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Abstract — In system identification applications of neural networks, the aim is usually
to obtain a dynamically valid model of the system which can be used for system analysis
and for controller design. In the present study, a cell to cell mapping procedure is adopted
for the global analysis of nonlinear systems and the qualitative validation of radial basis
function networks. The method is used to graphically display the dynamic properties of
nonlinear systems in a cell state space, including the fixed points, periodic and aperiodic
solutions or chaotic behaviour and the corresponding stability properties. The orthogonal
least squares algorithm (OLS) is then used to train a radial basis function network and the
trained network is analyzed using the cell mapping framework. In this way the dynamical
properties of the trained network can be qualitatively compared with those of the original
system. The effects of overparameterisation and output noise on the dynamic properties of
the trained network are investigated using cell map analysis.
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the trained network are investigated using cell map analysis.

Keywords — Qualitative Validation. Radial Basis Function, Overparameterisation.

1 Introduction

Network validation constitutes an important aspect of neural network training. Statisti-
cal validation methods have been studied by many researchers (Bohlin, 1971; Leontaritis
and Billings, 1987; Soderstrom and Stoica, 1990; Billings and Tao, 1991; Billings and Zhu,
1995) and are often used for validating a trained network. Since most statistical validation
methods are based on a particular sequence of the output, they may be considered as ’lo-
cal’ validation methods. Therefore, a statistically valid network may not be dynamically
valid (Haynes and Billings, 1994: Zheng and Billings, 1996) and may fail to produce the
dynamical invariants of the original system. In system identification applications of neural
networks the aim is usually to obtain not only a statistically but also a dynamically valid
model of the system under study. The most important dynamical invariants of a nonlinear
system are probably the equilibrinm points or fixed points, periodic. aperiodic, or strange
attractors and the domains of attraction associated with these attractors. In the present
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paper, the cell to cell mapping method (Hsu, 1980) is applied to the global analysis of
parameterised nonlinear systems and is adopted for the qualitative validatation of neural
networks. With this approach the dynamical invariants of the network can be shown graph-
ically in a cell state space and can be compared with those of the original system. Based
on this analysis the aim of the validation presented in the paper is to determine which
aspects of the network training algorithm result in a dynamically invalid network. The
effects of overparameterisation and output noise on the dynamic properties of the radial
basis function network are studied using cell map analysis and an OLS training algorithm.

The layout of the paper is as follows. The cell mapping analysis method is presented
in section two and it is shown how the cell mapping algorithm can be used for the global
analysis of nonlinear dynamical systems. Section three describes the OLS algorithm and
outlines the qualitative validation procedures for radial basis function networks. Simulation
examples are presented in section four to show the effects of overparameterisation and output
noise on the trained network.

2 Cell to Cell Mapping

7 Most physical systems can be represented by a system of ordinary differential equations
% = F(x, u) (1)
or a system of difference equations
x(n+1) = G(x(n),p) (2)

where x € RV is the state vector. 1 € RP is the parameter vector, F : R¥ x RF — R¥ |
G:RY x RP — RN, The component of the state vector x is normally regarded as a
continuum having an uncountable number of points in any interval. In practice, however the
state variables are usually treated as collections of intervals because of the limited accuracy
associated with measurements and computations. The state space can therefore be treated
as a collection of N-dimensional cells. This state space is called a cell state space. A cell
structure may be introduced into the cell state space in various ways. A simple structure

can be constructed by dividing each state variable z; i = 1,2,..., ¥ into N; intervals.
These intervals are identified by the integer values of the corresponding cell coordinates
z; = 1,2,..., N;. The Cartesian product space of z1,z22,...,2zx5 is then a cell state space.

Each element z of the space is an N-tuple of integers and is called a cell vector or simply
a cell. An integer valued vector function F(z) can then be defined over the cell state space
and is called a cell function.

Let z;, 1 € {N}, be the state variables, where {N} denotes a set of positive integers
t=1,2,...,N. Let the coordinate axis of a state variable r; be divided into N; uniform
intervals of size h;. The interval z; along the 2; -axis is defined such that it contains all z;
satisfying

1 1 .
(2i— E)h:‘ << (5t 5)h (3)
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This defines a cell vector z of an N-tuple of integers z;,7 € {N}. A point x in the N-
dimensional state space with components z; corresponds to a cell z in the cell space with
components z; if and only if z; and z; satisfv equation (3) for all 1 € {N}.

Having defined a cell state space, the discrete time evolution of the dynamical system
described by equation (1) or (2) can now be put in the form of a simple cell mapping

2(n+1) = C(z(n),p), z€2Z", peRF (4)

where C: Z¥ x RP — Z¥ is called a cell map. ' ] 2
A singular cell or an equilibrium cell z* is a cell satisfying the relation

g = Qe n (3)

It is an analogue of the equilibrium point of equation (1) or the fixed point of equation (2).
Let C™ denote the cell mapping C applied m times, and C° be the identity mapping.
A sequence of K distinct cells 2z*(7),7 € {4}, which satisfies

g (ms 1) = CT™EY1) ), mE{K-l‘,.
z°(1) = CX(z*(1),p) {6)

is said to constitute a periodic solution (or motion) of period K. Each of its elements z*(j)
is called a periodic cell of period K. For ease of reference, such a motion is called a P-K
solution and each of its elements a P-K cell. According to this definition, a singular cell is a
P-1 cell. A P-K solution may represent the periodic solution of equation (1) or equation (2),
it may merely represent the equilibrinmn point of equation (1) or the fixed point of equation
(2).

Accordingly, the domains of attraction for simple cell mapping systems can also be
defined. If a cell z is mapped in r steps into one of the P-K cells z*(;) of a P-K solution, the
cell z is said to be r steps removed from the P-K solution, here r is the minimum positive
integer such that C™(z) = z*(7). The set of all cells which are r steps or less removed from
a P-K solution is called the r-step domain of attraction of that P-K solution. The total
domain of attraction (or simply domain of attraction) of a P-K solution is the r-step domain
of attraction with 7 — noc. The cells in the domain of attraction of a P-K solution are

-denoted as DOA-K cells.
Associated with the cell mapping. a cell function is defined as

Fiz.C, p)=Cl, ] =z | (

-1
~—

and a k-step ahead cell function is defined as
F(z.C¥ p) = CX(z,0) - 2 (8)

By dividing the cell state space into multiplets, the singularities of the cell function and
k-step ahead cell function can be determined by using their values at the vertices of the
multiplets. For a comprehensive description of the cell mapping. the reader is refered to
(Hsu, 1980).

For most practical problems there is only a finite region of the state space beyond which
the further evolution of the svstem iz no longer the concern of our study. Similarly. for a
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dynamical system governed by a cell mapping there is only a finite region of cell state space
Z" which is of interest to us. The total number of cells in this region is N, and the cells
are called regular cells. A sink cell is then defined to encompass all the cells outside the
region of interest. The total number of cells is therefore N, + 1. If the mapping image of
a regular cell is outside the region of interest, the cell is then said to be mapped into the
sink cell. By definition, the sink cell is a P-1 cell and the mapping image of the sink cell is
itself. Label the cells using the following transform ‘

(z) = zi+(22=-1)Ni+(z2-1)(z3=1)NM N2+ ..., Vz € {N;},i€{N} _
{z) = 0, 3i,z¢{N} . : (9)
Such that the regular cells are labelled by positive integers 1,2, ..., N,, where N, = Hf N,

and the sink cell is labelled by 0. the zero cell. The N, regular cells and the sink cell are
then denoted by a set S = {_¥.+}. This set is closed under the cell mapping

2n+1) = Clz(n),n), I(z(n) € {N)
z(n+1) = Clz(n),p)=12z(n), Uz(n)=0 (10)

The set of regular cells within the influence of the sink cell forms the domain of attraction
of the sink cell, and is labelled the DOA-Sink. These cells will eventually be mapped into
the sink cell and are denoted DOA-Sink cells.

The cell mapping given above represents the system for a given point in the parameter
space RP. The cell mapping can now be extended to enable the qualitative analysis of pa-
rameterised nonlinear systems by combining it with bifurcation theory. Consider a discrete
system represented by the difference equations

vi(n+1) = gi(x(n),u) i€ {N} (11)
Let the region of interest of the state variables be
x < x < x(M (12)
and the region of interest of the parameters be
pl) < p < pth) (13)
Introduce an extended state variable X as
X = (T1.T2.....Tnsp)l =
= (.7:1.1:2,...,mN,,ul.;tz,....,up)T (14)

The point mapping may be rewritten as

T+ 1) = gix(n).pu(n)) - b= L2, o N
Tn+ 1) = Tln) = j—pnli) i=2N+1L.N4+2..... N4+ P (15)
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Introduce cell structures into both the state space and the parameter space by dividing T;
into NV; uniform intervals of size h;. such that z; along the T;-axis contains all Z; satisfying

Y £ TFl=ax)<(x+=)hy 1=1,...,N
\ -
Yhy < f.;(;,u._‘__N}<(2,;+§)hi i=N+1,....N+ P (16)

Note the cell vector z is an N+P-tuple of integers z;, ¢+ € {N + P}. The centre point of
each cell can be calculated as

h;
EEC)(IL) = zgc)('n) = zsl) + hizi(n) - —12-
_ z{(n)E{N,-}, 1=1,. ...
c ¢ h;’
TE )(”) = ”E—)N(H)Z“EQN'F}“Z"(”)_E
s(n)e {N;}, i=N+1,...,N+P (17)

The image of the centre point X(¢)(n) is then calculated using equation (15). The cell map
C(z) is constructed by determining the image of the centre point of each cell within S by

'(-c)(n +1) - ISI)

Zn+1) = Ci(z(n)) = INT |= - +1],
i = 1.2 N
n+1) = C.',.(Z(TL))IZ{(_R)=,LL,__N(71),
io= N+l N+2,.... N+ (18)

Note that the resulting cell mapping contains Hfﬂ Npy4; slices of N dimensional cell map-
pings in the parameter space R. Having defined a cell mapping over the Cartesian product
of the state space and the parameter space, the dynamical behaviour of the system can then
be revealed by computing the mapping images of all the regular cells within the set S. Fora
system described by the difference equations (2), the cell map given in (15) and (18) is used
to compute the images of all the regular cells. For a system described by the differential
equations (1), the mapping images of the regular cell is computed by integrating the equa-
tions (1) at a fixed time interval T with the cell centre as the initial conditions. Equation
(18) is then used to determine the image cells. The time interval T should be selected such
that there are not too many cells which become mapped into themselves or into the sink
cell. . ‘

After the image of all the regular cells has been found, the regular cells within S can be
classified using the unravelling algorithm (Hsu, 1980). The algorithm calls all the regular
cells within S one by one and classifies each cell into one of the following four categories,
a singular cell (or a P-1 cell). a P-K cell, a DOA-K cell or a DOA-Sink cell. The singular
cells correspond to the fixed points or the equilibrium points and the periodic cells to the
limit cycles of the system. Thev constitute the invariant stable and unstable orbits of the
system within Z¥. The dvnamical behaviour of the system is thus revealed graphically in
the cell state space.
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y(k-1)

u(k-n,)

Figure 1: RBF network with linear inputs and linear noise inputs

3 Qualitative Validation of RBF Networks

In this study, the radial basis function network as shown in Fig 1 will be used for modelling
nonlinear dynamical systems. The output of the network may be represented as (Broomhead -
and Lowe, 1988; Moody and Darken, 1989: Poggio and Girosi, 1990)

N Ty Tlu n¢
y(k) =3 020+ > 0%y(k =)+ Y 0fu(k—j)+ 80+ > 66k —5)+ E(k)  (19)
i=1 =1 a=] 7=1

where ¢;, j = 1,..., A" are the basis functions, y(k — 7). 7 = 1,...,n, are the delayed
outputs, u(k—7), j=1,.... ny are the delayed inputs, £(k —j), j = 1,...,n¢ are the noise
sequences and ¢g represents the bias term. Equation (19) can be rewritten in the following
form

M
y(k) =D 6,05 + b0 + £(k) (20)

=t
where ¢;, 7 = 1,...,Al are the basis functions or the linear terms y(k — 1),...,y(k —
ny)yu(k = 1), ..., u(k = ny).E(k=1)....,E(k = ng). The number of hidden layer nodes M
is usually very large. However the OLS algorithmn (Billings, Korenberg and Chen, 1988)
can be applied to select a much smaller subset of hidden layer nodes for the network. For a
set of input/output signals (y(k) u(k), k =1, 2,...,N), the input/output relation of the

network may be written in vector form as

Y=90+= (21)
An orthogonal decomposition of @ is given as
$ =PA (22)

where A is an (M + 1) x (M + 1) unit upper triangular matrix and P is an A" x (M + 1)
matrix with orthogonal columns that satisfy

PTP=D= ding{do. dy,....dpy} (23)
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with
dj =< pP;.P; >, j=0,1,...,.M (24‘)

where < e, e > denotes the inner product. Rearranging equation (21) yields
Y =(2A)AO®)+=E=Pq+E (25)

Because £(k) is uncorrelated with the past input and output signals, it may be shown (Chen,
Billings and Luo, 1989) that

<p;.Y >
Q’i——pJ

= = i=0,1,...,.M . T (26
< P;.P; > )

The number of candidate nodes M may be very large, but a small number of nodes may be
adequate to approximate the underlying system dynamics. These nodes can be identified
using an efficient forward selection procedure derived in (Billings et al., 1988). The principle
of the method is hriefly shown below. From equation (253), the sum of the squares of the

output is
M

2 =
<Y,Y>=Zq3<pj,pj>+<.:.,:.> (27)
1=0 i
where the errors are assumed to be uncorrelated with past inputs and outputs. The error
reduction ratio (Billings et al.. 1933) due to p; may be expressed as

(28)

The best candidate node at each step is the one which achieves the largest error reduction
ratio err;. The selection procedure may be terminated when a desired error tolerance
p (0 < p < 1)is achieved.

g
1 - Z err; < p (29)

7=0
The tolerance p will affect both the approximation accuracy and the complexity of the
network. The criterion emphasizes the approximation accuracy of the model only and the
resulting model may tend to interpolate the particular data set and thus lead to overfitting
if an inappropriate p value is used. A compromise may be achieved by using Akaike’s
information criterion (AIC) to terminate the selection procedure (Chen et al., 1989). In

the present study, the training is terminated when a given number of nodes are selected.

The cell mapping method provides a useful framework for the global analysis of a diverse
range of nonlinear systems including neural networks. For a given system, the system
dynamics can be shown graphically in a cell state space using the cell mapping algorithm.
The dynamical properties of the network can then be analyzed in the same framework. The
deficiency of the network is thus graphically revealed. To perform a cell mapping analysis
of a RBF network, a cell structure must be introduced. The validity of the network should
be independent of any specific form of (&), the input signal u(k) is therefore selected
as a bifurcation parameter and the dependence on time is dropped in the validation. A
state space representation of the network is obtained and cell structures are introduced into
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both the state space and the parameter space. During validation, only the process model
is considered, the noise terms £(k) which are included in the network to avoid bias are
neglected. The network then hecomes

y(k) = Fy(k=1),...,y(k = ny), ) (30)

where F represents the nonlinear function on the right hand side of equation (20) with
&k —7), 7 =1,...,n¢ set to zero and u(k — 1),...,u(k — n,) set to u. A state space
representation of the network is therefore

!

2k +1) = Flza(k),...,zn;(k), 1)
Tk +1) = z.(k)
Zay (k4 1) = 2y 1(k) (31

Note the singular points of the system are all on the hyperplane z; = z, = ... = Ty -
These singular points correspond to all the fixed points of the network and can easily be -
- computed on this hyperplane. The limit cycles and domains of attraction however should
be computed in the whole cell state space. The validation procedure may be summaried as
follows.

1. Compute the cell to cell mapping of the true system. Unravel the cells to reveal the
singular cells. the P-K cells and the corresponding domains of attraction.

2. Train a RBF network. Represent the network in state space form. Construct a cell
state space in the state space and the parameter space (the input u). Compute the
cell to cell mapping of the network and unravel the cells.

3. Find the singular points (P-1 cells) of the network on the hyperplane z; = 25 = ... =
Tn,. compare the singular points with those of the true system.

4. Find the limit cycles (P-I cells, A" > 1) of the network, compare the P-K cells with
those of the true system.

5. Compute the domains of attraction of the singular cells and the P-K cells. Compare
them with those of the true system

The dimension of the cell state space will be determined by the number of lags in the
output signal y(k). For a high dimensional problem (with larger time lags), the cell mapping
analysis may become computationally expensive. If a network is inadequate, the validation
based on the singular points in step 3 is often found to be sufficient to reveal the inadequacy.
If a network satisfies the validation on all the singular cells and the P-K cells, the domains
of attraction of these cells should be analyzed and the dynamical properties of the network
can be graphically displayed. Since the state variables of the network and the true system
are usually not the same., care mnst be taken in explaining the domains of attraction of
the P-K cells. The domains of attraction mav not he exactly the same as those of the true
system. However, the validation procedure should be able to pin point any inadquadacy in
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the network and reveal in which region of the state space, if any, the network is valid. The
validation will always be limited by the domain of the data used in the training and will not
in general be sufficient to justifv that the network is valid in the whole space. In practice,
the true system will he unknown, but the main purpose of qualitative validation in the
present study is to investigate which aspects of the training procedure affect the dynamical
properties of the network and how these can be improved.

4 Simulation Results

Consider a nonlinear system represented by the following difference equations (Narendra
and Parthasarathy, 1990) '

y(k = Dy(k —2) [y(k = 1) + 2.5]
1.0+ 92k = 1)+ y2(k—2)

y(k) = +u(k—1) (32)

This system can be expressed in state space form as
1.0 + z3(k) + z3(k)
ok +1) = 2.(k) (33)
u(k) = z21(k)

zi(k +1)

Select the input u(k) as a bifurcation parameter g. Introduce a cell structure in the state
space and the parameter space by dividing the region z; € [-2 3], z; € [-2 3], p €
[=0.5 0.5)into 40 x 40 X 40 cells. By evaluating the difference equations in the given region
and unravelling the cells. the cell diagram of the system projected onto the y — u plane is
shown in Fig 2. The fixed points of the system are identified as p-1 and p-3 cells which
form the curve as shown in Fig 2. As the input u increases form -0.5 to -0.22, the system
bifurcates and two more fixed points are created. As the input u increases further from
-0.22 to 0.16, the system bifurcates again and the number of fixed points decreases to one.
One advantage of cell mapping analysis is that both stable and unstable singular points
of the system can be shown in the cell diagram. In Fig 2, the lower and upper sections
correspond to the stable fixed points, while the middle section which connects the lower
and upper sections represents the unstable fixed points. The singular points are computed
in the whole cell state space instead of on the hyperplane z; = z; = ... = z,, in all the
simulations. The domains of attraction of the fixed point are not investigated in the present
study. In all the simulations. the input signal to the network was a-band limited uniformly
distributed sequence in the range of [-2 2]. The test signal was a bhand limited square wave
superimposed with a Gaussian signal of unit standard deviation. The input and output
signals for the training and test sets are shown in Figures 3 and 4 respectively.

4.1 Effects of Overparameterisation

The effects of overparameterisation on the dynamical properties of a trained radial basis
function network for the system above can now be studied. The results are illustrated in
Figures 5 and 6. Both figures show the same cell diagrams of a set of trained networks
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Figure 2: Cell mapping analysis of the difference equations (33) shows the P-1 cells (grey)
and the P-3 cells (dark). Vertical axis - y, horizontal axis - u
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Figure 3: Input/output signals for network training. The input is a band limited uniformly
distributed sequence. Top: input. bottom: output.
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Figure 4: Input/output signals for network testing. The input consists of a band limited
square wave superimposed by Gausian signal with unit standard deviation. Top: input,
bottom: output,

and that of the original system. For easy of comparison, the cell diagram of the true system
was displayed over that of the trained networks in Fig 5. To allow a better interpretation
the results of Fig 5 are replotted in Fig 6 but now the order of the presentation has been
reversed. In Fig 5 the cell diagram of the true system was plotted over that of the network,
but in Fig 6 it is the other way around and the cell diagram of the network is plotted over
that of the system. The inputs to the network were y(k=1), y(k—2), u(k — 1) which are
exactly the same as the inputs to the true system. To accomodate the noise in the output,
three linear noise terms were also selected as inputs to the network. The results clearly
show that when the number of hidden layer nodes was 10, the network failed to capture the
underlying system dynamics and the fixed points of the network were very different from
those of the true system. In particular, the bifurcation point at 0.16 has been moved to 0.4
and the one at -0.22 has been shifted to -0.24. The branch of unstable fixed points is also
far away from the original. As the number of hidden layer nodes was increased to 20, the
bifurcation points of the network became the same as those of the original system but the
fixed points in the upper and middle branches were slightly in error. Further increases in
the number of hidden layer nodes resulted in a further shift in the bifurcation points and
the fixed points in the upper and middle branches. When the number of hidden layer nodes
was more than 40, the shape of the middle branch changed and the bifurcation points were
shifted away from the original values. The bifurcation points of the networks are listed in
Table 1. '

In practice the correct lagaed variables which form the input to the network will not be
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Figure 5: Cell mapping analysis of RBF networks. Top left: 10 centres. top right: 15

centres, left of second row: 20 centres. right of second row: 23 centres. left of third row: 30
centres, right of third row: 35 centres. bottom left: 40 centres, bottom right: 45 centres.
In all cases the inputs to the networks were y(t — 1) y(t —2) u(t — 1) and three linear
noise terms were also selected as inputs to the networks. The zignal to noise ratio was 40
db. The cell diagram of the true svstem was displaved over that of the network. Dark cells:
trained network, Grev cells: true svstem.
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Figure 6: Cell mapping analysis of RBF networks. Top left: 10 centres, top right: 15
centres, left of second row: 20 centres. right of second row: 25 centres. left of third row: 30
centres, right of third row: 35 centres. bottom left: 40 centres, bottom right: 45 centres. In
all cases the inputs to the networks were y(t — 1) y(t =2) u(t - 1) and three linear noise
terms were also selected as inputs 1o the networks. The signal to noise ratio was 40 db.
Note that this is the same cell diagram as Fig 5 except the order of plotting has now been
reversed so now the cell diagram of the network is displayed over that of the true svstem.
Dark cells: trained network. Grey cells: true svstem.
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Table 1: Bifurcation Points of RBF Networks
(Network inputs were y(k—1). y(k—2), u(k—1), the true bifurcation points are -0.22, 0.16)

No. of nodes 10 15\ 20 25 30 35 40 45
Bifurcation points | -.24, 4 | -.19, .18 | -.22, .16 | -.19, .13 | -.25, .16 | -.19, .16 | -.20, .16 | -.19, .13

Table 2: Bifurcation Points of RBF Networks
(Network inputs were y(k — 1), y(k - 2),y(k—3) u(k - 1))
(The true bifurcation points are -0.22 and 0.16)

No. of nodes 10 15 20 25 30 35 40 45

Bifurcation points | -.07, .24 | -.12, .18 | -.12, .20 | -.07, .22 | -.09, .21 | -.17, .27 | -.17, .27 | -.19, .21

known a priori. Qualitative validation can now be used to investigate the effects of incorrect
input lag assignments. The results in Figures 7 and 8 show the cell mapping analysis when
the inputs to the network were incorrectly assigned as y(k—1), y(k—-2), y(k-3), u(k-1).
Again, both the figures show the same set of cell diagrams in reverse orders of overlap. It
may be seen from these figures that more hidden layer nodes were required to capture the
system dynamics when the number of input nodes was increased to include the spurious
lag y(t — 3). The best result was obtained when the number of hidden layer nodes was 45,
compared with 20 in the previous simulation. In general, the bifurcation points (see Table
2) and the fixed points in both the middle and upper branches were moved further away
from their original positions compared to the case where the lagged inputs were correct.
Note that the networks also have more parameters than in the previous simulations due
to the increased dimension of the input vector. The increase in the number of input layer
nodes actually made the network worse in the sense that the dynamic properties of the
networks deviated even further from those of the true system. The results imply that the
dynamic properties of the network are more sensitive to an increase in the number of input
layer nodes than in the number of hidden layer nodes. Therefore, it is very important to
select the correct input nodes in RBF network training.

4.2 Effects of Output Noise

The effects of output noise on the dynamic properties of RBF networks can be investigated
using an analogous approach. Noise is often neglected by most authors so it is important
to study if this is justified.

In the simulations, the input signal was taken to be the same as in the previous section,
but the output noise was increased from 40 db to 35 db. The inputs to the networks were




o5F

04 03 -0 2 -0 ] -] oz 03 o4 -0 a =03 -02 01 [+] 0.1 o2 03 0.4 =

=15 -1.5 L
04 03 02 01 [} o1 02 03 04 a4 w03 =z o1 ] 01 oz 03 o4
T S
2s5p 4 25 3 J
2r 2t
1.5p 1+ 5F 4
1 1
05r o5k
0;&%‘\' .&‘m\m-m“ 230 b o;m;;.;. R, X\‘&&\\?&gm
0.5 1 -0 5¢ <
-1t 1 -1F
—15} 4 -1 5p
-0 4 -03 —02- =01 [+] o 02 032 04 0.4 =03 02 =01 o o1 02 03 04

Figure 7: Cell mapping analysis of RBF networks. Top left: 10 centres, top right: 15
centres, left of second row: 20 centres. right of second row: 25 centres, left of third row: 30
centres, right of third row: 35 centres. bottom left: 40 centres, bottom right: 45 centres.
In all cases the inputs to the networks were incorrectly assigned as y(t — 1) y(t =2) y(t -
3) u(t—1) and three linear noise terms were also selected as inputs to the networks. The
signal to noise ratio was 40 db. The cell diagram of the true system was displaved over that
of the network. Dark cells: trained network, Grey cells: true system.
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Figure 8 Cell mapping analysis of RBF networks. Top left: 10 centres, top right: 15
centres, left of second row: 20 centres. right of second row: 23 centres, left of third row: 30
centres, right of third row: 35 centres. bottom left: 40 centres, bottom right: 45 centres.
In all cases the inputs to the networks were incorrectly assigned as y(t —1) y(t—2) y(t—
3) wu(t— 1) and three linear noise terms were also selected as inputs to the networks. The
signal to noise ratio was 40 db. Note that this is the same cell diagram as Fig 7 except the
order of plotting has now been reversed so now the cell diagram of the network is displayed
over that of the true system. Dark cells: trained network, Grey cells: true system.
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Table 3: Bifurcation Points of RBF Networks
(Network inputs were y(k — 1), y(k — 2), u(k — 1), Signal to noise ratio was 35 db)
(The true hifurcation points are -0.22, 0.16)

No. of nodes 10 15 20 25 30 35 40 45

Bifurcation points | -.14, .27 | -.17, .18 | -.14, .16 | -.16, .16 | -.13, .11 | -.12, .14 | -.13, .16 | -.12, .18

y(k — 1), y(k —2), u(k — 1) and three linear noise terms were also selected by using the
OLS algorithm. The results illustrated in Figures 9 and 10 and Table 3 show that how
the bifurcation points and the fixed points in the middle and the upper branches have
been moved even further away from their true positions compared with those in Figures
5 and 6 except when the number of centres was 10 or 25. As the noise level increases, the
network exhibits a higher possibility of overfitting to the data and creating spurious fixed
points. When the number of centres was increased to 30, the shape of the middle branch
was distorted and the resulting network had very different dynamic behaviours from the
true system. It can also be seen that the dynamic properties of the network were much more
sensitive to changes in the number of hidden layer nodes compared to the cases with lower
noise levels. To cope with the increased noise level, more hidden layer nodes were required
for the network to capture the system dynamics. This in turn increased the possibility of
the network overfitting to the data.

When the signal to noise ratio was further reduced to 20 db. the cell mapping diagrams
of the networks for the same input sequence and the same structures are shown in Fig
11. The bifurcation points were now far away from their true positions and the middle
branches were moved further towards the right. There may be two factors which caused
these failures of the networks to capture the system dynamics. First, the training algorithm
used in this study selects the data points as the RBF centres. Therefore as the noise level
was increased, the centres were placed further away from the real data points. Second,
since only linear noise terms were used in the networks, as the noise level was increased, the
network weights are likely to become increasingly biased. The network performance may be
improved if a clustering algorithm is combined with the OLS algorithm to select the RBF
centres. The clustering algorithm could be used to average the effect of large noise levels to
a certain extent and to reduce the computational cost of the OLS algorithm. To overcome
the bias in the network weights, nonlinear noise terms would need to be used. In addition,
the training data may be pre-processed using a smoothing algorithm to reduce the noise
level in the data prior to centre selection and training.

4.3 Comparison with Network Predictions

The mean square prediction errors of the networks are plotted in Fig 12. The network

predictions were computed by substituting the delayed outputs y(k—1)..... y(k—ny) with
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Figure 9: Cell mapping analysis of RBF networks. Top left: 10 centres. top right: 15
centres. left of second row: 20 centres. right of second row: 23 centres. left of third row: 30
centres. right of third row: 33 centres. bottom left: 40 centres, bottom right: 45 centres. In
all cases the input to the networks were y(t — 1) y(t = 2) wu(t — 1) and three linear noise
terms were also selected as inputs to rlie networks. The signal to noise ratio was 35 db. The
cell diagram of the true system was displaved over that of the network. Dark cells: trained
network. Grey cells: true svstem.
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Figure 10: Cell mapping analysis of RBF networks. Top left: 10 centres. top right: 15
centres, left of second row: 20 centres. right of second row: 25 centres. left of third row: 30
centres. right of third row: 35 centres. bottom left: 40 centres. bottom right: 45 centres. In
all cases the input to the networks were y(t — 1) y(t —2) wu(t — 1) and three linear noise
terms were also selected as inpurs to the networks. The signal to noise ratio was 35 db.
Note that this is the same cell diagram as Fig 9 except the order of plotting has now been
reversed so now the cell diagram of rhe network is displayed over that of the true system.
Dark cells: trained network. Grey cells: true system.
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Figure 11: Cell mapping analysis of RBF networks. Top left: 10 centres, top right: 15
centres, left of second row: 20 centres. right of second row: 23 centres. left of third row: 30
centres, right of third row: 35 centres. bottom left: 40 centres, bottom right: 45 centres.
In all cases the inputs to the networks were y(t — 1) y(t —2) u(t — 1) and three linear
noise terms were also selected as inputs to the networks. The signal to noise ratio was 20
db. The cell diagram of the network was displaved over that of the true svstem. Dark cells:
trained network, Grey cells: true system.
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past predictions of the network #,(k — 1)....,5,(k — ny) in equation {20) to give.
va(k) = Flyplk = 1),...,yp(k = ), ulk = 1), ..., u(k - n,)) (34)

The variance of the noise in the training data was 1.9940e-2 and that in the test data was
0.3472. Our experience indicates that the network prediction in equation (34) is a better
measure of network performance than the one step ahead prediction used by most authors
(Zheng and Billings, 1996). However, the network prediction is computed with a particular
input sequence and therefore it is a 'local’ measure of the dynamic properties of the network.
Good prediction performance is necessary for a network to capture the dynamic properties
of the underlying system but it is not sufficient. This can be seen from Fig 12. The network
with 30 centres and 3 input nodes exhibited the best prediction over the training set but the
shift in the bifurcation points compared to the true system was worse than for a network
with 20 centres and 3 input nodes which produced the hest prediction over the test data.
When the noise level was increased from 40 db to 35 db, the network with 40 centres and 3
input nodes achieved the best prediction over the training set but the shape of the middle
branch was distorted, while the network with 25 centres had the best prediction over the
test set and the cell diagram was closer to the original. When the inputs to the network
was incorrectly assigned, the prediction over the training set decreases as the number of
centres increases, however the network with 40 centres exhibited the best prediction over
the test set. As expected the mean squared prediction errors over the training set are less
sensitive to changes in the number of hidden layer nodes than over the test set.

In practice the trained network will be an approximation to the true system. Therefore,
it is not completely certain that networks which show smaller shifts in bifurcation and fixed
points will achieve better predictions on any sequence of data if the dynamic properties
of the networks are different from the original system. It is equally uncertain whether a
network which exhibits better predictions on a particular data set will show smaller shifts in
the bifurcation and fixed points. But prediction performance must be regarded as a "local’
measure while the cell diagram may be regarded as a ’global’ measure of the dynamic
properties of the network. These should be used as complementary tools. For applications
where prediction is the main objective, it might be sufficient to select the network according
to predictive performance. But for more general applications where the objective is to use
the trained network as a model of the system which can be simulated for different inputs and
used in analysis and. controller design, it may be necessary to select the network based on the
dynamic properties of the system. Methods of achieving this when the true system model
is known have been discussed above. These can be used to investigate what is important
in network training and as a basis to develop qualitative validation methods which can be
used in the realistic situation where the underlying system model is unknown.

5 Conclusions

In this paper, a cell mapping analysis was introduced to qualitatively validate RBF net-
works. It was shown that the cell mapping method can be applied to the global analysis
of a diverse range of nonlinear systems including neural networks. The important charac-
teristics of the original nonlinear svstem and the network, including the equilibrium points,
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Figure 12: Mean squared iterative prediction errors of the trained networks based on
equation (34). Solid line: the input to the networks were y(t — 1) y(t — 2) wu(t - 1),
and the signal to noise ratio was 40 db. Broken line: the input to the networks were
y(t=1) y(t—2) y(t—3) u(t— 1), and the signal to noise ratio was 40 db. Dotted line:

the input to the networks were y(t — 1) y(t—2) u(t—1), and the signal to noise ratio was
35 db

the fixed points, the Limit cycles. the domains of attraction and the bifurcation points can
be graphically displayed in a cell state space. The algorithin can be used to pin point de-
ficiencies in trained networks by comparing the resulting cell map diagrams with those of
the original system. Used in this way the method provides a useful tool for investigating
the effects of overparameterisation, output noise, input selection and many other aspects of
network training algorithms on the dynamic properties of the network.

Underparameterisation or overparameterisation during training will result in a network
with dynamic properties which differ from those of the underlying system, such as a shift
in the bifurcation and fixed points, or even spurious singular points. The simulation results
also show that the network can be sensitive to a change in the assignment of input nodes.
It is therefore important to select the correct input nodes in network training. Noise on the
training data will also severely impair network performance and it is strongly recommended
that noise models are used in network training or that the noise is accomodated in some
other way.

Network predictions and most of the statistical validation methods may be regarded as
local’. These "local” methods and the "global’ validation methods of which the cell mapping
analysis is an example should be used as complementary tools in network training to increase
the possibility of identifying a representative model.
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