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Aggregation Algorithm towards Large-Scale

Boolean Network Analysis
Yin Zhao, Student Member, IEEE, Jongrae Kim, Member, IEEE, and Maurizio Filippone, Member, IEEE

Abstract—The analysis of large-scale Boolean network dynam-
ics is of great importance in understanding complex phenomena
where systems are characterized by a large number of compo-
nents. The computational cost to reveal the number of attractors
and the period of each attractor increases exponentially as the
number of nodes in the networks increases. This paper presents
an efficient algorithm to find attractors for medium to large scale
networks. This is achieved by analyzing subnetworks within the
network in a way that allows to reveal the attractors of the
full network with little computational cost. In particular, for
each subnetwork modeled as a Boolean control network, the
input-state cycles are found and they are composed to reveal
the attractors of the full network. The proposed algorithm
reduces the computational cost significantly, especially in finding
attractors of short period, or any periods if the aggregation
network is acyclic. Also, this paper shows that finding the best
acyclic aggregation is equivalent to finding the strongly connected
components of the network graph. Finally, the efficiency of the
algorithm is demonstrated on two biological systems, namely a T-
cell receptor network and an early flower development network.

Index Terms—Boolean network, attractor, graph aggregation,
acyclic aggregation

I. INTRODUCTION

MANY mathematical models have been proposed in the

literature to study biological networks, including ge-

netic regulatory networks [1]. Boolean networks have attracted

particular interest because of their simplicity and potential

to model a large number of nodes in the network. Boolean

networks were first proposed by Kauffman [2] to model

genetic regulatory networks. In this framework, each gene is

assumed to have two levels, either active (on, true or 1) or

inactive (off, false or 0), and to be affected by several other

genes and/or by itself. Besides the genetic regulatory networks,

Boolean networks can be also used to model other biological

interactions, such as biomolecular signaling pathways [3].

Although Boolean networks are not as detailed as continuous

models given in the form of differential equations [4], they

have been widely and successfully used in Systems Biology

[5]–[7]. Unlike continuous models that usually involve several

parameters, which are difficult or even impossible to be
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Fig. 1. An example of a network Graph comprising three nodes.

estimated or inferred, Boolean networks are parameter free

models. One of the main problems in Boolean network model-

ing for biological or any physical dynamics is the identification

of the update rules using observed data [8], [9]. Once these

are obtained, similarly to the analysis of continuous systems,

the dynamical properties of Boolean networks are analyzed by

finding steady-states, attractors, size of the basin of attraction

to each attractor, etc. Steady-states and attractors in particular

are the most important characteristics when they are related to

some specific physiological responses in biological networks

[2], [10]–[13].

The interactions of genes or some biomolecular species are

presented by logical functions as exemplified in Fig. 1 and

its corresponding logical equations (1). The network graph

in Fig. 1, shows an example of the interactions between the

three nodes x1, x2, and x3; a directed edge from node xi to

xj means that the state (active or inactive) of xj at time t+1
is affected by the state of xi at time t.

As an example, consider the following updating rules among

all possible functions corresponding to Fig. 1:

x1(t+ 1) = f1[x2(t), x3(t)] = x2(t) ∧ x3(t),

x2(t+ 1) = f2[x1(t), x3(t)] = x1(t) ∨ x3(t),

x3(t+ 1) = f3[x3(t)] = ¬x3(t),

(1)

where ∧, ∨, ¬ denote “AND”, “OR”, and “NOT” respectively.

The nodes in a network graph having no in-degrees, i.e.,

nodes that are not affected by others and/or themselves, can

be interpreted as input nodes, while the nodes having no out-

degrees can be interpreted as output nodes. Boolean networks

with input nodes are called Boolean control networks and they

form the building blocks that will be used in this paper to

reveal attractors of larger networks. For example, considering

only x1 and x2 and ignoring the update rule for x3 in (1), x1

and x2 in Fig. 1 can be defined as a Boolean control network,

where the dynamics of x1 and x2 are given by the first two

equations in (1) and u(t) = x3(t) is the input.
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Boolean networks with n nodes have 2n number of possible

states and it is proved that the computational complexity of

Boolean network related problems of interest is NP-hard [14].

Even for small Boolean networks, e.g. n around 50 or 100,

it is almost impossible to find all attractors, in general. A lot

of effort has been devoted to the solution of this issue, at

least partially. One way to find attractors is to choose some

initial states wisely and simulate the dynamics for each initial

condition [15]; however, the global dynamics can be hardly

revealed by this method. In [11], a probabilistic method is

developed by choosing initial states randomly to find a certain

percentage of steady states with a given confidence level. In

our previous work [16], Boolean networks are divided into

several groups and the input-output structure of each group

approximates the global dynamics. However, only part of the

nodes can be approximated and some information is lost.

The main motivation of the idea to use network aggregation

in [16] is from [17], where the web is partitioned to reduce the

computational cost in calculating page rank. Some aggregation

methods are also discussed in [18], [19] and the references

therein. In this work, we build upon the idea of aggregation

of Boolean networks into several subnetworks, but instead of

the approximation, the structure of the attractors of Boolean

networks is accurately recovered by the composition of the

input-state cycles of subnetworks.

The paper is organized as follows: section 2 describes

the aggregation of Boolean networks; section 3 provides

the method of revealing attractors of Boolean networks by

composing the input-state cycles of subnetworks, and analyzes

its computational complexity; section 4 presents a special

aggregation structure called acyclic aggregation, for which the

suggested algorithm is particularly efficient; the efficiency of

the algorithm is demonstrated in section 5 using T-cell receptor

network and an early flower development network; finally,

section 6 presents the conclusion.

II. AGGREGATION OF BOOLEAN NETWORKS

Consider the following Boolean network:

x1(t+ 1) = f1[x1(t), x2(t), . . . , xn(t)],

x2(t+ 1) = f2[x1(t), x2(t), . . . , xn(t)],

· · · ,
xn(t+ 1) = fn[x1(t), x2(t), . . . , xn(t)],

(2)

where xi(t) for i = 1, 2, . . . , n denotes the state of node xi

at time t that can be either 0 for inactive or 1 for active. The

nodes can be partitioned into s-number of blocks as follows:

X = {x1, x2, . . . , xn} = X1 ∪ X2 ∪ . . . ∪ Xs,

where Xi is a proper subset of X , Xi∩Xj is empty for i 6= j,

Xi = {xi1, xi2, . . . , xini
}, ni is the number of nodes in the i-

th block, and xij , the j-th node in the i-th block, is equal to xk

for a k ∈ {1, 2, . . . , n}. We call this partition an aggregation

of the Boolean network.

Each block Xi has incoming edges from outside of the block

and some outgoing edges to the outside. The source nodes of

these edges can be interpreted as inputs and outputs for each

block. Denote the set of inputs and outputs of the block Xi as

x2x1

x3

x4

x5

x7

x8

x6

x9

Σ1

Σ2

Σ3

Fig. 2. An example of aggregation of a network comprising nine nodes into
three Boolean control networks.

Ui = {ui1, ui2, . . . , uimi
} and Yi = {yi1, yi2, . . . , yipi

},

respectively, and the set of all source nodes, whose edges

cut by the partition, as C = {xc1 , xc2 , . . . , xcp}. Note that Ui

and/or Yi could be empty set, i.e., there are no input and/or

output to and from the i-th block.

Remark 2.1:

1) yiq in Yi is a node in Xi and uil in Ui is a node in

another block, i.e.,

Yi ⊂ Xi ⊂ X and Ui ∩ Xi = ∅.

2) Each xcj ∈ C belongs to only one block (the output of

a specific block), but could be the input of several other

blocks. Hence,

C =

s
⋃

i=1

Yi =

s
⋃

i=1

Ui,

Yi ∩ Yj = ∅, i 6= j,

p =

s
∑

i=1

pi ≤
s

∑

i=1

mi.

Then, the subnetwork Σi, with nodes in Xi and inputs in

Ui, is a Boolean control network given by

Σi : xij(t+ 1) = fij [xi1(t), xi2(t), . . . , xini
(t),

ui1(t), ui2(t), . . . , uimi
(t)],

(3)

for i = 1, 2, . . . , s and j = 1, 2, . . . , ni.

Example 2.2: Consider a Boolean network example in Fig.
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2. Assume its dynamics is described as


































































x1(t+ 1) = x2(t)

x2(t+ 1) = x3(t) ∧ x7(t)

x3(t+ 1) = x1(t) ↔ x2(t)

x4(t+ 1) = (x1(t) ∨ x5(t)) → x7(t)

x5(t+ 1) = ¬x4(t)

x6(t+ 1) = x6(t)∨̄x8(t)

x7(t+ 1) = x6(t)

x8(t+ 1) = x7(t) ∨ x9(t)

x9(t+ 1) = ¬x6(t),

(4)

where ↔, →, and ∨̄ denote “EQUIVALENCE”, “IMPLI-

CATION”, and “EXCLUSIVE-OR” operations respectively.

Consider the aggregation into 3 blocks as shown in Fig 2,

{x1, x2, x3} ∈ X1, {x4, x5} ∈ X2, {x6, x7, x8, x9} ∈ X3.

Now the inputs and outputs of each subsystem are

U1 = {u11 = x7}, U2 = {u21 = x1, u22 = x7}, U3 = ∅,
Y1 = {y11 = x1}, Y2 = ∅, Y3 = {y31 = x7},
C = {xc1 = x1, xc2 = x7}.

Hence, there are three subnetworks

Σ1 :











x1(t+ 1) = x2(t)

x2(t+ 1) = x3(t) ∧ u11(t)

x3(t+ 1) = x1(t) ↔ x2(t);

Σ2 :

{

x4(t+ 1) = (u21(t) ∨ x5(t)) → u22(t)

x5(t+ 1) = ¬x4(t);

Σ3 :



















x6(t+ 1) = x6(t)∨̄x8(t)

x7(t+ 1) = x6(t)

x8(t+ 1) = x7(t) ∨ x9(t)

x9(t+ 1) = ¬x6(t).

Note that the aggregation shown in Example 2.2 is not unique

but there are many other different configurations. How to

construct the best aggregation of the network to minimize the

cost to find attractors will be discussed in section 4.

III. REVEALING ATTRACTORS OF THE WHOLE NETWORK

Finding attractors is one of the main problems in analyzing

Boolean networks. Attractors are defined as follows:

Definition 3.1:

1) Consider the Boolean network given by (2). Its State

Transition Graph is defined as a directed graph

{Dn, E}, where D := {0, 1} and

E = {a → b |a, b ∈ Dn, b = f(a)} ,
where f = [f1, f2, . . . , fn]

T .

2) A periodic path of the state transition graph is called

an attractor of a Boolean network (2). An attractor with

period 1 is also called a fixed point. Denote an attractor

as

{a1 → a2 → . . . → aℓ → a1},

000 001 010 101

111 110 011 100

Fig. 3. State transition graph for (1), where states are ordered as (x1 x2 x3)

01

10

11 00

Fig. 4. State transition graph for Boolean control network (1), where states
are ordered as (x1 x2) and the control u = x3 is indicated by the solid arrow
for u = 1, or by the dashed arrow for u = 0.

where ai ∈ Dn, i = 1, 2, . . . , ℓ, and ℓ is the period

or the length of the attractor. Attractors are also called

cycles.

Example 3.2: Fig. 3 shows the state transition graph of

Boolean network (1), and there are two attractors as follows:

{(0 0 1) → (0 1 0) → (0 0 1)},
{(1 1 0) → (0 1 1) → (1 1 0)}.

For a Boolean control network,

xi(t+ 1) = fi(x1(t), . . . , xn(t), u1(t), . . . , um(t)), (5)

for i = 1, 2, . . . , n, we have a similar definition of attractors

as follows:

Definition 3.3:

1) Consider the Boolean control network given by (5). Its

State Transition Graph is defined as a directed graph

{Dn, E}, where

E = {a → b |a, b ∈ Dn, ∃u ∈ Dm, b = f(a, u)} ,
in which f = [f1, f2, . . . , fn]

T .

2) A periodic path of the state transition graph is called a

cycle.

3) A periodic path with no repeated state in one period of

the state transition graph is called an elementary cycle.

For a Boolean network, once the system enters a periodic

path, it can not escape, thus we can call the periodic paths the

attractors. But for Boolean control networks, periodic paths

may be escapable by choosing different controls, thus we only

call the periodic paths the cycles. A cycle of Boolean control

networks may have repeated states in one period because

of potentially multiple outgoing edges depending on inputs

for each state, thus we need to make a distinction between

cycles and elementary cycles. On the other hand, for Boolean

networks, there is no repeated state in one period of the

attractor as each state has only one outgoing edge as shown in

Fig. 3, so all the attractors of Boolean networks are elementary.
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Example 3.4: Fig. 4 shows the state transition graph, where

x3 is considered as the input in (1) (i.e., the edge from x3

to itself is ignored). As there is one input, each state in the

state transition graph has two outgoing edges depending on the

different value of the input. For example, the cycle {(00) →
(00) → (01) → (00)} in Fig. 4 is not an elementary cycle.

Input-state cycles of Boolean control networks need to be

considered and they are defined by

Definition 3.5:

1) Consider the Boolean control network given by (5). Its
Input-State Transition Graph is defined as a directed
graph {Dn+m, E}, where

E =
{

(a, u) → (b, u′)
∣

∣a, b ∈ D
n
, u, u

′

∈ D
m
, b = f(a, u)

}

,

in which f = [f1, f2, . . . , fn]
T .

2) A periodic path of the input-state transition graph is

called an input-state cycle.

3) A periodic path with no repeated state in one period of

the input-state transition graph is called a elementary

input-state cycle.

The definition implies that if there exits an u′ in Dm such

that an edge (a, u) → (b, u′) exists, then edges (a, u) →
(b, u′′) for all u′′ in Dm exist as well. For more details about

input-state cycles of Boolean control networks, refer to [21],

where the input-state cycles are simply called cycles.

It is easy to divide an input-state cycle with repeated states

into several elementary input-state cycles, and conversely, it is

also easy to combine elementary input-state cycles into cycles.

Thus, we can use the algorithm in [20] to find all elementary

input-state cycles, and then obtain input-state cycles by com-

bination of these elementary ones; or alternatively, we can use

the method in [21] to find input-state cycles directly. Note

that, the number of elementary input-state cycles is much less

than the number of input-state cycles. In fact, the number of

input-state cycles may be infinite if the length is not limited.

However, later we will see that the input-state cycles longer

than 2n are meaningless.

The main problem is now how to reveal an attractor of the

whole Boolean network (2) from the input-state cycles of the

subnetworks (3). To this end, denote Ai as the set of input-

state cycles in Σi and define πi(·, j) : Dni+mi → D as the

projection of a state a in Dni+mi onto the state of xj , where

xj ∈ Xi ∪ Ui. In addition, define the projection Πi(·, j) of

an input-state cycle A ∈ Ai onto the periodic trajectory of

xj , where xj ∈ Xi ∪ Ui, as follows: for a length-ℓ input-state

cycle,

A = {a1 → a2 → · · · aℓ → a1}.
The projection, Πi(, j), is given by

Πi(A, j) := {πi(a1, j) → πi(a2, j) → · · ·
→ pii(aℓ, j) → πi(a1, j)}.

Note that the period of Πi(A, j) would be a divisor of ℓ.

For notational simplicity, Π(·, j) is used without indicating

the domain of each projection if there is no ambiguity.

Then we define the composition of two input-state cycles

from different subnetworks. Note that, hereafter, if a subnet-

work has no input nodes, we use its attractors, or say cycles,

A1 0

1

0
0

1

0

0

1

0
0

1

0

A2

1

0

0

1

0

Fig. 5. An example of composition of two input-state cycles

instead of input-state cycles. Assume Σ1 and Σ2 are two

subnetworks, and

X1 ∪ U1 = {x1, . . . , xk1
, xk1+1, . . . , xk1+k2

},
X2 ∪ U2 = {x1, . . . , xk1

, xk1+k2+1, . . . , xk},

where x1, x2, . . ., xk1
are the common components in two

subnetworks. If there are two input-state cycles for Σ1 and

Σ2 with length, ℓ1 and ℓ2, respectively, i.e.,

A1 = {a1 → a2 → · · · → aℓ1 → a1} ∈ A1,

A2 = {b1 → b2 → · · · → bℓ2 → b1} ∈ A2,

and Π(A1, j) = Π(A2, j) for j = 1, 2, . . . , k1, then the

composition of A1 and A2, i.e. A1×A2, is defined as follows:

1) Repeat A1 and A2 to length-ℓ periodic paths Ã1 and Ã2

where ℓ = lcm(ℓ1, ℓ2)

Ã1 = {ã1 → ã2 → · · · → ãℓ → ã1},
Ã2 = {b̃1 → b̃2 → · · · → b̃ℓ → b̃1},

where lcm(·, ·) is the least common multiple of the

arguments.

2) Adjust the order of states in Ã1 and Ã2 by circular

permutation in order to make Π(Ã1, j) and Π(Ã2, j)
equal to each other for j = 1, 2, . . . , k1.

3) A1 ×A2 is given by

A1 ×A2 =
{[

ã1, π(b̃1, p), π(b̃1, p+ 1), . . . , π(b̃1, k)
]

→

[

ã2, π(b̃2, p), π(b̃2, p+ 1), . . . , π(b̃2, k)
]

→

· · · →

[

ãℓ, π(b̃ℓ, p), π(b̃ℓ, p+ 1), . . . , π(b̃ℓ, k)
]

→

[

ã1, π(b̃1, p), π(b̃1, p+ 1), . . . , π(b̃1, k)
]}

,

where p = k1 + k2 + 1. This is akin to the mechanism

of two gears rotating together, as illustrated in Fig. 5.

The following example demonstrates the composition pro-

cedures:

Example 3.6: Consider two input-state cycles

A1 = {(0 0 1) → (1 0 1) → (0 1 1) → (1 1 0) → (0 0 1)}
A2 = {(1 1) → (0 0) → (1 1)},
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where the states in A1 are ordered as (x1, x2, x3), and the

states in A2 are ordered as (x1, x4). Their projections onto x1

are

Π(A1, 1) = {0 → 1 → 0 → 1 → 0} = {0 → 1 → 0}
Π(A2, 1) = {1 → 0 → 1},

thus, Π(A1, 1) = Π(A2, 1). We can compose them.

1) Repeat A1 and A2 to length-4 periodic paths

Ã1 ={(0 0 1) → (1 0 1) → (0 1 1)

→ (1 1 0) → (0 0 1)}
Ã2 ={(1 1) → (0 0) → (1 1) → (0 0) → (1 1)}.

2) The projections of Ã1 and Ã2 onto x1 are

Π(Ã1, 1) = {0 → 1 → 0 → 1 → 0} = {0 → 1 → 0}
Π(Ã2, 1) = {1 → 0 → 1 → 0 → 1} = {1 → 0 → 1}.

To make them equal to each other, reorder of the states

in Ã2 as

Ã2 = {(0 0) → (1 1) → (0 0) → (1 1) → (0 0)}.
3) The composition is given by

A1 ×A2 ={(0 0 1 π[(0, 0), 4]) → (1 0 1 π[(1, 1), 4])

→ (0 1 1 π[(0, 0), 4]) → (1 1 0 π[(1, 1), 4])

→ (0 0 1 π[(0, 0), 4])}
={(0 0 1 0) → (1 0 1 1) → (0 1 1 0)

→ (1 1 0 1) → (0 0 1 0)}.
Finally, we are ready to present an algorithm to recover

the attractors of the whole network from its subnetworks. It

is assumed that Boolean network graphs considered are at

least weakly connected, i.e., there is always a path between

any two nodes if the direction of the edges is ignored. This

excludes networks with isolated multiple groups, where each

isolated group can be analyzed one by one using the proposed

algorithm in the following, if needed.

Algorithm 3.7: The attractors of the Boolean network (2)

can be obtained by applying the following steps:

1) Partition the network graph to s-number of

blocks {X1,X2, . . . ,Xs}, and reorder them to

{Xi1 ,Xi2 , . . . ,Xis} such that the corresponding Xiα

and Uiα for 2 ≤ α ≤ s satisfy




α−1
⋃

β=1

Xiβ ∪ Uiβ



 ∩ (Xiα ∪ Uiα) 6= ∅, (6)

i.e., each block is connected to the union of all blocks

in front in the order by at least one edge.

2) For each subnetwork Σi, find all elementary input-state

cycles, and then combine them to obtain all input-state

cycles of Σi with the length of period less than or equal

to 2n. Denote the set of all input-state cycles as Ai, for

i = 1, 2, . . . , s.

3) Find an attractor of Boolean network (2) by composing

the input-state cycles of subnetworks as follows:

(((Ai1 ×Ai2)×Ai3)× · · · )×Ais , (7)

where Aiα belongs to Aiα , and {Aiα |α = 1, 2, . . . , s}
must satisfy the following for all xck in C and α, β in

{1, 2, . . . , s}:

Π(Aα, ck) = Π(Aβ , ck) (8)

whenever xck is an element of (Xα ∪ Uα)∩(Xβ ∪ Uβ).

Theorem 3.8: Consider the Boolean network (2), partitioned

to subnetworks (3), where its network graph is assumed to

be weakly connected, i.e. no isolated nodes in the network

graph. The composition given by (7) is an attractor of Boolean

network (2), and all attractors of the Boolean network (2) can

be recovered using the above algorithm.

Proof. Firstly, as the network graph is weakly connected, for

any aggregation, we can always find two subnetworks Σi1 and

Σi2 such that (Xi1 ∪ Ui1)∩ (Xi2 ∪ Ui2) is non-empty, i.e., Σi1

and Σi2 satisfying the condition (6) for α = 2. Then, we can

find further Σi3 such that (6) holds for α = 3 because of the

weak connectivity of the network. These procedures, dividing

and ordering the subnetworks to the index, {i1, i2, . . . , iα},

such that (6) holds, are repeated till α = s. Each edge of an

input-state cycle Aik satisfies the dynamics of Σik in (3). (8)

ensures that the states of overlapping nodes of the input-state

cycles in (7) are equal to each other. Therefore, the edges of

the composition (7), satisfy the overall dynamics (2), and (7)

is an attractor of the Boolean network (2).

Conversely, for any attractor A of the Boolean network (2),

by projecting it onto the nodes in Xik ∪ Uik , for k =
1, 2, . . . , s, an input-state cycles Aik , is obtained and (8)

holds, and the composition of Aik ’s is equal to A. Hence,

all the attractors of the Boolean network (2), can be revealed

by (7). �

As the attractors of the Boolean network (2), cannot be

longer than 2n, their projections onto each subnetwork are

shorter than or equal to 2n as well. Hence, finding input-state

cycles, whose length is longer than 2n, is not necessary.

Complexity Analysis: The proposed algorithm has four

main parts as follows:

P1. Aggregation of the Boolean network

P2. Finding all elementary input-state cycles for each sub-

network

P3. Combine the elementary input-state cycles to input-state

cycles

P4. Compose the input-state cycles to attractors of the whole

network.

Comparing to P2, the complexity of P1 is negligible as the

computational cost increases polynomially with the size of

the networks. For example, to calculate the eigenvectors of

the Laplacian matrix of network graph, whose size is n × n,

the complexity is O(n3) if we use a spectral partitioning

method such as min-cut aggregation [18] or max-modularity

aggregation [19]. For P2, on the other hand, the fastest

algorithm for finding all the elementary cycles of general

graph is Johnson’s algorithm [20], [22] and its complexity is

O((n + e)(c + 1)), where n, e, c are the numbers of nodes,

edges, and elementary cycles respectively. Thus, for each

subnetwork, the complexity to complete P2 is in the order

of O((2mi+ni + 22mi+ni)(Ñi + 1)), where Ñi is the number
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TABLE I
NUMBER OF INPUT-STATE CYCLES (Ni), WHERE THE PERIOD IS LESS

THAN OR EQUAL TO ℓ

ℓ 1 3 5 10 16

N1 1 3 15 222 8819
N2 3 8 18 241 8872

of elementary input-state cycles of Σi, and it is bounded above

by O(s22mα+nαÑα), where α = argmaxi{22mi+niÑi}. The

complexity of P3 together with P4 is no more than O((Nβ ℓ̄)
s),

where β = argmaxi{Ni}, ℓ̄ is the length of the longest input-

state cycles, and Ni is the number of input-state cycles shorter

than or equal to 2n. Note that unlike the elementary input-

state cycles, input-state cycles in Boolean control networks

may have repeated states in general, thus Ni may be much

greater than Ñi.

The total number of states of Boolean networks with n-

nodes is 2n and the transition from each state to an updated

state is unique. Thus, finding the cycles of whole Boolean

networks directly requires computations in order 2n. Com-

paring O(s22mα+nαÑα + (Nβ ℓ̄)
s) with O(2n), the proposed

method will be very efficient if the size of each subnetwork is

small enough and Ni’s are not too big. If not, the algorithm

requires more computations than the one of the brute force

computation. This is an inherent difficulty of solving NP-

hard problems. For the Boolean network whose network

graph is sparse, on the other hand, if it is possible to set

a reasonable size M(≪ n), and partition the network such

that subnetwork size, 2mi + ni, is less than or equal to M ,

then the computational reduction will be significant. Note that

the sparse network structure is quite common in biological

networks [23], [24].

Another very important issue is the number of input-state

cycles Ni for each subnetworks. The number of input-state

cycles of Boolean control networks may be very large for

long period attractors. However, we may be less interested

in longer attractors as most of biologically and physically

meaningful dynamics are related to the short period attractors

including fixed points. If we are to find attractors with the

length of period less than or equal to a fixed number T , Ni

would not be very large. If T = 1, i.e. finding fixed points,

the proposed algorithm yields the results extremely quickly.

The mean maximum attractor length of Boolean networks is

shown to be proportional to
√
n in [1], thus it is reasonable to

set T ≤ √
n, although in some cases there may be attractors

longer than
√
n.

In the following example, the strength of the proposed

algorithm and the computational issues are highlighted.

Example 3.9: Consider a Boolean network whose network

graph is partitioned as shown in Fig. 6 and its dynamics is

given by



















x1(t+ 1) = x2(t) ∨ x3(t)

x2(t+ 1) = ¬x1(t)

x3(t+ 1) = x4(t)

x4(t+ 1) = x2(t) ∧ x3(t).

x1 x2

x3 x4

Σ1

Σ2

Fig. 6. Boolean network of example 3.9

Ni, the number of input-state cycles for each subnetwork,

whose length is less than or equal to ℓ, is shown in Table I.

Even in this simple example, the number of input-state cycles,

not the number of elementary input-state cycles, is huge.

Thus, trying to find all attractors using the proposed algorithm

requires more computation than the brute-force algorithm. The

network has in fact only one attractor as follows:

{(1100) → (1000) → (0000) → (0100) → (1100)},
and it is composed by

A1 = {(110) → (100) → (000) → (010) → (110)},
where the state is arranged in (x1, x2, x3), and

A2 = {(100) → (100) → (000) → (000) → (100))},
where the state is arranged in (x2, x3, x4), with their projec-

tions onto x2 and x3 satisfying:

Π(A1, 2) = Π(A2, 2) = {1 → 1 → 0 → 0 → 1},
Π(A1, 3) = Π(A2, 3) = {0 → 0}.

In order to find this attractor through the proposed algorithm

the computational cost is much larger than the brute-force

algorithm. However, if we only want to find fixed points, i.e.

T = 1, fixed points for both subnetworks are found as follows:

A11 = {(101) → (101)}
A21 = {(111) → (111)}, A22 = {(100) → (100)},
A23 = {(000) → (000)},

where Aij is j-th input-state cycle of i-th subnetwork. It is

immediately concluded that there are no fixed points as Aij

cannot be composed and these can be calculated very quickly.

IV. ACYCLIC AGGREGATION

There could be a large number of input-state cycles with

long periods in each subnetwork if a Boolean network is

divided into several subnetworks as demonstrated in Example

3.9. As already pointed out earlier, the proposed algorithm

is only efficient to find short period attractors. However, the

following example shows that we can also find efficiently all

the attractors for Boolean networks with a special structure.

Example 4.1: Recall Example 2.2. As Σ3 has no input, it is

a Boolean network itself rather than a Boolean control network

and it has a far less number of attractors compared to Boolean

control networks in general. It can be easily seen that there is

only one attractor of Σ3 and it is as follows:

A3 = {(1011) → (0110) → (1011)},
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Σ3

Σ1

Σ2
x 1

x
7

x7

Fig. 7. Example of aggregation graph corresponding to example 4.1

where the state is ordered as (x6, x7, x8, x9). The projection

onto its output x7 is given by

Π(A3, 7) = {0 → 1 → 0}.

The attractors of Σ1 to be composed with A3 must have the

same projection onto its inputs x7. Thus, the input sequence

to Σ1 can be fixed to {0, 1, 0, 1, . . .}. Σ1 becomes a periodic

time-varying Boolean network with the fixed periodic input

from Σ3. As the input is fixed, the number of possible input-

state cycles of the Boolean control network Σ1 is much less

than the one with free input. It is now easy to obtain all input-

state cycles of Σ1, with the fixed input sequence. There is only

one as follows:

A1 = {(1001) → (0000) → (0011) → (0110) → (1001)},

where the state is ordered as (x1, x2, x3, x7). Finally, as x1 and

x7 are inputs to Σ2, we now fix the input sequence, (x1, x7),
to Σ2 as follows:

{(11), (00), (01), (00), (11), (00), (01), (00), · · · }.

The corresponding input-state cycles of Σ2 are obtained as

follows:

A21 = {(1101) → (0100) → (0101) → (0100) → (1101)},
A22 = {(1001) → (0110) → (0001) → (0110) → (1001)},

where the state is ordered as (x1, x4, x5, x7).
Hence, all attractors of the whole network are found by

(A3 ×A1)×A21, and (A3 ×A1)×A22.

Consider the network graph of a Boolean network shown

in Fig. 7, where each block Σi represents a super node, and

call it aggregation graph. If there are no periodic path in the

aggregation graph, which is the case of Example 4.1, we call

this aggregation an acyclic aggregation. In this case, there exist

several root blocks, which have no input, i.e. they are Boolean

networks. By projecting the outputs from the root blocks onto

their child blocks, the child blocks are turned into periodic

time-varying Boolean networks. Repeat these procedures until

all blocks can be driven by the outputs from their parent

blocks. In these procedures, there is no need to find all input-

state cycles in each subnetwork and the computational demand

decreases significantly. The only remaining question is how

to find an acyclic aggregation if there exists any for a given

network structure. To this end, we introduce some classical

concepts in graph theory in the following:

Definition 4.2:

1) G = {X , E} is a directed network graph, where X is

the set of nodes and E is the set of directed edges.

xi → xj ∈ E, if xi and xj are elements of X , and there

exists an edge starts at xi and ends at xj .

2) The directed graph G is called strongly connected, if

for any xi, xj ∈ X there is a path xi → xk1
→ xk2

→
. . . → xkp

→ xj from xi to xj .

3) G′ = {X ′, E′} is called a subgraph of G, if X ′ ⊂ X ,

and for all xi, xj ∈ X ′, xi → xj ∈ E implies xi →
xj ∈ E′.

4) The subgraph G′ = {X ′, E′} of G is called a strongly

connected component, if it is a maximal strongly con-

nected subgraph, i.e. adding any nodes that are not

elements of X ′ and the corresponding edges to E′ makes

the obtaining subgraph being not strongly connected.

Note that a single node can also be a strongly connected

component.

5) For two aggregations of G, P1 = {X11,X12, . . . ,X1p},

P2 = {X21,X22, . . . ,X2q}, P1 is said to be finer than

P2, if for any X1i ∈ P1, there exists an X2j ∈ P2 such

that X1i ⊂ X2j .

It is easy to see that any two strongly connected components

of a directed graph are disjoint. Thus, strongly connected

components form an aggregation of the graph and we call

it graph of strongly connected components. The following

two lemmas are also classical results from graph theory. They

show the relationship between strongly connected components

and acyclic aggregation.

Lemma 4.3: A strongly connected graph does not have

acyclic aggregations.

Proof. For any two network partitions, G1 and G2, of any ag-

gregation of a strongly connected graph, G, and two arbitrary

nodes, a ∈ G1 and b ∈ G2, there are paths from a to b, and b

to a by the definition of strongly connected graph. Then, the

paths form a cycle between G1 and G2. Hence, the strongly

connected graph cannot be acyclic. �

Lemma 4.4: The graph of strongly connected components

of a directed graph G, is acyclic.

Proof. If the graph of strongly connected components of G

is not acyclic, there are k strongly connected components,

G1, G2, . . . , Gk, which form a cycle, where k > 1. For any

a ∈ Gi, b ∈ Gj , i 6= j, i, j = 1, 2, . . . , k, there exists a

path from a to b and a path from b to a and ∪k
i=1Gi turns

out to be strongly connected. This contradicts the fact that

the strongly connected components are maximally strongly

connected subgraphs. �

Combining these two lemmas, the following is trivial:

Corollary 4.5: The graph of strongly connected components

of a directed graph is finer than any other acyclic aggregation.

There are many existing efficient algorithms for finding

strongly connected components, for example, Tarjan’s algo-

rithm [25], which can be used to find the acyclic aggregation

of the network graph of a Boolean network.

V. APPLICATIONS TO BIOMOLECULAR NETWORKS

First, to evaluate the efficiency of the proposed algorithm,

the Boolean network model of T-cell receptor kinetics [26] is
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CD45 CD4 TCRligTCRbind

PAGCsk cCbl

Fyn Lck

TCRphos Rlk ZAP − 70

LATphop Gads

SLP76

PLCgbind

Itk
PLCgact

IP3

DAG

Caplus

Calcin

NFAT

PKCthRasGRP1

Grb2Sas

Ras

Raf SEK IKKbeta

IkBJNKMEK

ERK JUN NFkBRsk Fos

CREB

CRE
AP1

Fig. 8. Boolean network implementing a T-cell receptor model as presented in [26]

to be analyzed. The network graph of T-cell receptor kinetics

is shown in Fig. 8, where the solid arrows with pointed

heads represent activation, the dashed arrows with bar heads

represent inhibition, the big bullets represent “AND”, and the

boxes with more than one arrow pointed to them represent

“OR”. For example, for PAGCsk, there is a dashed arrow

from TCRbind and a solid arrow from Fyn pointed to its

box, thus its update rule is

PAGCsk(t+ 1) = ¬TCRbind(t) ∨ Fyn(t).

There are three external inputs, CD45, CD4, and TCRlig

and the inputs are fixed to (1, 1, 1) as [11] so that the

analysis of the responses of T-cell receptor kinetics focuses

on a specific physiological input situation. The assumption

of the inputs being constant during the analysis is based

on the fact that for most biological networks external inputs

cannot change fast and frequently enough during their dynamic

responses. Note that, however, any periodic or constant ex-

ternal input scenarios can be analyzed without any significant

increasing computational demand. Second, it is easy to see that

the following nodes compose a strongly connected component

having no input, i.e. X1 is a root block,

X1 = {TCRbind, PAGCsk, Lck, Fyn, cCbl,

TCRphos, ZAP − 70}.
The attractors of Σ1 corresponding to X1 can be easily found,

for example, using the semi-tensor approach toolbox, as it is

a Boolean network with only 7 nodes. Using a PC with Dual-

Core 2.5GHz CPU, 8G RAM, it takes only 0.0983s to find all

(two) attractors as follows:

A11 = {(1101010) → (1101010)},
A12 = {(1111010) → (1101011) → (1101110) →

(0101010) → (1100010) → (1001000) →
(1111010)},

where the states are ordered as (TCRbind, PAGCsk, Lck,

Fyn, cCbI, TCRphos, ZAP − 70). For the rest of nodes,

each node is now considered as an individual block, i.e., a

subgraph with one node. For each single-node block, which

does not have any self-feedback, one periodic input will drive

only one attractor of the block Thus, each attractor of Σ1

can generate only one attractor in the whole network. It takes

only 0.0278s to calculate two attractors of the whole network.

Their projection onto the outputs of the T-cell receptor are as

follows:

{(0100) → (0100)}
{(0100) → (0100) → (0100) →
(0100) → (0101) → (0100)},

where the states are ordered as (NFAT,NFkB,AP1,
CRE).

Hence, it takes a total 0.126s only to find all attractors in

the T-cell receptor network. This is remarkable compared to

other approaches to find all attractors in such a large Boolean

networks. Given that the total number of states is 237, it is

impossible or impractical at least to find all attractors in a

reasonable amount of time using general methods such as
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the semi-tensor product approach [12] or random initial state

evaluation [11]. In [11], the authors applied their algorithms

to the asynchronous case of T-cell receptor to compare the

running times: 20.7 minutes using Genysis’s algorithm [27],

11.3s and 2.1s using their algorithm to find 90% percent

steady states with 90% confidence and 80% percent steady

states with 80% confidence respectively. However, only very

few (far less than 1%) of the states in state space need to

be considered using their algorithm applied to asynchronous

Boolean networks. Their algorithm can also be applied to

synchronous Boolean networks, but for synchronous Boolean

networks no states can be excluded a priori, thus the total 237

number of states in the state space of T-cell receptor network

must be considered and it would take at least several hours to

perform all the calculations. Moreover, the computation time

increases drastically from hours to years by adding two or

more nodes to the network.

The other 7 different external input combination cases are

analyzed and the corresponding outputs are summarized in

Table II, where inputs are ordered as (CD45, CD4, TCRlig)
and outputs are ordered as (NFAT,NFkB,AP1, CRE).
The results shown in the table imply that the T-cell receptor

response is rather robust, as most input combinations cannot

change its steady states if the inputs remain constant for a

sufficient amount of time.

Note that the T-Cell receptor model contains only one

strongly connected component with more than one node; all

the rest are single-node blocks. This structure of network graph

is ideal for our algorithm in terms of computational efficiency.

In order to demonstrate the performance of the algorithm on

a less trivial example, an early flower development network is

used [28]. Its network graph comprises 24 nodes (excluding

the input nodes) and turns out to have also acyclic aggregation.

It has two strongly connected components with more than one

node: one has 8 nodes and another has 4 nodes. Using the

proposed algorithm, it takes only 0.176s to find all attractors

(in fact there is only one), while it is impossible to use a

standard PC to analyze the attractors of this network using

the semi-tensor product approach directly.

VI. CONCLUSION

In order to reduce the computational complexity in finding

attractors of Boolean networks an aggregation algorithm is

developed. The proposed algorithm is based on the idea of

dividing the whole network into several subgraphs and of

composing the attractors of the whole networks from the input-

state cycles found in each subnetwork. The algorithm is shown

to be more efficient than finding attractors directly from the

whole network in the following scenarios: i) the network graph

can be divided into a few subnetworks, whose sizes are small

enough to be analyzed using some analytic methods, e.g.,

the semi-tensor approach, ii) short-period attractors are to be

found, and/or iii) the aggregation graph is acyclic.

If a Boolean network is put into an acyclic aggregation by

finding strongly connected components in the graph where

all components are small enough (say, less than 20 nodes or

so), the proposed algorithm finds all attractors of the Boolean

network very efficiently. On the other hand, if the network

graph cannot be partitioned acyclically (i.e., the network graph

is itself strongly connected), or some strongly connected com-

ponents are too large, then large network components can be

divided into smaller blocks using the min-cut criterion; short-

period attractors can still be found with little computation

using the proposed algorithm.

In many applications, some variables have more than two

states, i.e. multi-valued logical networks or their update rules

are functions of continuous variables, i.e., mixed-valued log-

ical networks [13], [29]. For example, the state of genes

and the concentration of proteins are quantified to more

than two levels and simple PID controllers for engineering

systems are implemented with logical decision algorithms.

Generalization of the suggested algorithm to those cases will

produce powerful tools to analyze various dynamical systems.
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