: Snapshots (left) and time-averages (right) of uφ in Mollweide projection for Ra = 90 and q∗ = 0.3
(top), Ra = 90 and q∗ = 1.4 (middle) and Ra = 225 and q∗ = 1.4 (bottom). Snapshots are taken at t = 11
of Figure 1a. Time-averages span 6 time units, which are measured in units of d2/κ. Projections are taken
at r = 0.95ro, i.e. just beneath the outer boundary. Note the amplitude difference between the western
hemisphere (left half of each projection) and the eastern hemisphere (right half).
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