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ABSTRACT

This paper presents a conceptual framework for sound diffusion:

the process of presenting multiple channels of audio to an au-

dience in a live performance context, via loudspeakers. Termi-

nology that allows us to concisely describe the task of sound

diffusion is defined. The conceptual model is described using

this terminology. The model allows audio channels (sources)

and loudspeakers (destinations) to be grouped logically, which,

in turn, allows for sophisticated abstract methods of control that

supercede the restrictive ’one-fader-one-loudspeaker’ approach.

The Resound project – an open source software initiative con-

ceived to implement and further develop the conceptual model –

is introduced. The aim is, through further theoretical and practice-

led research into the conceptual model and software respectively,

to address the technical, logistical and aesthetic issues inherent

in the process of sound diffusion. Keywords – Sound Diffusion,

Spatialisation, Software, Resound.

1. INTRODUCTION

Sound diffusion involves the reproduction of Audio Streams, via

loudspeakers, to an audience. A common application is in the

performance of electroacoustic music from CD, but the princi-

ples are relevant in a diverse range of activities including theatre

sound, cinema, virtual reality, and indeed any scenario where

sophisticated real time control over the auditory environment is

required. Where references are made to the performance of elec-

troacoustic music, it is to be understood that the same principles

could apply in a variety of sound diffusion scenarios.

Audio Streams can originate from any combination of a wide

variety of sources, including recording and playback devices (e.g.

CD players, audio sequencers), microphones and pickups, syn-

thesis technologies and audio processing technologies, any of

which may be implemented in hardware or software [1, p17-20].

The Audio Streams are reproduced via a loudspeaker array com-

prising a potentially large number of loudspeakers. A mixing

device (often an audio mixing desk but, increasingly, a software

implementation) acts as an intermediary between audio sources

and loudspeakers, along with an interface that allows the diffuser

(performer) to control the auditory results.

This research focuses mainly on the issues inherent in the

real-time diffusion of multiple Audio Streams. The ergonomics

of the interface used to control the diffusion are therefore of

key importance. Furthermore, because the specific technical de-

mands of electroacoustic works – in terms of audio sources, the

number of channels used, and so on – can vary considerably from

composition to composition within the context of a single con-
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cert programme, a dynamic and configurable audio routing ar-

chitecture is required.

The authors have previously developed the M2 Sound Diffu-

sion System, whose design and implementation has been thor-

oughly documented elsewhere [1, 2, 3]. The prototype system

has regularly facilitated live performances since its inaugural

performance in March 2004 and, at the time of writing, continues

to serve as the principal sound diffusion system at the University

of Sheffield Sound Studios. The M2 system demonstrated some

significant advantages: it is portable quick to set up; signal rout-

ings can be re-configured comparatively quickly and easily; the

interface supplements familiar fader-based diffusion paradigms

rather than replacing them with unfamiliar methods. Three years

of practical experience with the system – as well as highlighting

the benefits of the system – has revealed some unforeseen issues

[1, p247-265]. It is clear that significant improvements are still

to be made in the technology of sound diffusion, and that future

systems will benefit from a thorough conceptual reappraisal of

what, exactly, sound diffusion involves.

2. AUDIO STREAMS

For the purposes of this article, an Audio Stream is defined as

any non-symbolic representation of audio, analogue or digital,

including that which is recorded, synthesized or transduced via

microphones or pickups. The continuously varying voltage gen-

erated by a microphone is an example of an Audio Stream. It

is a directly analogous representation, obtained via a process of

transduction, of the fluctuations in air pressure that constituted

the original auditory event. It is not symbolic, unlike, for ex-

ample, western classical notation or Morse code: these are ab-

stract codified systems that need to be deciphered according to

predetermined schemes. Importantly, the Audio Stream is one,

and only one, single channel of audio: a stereophonic record-

ing therefore comprises two Audio Streams. (Clearly the two

Streams are related; we will return to this later.) We identify

the Audio Stream as an irreducible unit in the context of sound

diffusion.

3. COHERENT AUDIO STREAM SETS

Multiple Audio Streams are very often used concurrently to en-

code spatial information. Two-channel stereophony [4] involves

the concurrent use of two Audio Streams to encode spatial infor-

mation with respect to a single (nominally horizontal) axis. In

principle, this concept can be extended to any number of Audio

Streams. A Coherent Audio Stream Set (CASS) is defined as

a group comprising an arbitrary number of Audio Streams that

are co-dependent on account of having been used collectively

to encode spatial information in this manner. Some examples



are given in Figure 1. Collectively, the constituent Streams of

the CASS represent a single, homogeneous spatio-auditory im-

age. Given an appropriate loudspeaker configuration it is pos-

sible to reproduce the spatio-auditory image embedded within

a CASS by simply mapping the constituent Audio Streams di-

rectly to loudspeakers. This distinguishes the CASS from higher

order encodings such as Ambisonics and Dolby’s AC3 encoding,

which require preliminary decoding in order to obtain the con-

stituent Audio Streams before reproduction over loudspeakers is

possible.

Figure 1. Coherent Audio Stream Sets (CASS)

4. COHERENT LOUDSPEAKER SETS

A Coherent Loudspeaker Set (CLS) is a group of loudspeakers

arranged in such a way that it can be used to correctly broadcast a

Coherent Audio Stream Set. For example, two loudspeakers ar-

ranged according to the normal stereophonic convention can be

used to correctly reproduce a stereophonic CASS. (What con-

stitutes ”correct reproduction” in this context is, clearly, open

to interpretation.) Similarly, five loudspeakers and a sub-woofer

deployed according to the accepted convention for 5.1, can be

used to correctly play back a 5.1 channel recording. A CLS

can comprise any combination of loudspeakers from the array (a

loudspeaker ”array” connotes all of the loudspeakers in the sys-

tem) that are deemed appropriate for the reproduction of a given

CASS. Thus, an array can contain many more CLSes than there

are loudspeakers, and any given loudspeaker could conceivably

be a member of several different CLSes. Some arbitrary exam-

ples are given in Figure 2.

5. REDEFINING SOUND DIFFUSION

Sound diffusion can now be defined as a practice that involves

the real time broadcast of one or more Coherent Audio Stream

Sets via one or more Coherent Loudspeaker Sets. Nowadays it is

not at all uncommon for electroacoustic works to comprise mul-

tiple CASSes comprising variable numbers of Audio Streams.

Consider Jonty Harrison’s eight-channel work Rock ’n’ Roll, de-

scribed by the composer as follows:

I used a six-channel hexagonal [loudspeaker] array

as a surround,’ and I had two solo speakers – the

mains if you like [...] – for close up stuff. What I

would like to do [...] is be able to diffuse the twos

and the sixes completely independently.[5]

What Harrison describes is an eight channel work compris-

ing two Coherent Audio Stream Sets: one six-channel Set and

one two-channel Set. To be able to diffuse the two Sets indepen-

dently will clearly depend on a flexible mix architecture and an

equally flexible user interface.

(a) Example loudspeaker array. (b) Three potential stereo CLS

mappings: L1-R1, L2-R2 and

L3-R3.

(c) Two potential 5.1 CLS map-

pings.

(d) 12 Channel CLS circular

mapping with sequencial ”clock

face” ordering.

Figure 2. Coherent Loudspeaker Sets (CLS). A selection of

CLS groupings are mapped onto the loudspeaker array.

6. MATRIX MIXING

Ultimately, sound diffusion concerns the dynamic distribution of

Audio Streams from input channels to output channels. A flexi-

ble way of achieving this in practice is with a mix matrix, an ex-

ample of which is illustrated in Figure 3. Input busses are shown

as horizontal lines, output busses as vertical lines. The points

at which these lines intersect are referred to as input-to-output

nodes (or cross-points); these represent potential input-to-output

buss routings. Each input-to-output node has an attenuator, as

opposed to simply being switched. In addition to the input-to-

output nodes we also have the usual input nodes output nodes

for each channel.

Figure 3. A simple 8-in-8-out Matrix mixer schematic



Switched-buss mix architectures (as found in most conven-

tional mixing desks) necessitate fixed routing of inputs to out-

puts, and allow us simple control over buss input and output

levels only. In sound diffusion this can be limiting, especially

where multiple and/or greater-than-stereo CASSes are involved.

The mix matrix architecture, on the other hand, allows us to dy-

namically mix any input signal to any output channel in any pro-

portion. Clearly, this is very useful in the context of sound dif-

fusion. Accordingly, the mix matrix is increasingly frequently

implemented in sound diffusion systems, and forms the underly-

ing architecture of, amongst others, the DM-8 system [6], Rich-

mond’s SoundMan system [7], and the M2 Sound Diffusion Sys-

tem, which we will return to later. Recent developments at the

University of Birmingham have also explored the matrix archi-

tecture [8]. It has additionally been noted that matrix nodes can

be used to accommodate extended signal processing, resulting in

further increased flexibility [2, p36-38].

In summary, the mix matrix provides us with a multitude of

parameters through which we can diffuse Audio Streams. The

complexity involved in the individual control of such large num-

bers of parameters, however, becomes a concern.

7. PHYSICAL INTERFACE DEVICES AND
ABSTRACTED VERSUS DIRECT CONTROL

The expression Physical Interface Device will be used to de-

scribe any hardware means of user input into a system. Single

axis slide potentiometers – faders – are the most common Phys-

ical Interface Devices in sound diffusion. A fader affords us

direct control over the value of a single matrix parameter only.

A simple eight-in-eight-out attenuation matrix (as shown in Fig-

ure 3) has eighty nodes – eight for the inputs, eight for the out-

puts, and sixty-four for the input-to-output nodes – and would

therefore require eighty faders. Clearly, then, a direct one-to-

one mapping of faders to parameters is problematic. If the ma-

trix architecture is to be useful in the context of sound diffusion

it is necessary to have abstracted control over the matrix param-

eters, whereby the fader manipulates multiple parameters indi-

rectly via some predefined algorithm. If a fader is to afford us

abstracted control over multiple parameters in this way, then we

need to be able to specify – firstly – which parameters we want

to control and – secondly – precisely what kind of control we

want to have.

8. COLLECTIVES

A Collective is used to specify which mix matrix parameters

(nodes) a Physical Interface Device will control. A Collective

is, essentially, a group of parameters in a particular order. More

specifically, it is a set of elements in a specific order, where each

element can contain one or more matrix parameters. This is il-

lustrated in Figure 4. In programming terminology a Collective

is simply a two-dimensional array of parameter addresses. A

Coherent Audio Stream Set can, therefore, be expressed as a

Collective whose elements can only be matrix input nodes. A

Coherent Loudspeaker Set – at least as far as the routing of in-

puts to outputs is concerned – can be expressed as a Collective

whose elements consist only of matrix output nodes. In terms

of how Parameters are addressed, a useful system – whereby ad-

dresses are given in URL form – is utilised in the OSC protocol

[9]. We might, for example, describe an input-to-output node’s

attenuation Parameter address as follows: /matrix/in1/out1/att.

Figure 4. Example showing the structure of a Collective

9. BEHAVIOURS

A Behaviour determines precisely how the parameters of a Col-

lective will be acted upon. More accurately, a Behaviour has one

or more of its own input parameters and uses these to manipu-

late the parameters contained within a designated Collective in a

specific way. A Behaviour’s own parameters can be assigned to

Physical Interface Devices, thus allowing interactive control.

As a very simple example, consider a Behaviour called ’Group.’

The ’Group’ Behaviour has one parameter of its own – Level –

direct control of which has been assigned to Fader A. The Be-

haviour also has a Collective assigned to it, which contains a

number of mix matrix parameters. When the value of Fader A
changes, its value is mapped on to all of the parameters of the

Collective, and thus the fader behaves like a ’group.’

In a more sophisticated example, a Behaviour may be de-

signed to make use of the ordered nature of the Collective in

some logical manner. A ’Chase’ or ’Sequence’ Behaviour could

be used to iterate through the elements of a Collective in turn,

resulting in a semi-automated movement of sound between loud-

speakers. In addition to a ’Level’ parameter it might also have a

’Frequency’ parameter, to determine the rate at which the chase

sequence would iterate. In principle, any number of different

Behaviours could be defined that interact algorithmically with

matrix parameters in various ways.

10. PARAMETER SUMMING PRINCIPLE

Consider the possibility of individual matrix Parameters being

under the simultaneous control of multiple Behaviours: which

Behaviour has final control over the Parameter? Of course we

could decide that multiplicitous control is not allowed, but this

is limiting. Another solution would be to allow the last access-

ing Behaviour to set absolute value, however, this is problem-

atic when Behaviours all act at the same time. What if we want

one Interface Device to act on the full range of a Parameter and

another to provide fine control over a small range? This exam-

ple requires the Parameter to have two Behaviours operating on

it: ’coarse’ and ’fine,’ if you like. This kind of action can be

achieved by adopting a scheme whereby the influences of all of

the Behaviours affecting a Parameter are summed together to

produce the final absolute value. A similar parameter summing

concept was employed in the M2 Diffusion System and is ex-

plained in greater detail elsewhere [2].

11. CLASSIFICATION OF CASS AND CLS ELEMENTS

An advantage of software-based systems is that input-to-output

routing configurations can be saved to disk and re-loaded at a

later time. In theory, this should save time when setting up per-

formances. However, loudspeaker arrays can vary considerably

from performance to performance in terms of the number and



relative positioning of loudspeakers. The routings for one setup

may not map directly on to those of another, meaning that the

system will have to be configured from scratch.

Consider the following scenario. As part of our diffusion

configuration we have a fader to control the level of a stereo

CASS sent equally to two stereo CLSes: ’rear’ and ’distant rear.’

When we raise the fader fully the stereo source emanates from

both loudspeaker pairs. At a later date, we perform the same

work in a different venue, with a slightly different loudspeaker

array, which only has one pair of loudspeakers at the rear of the

hall. We now want the fader to diffuse to one pair of ’rear’ loud-

speakers rather than two. We are clearly dealing with closely

related scenarios yet, frustratingly, there is no way to map be-

tween the old configuration and the new, as the former contains

references to audio outputs that are either absent, or routed to

different loudspeakers, in the new configuration.

In order to make the mapping automatically, two things are

necessary. Firstly, we need a system whereby loudspeakers can

be identified according to their role rather than by which audio

outputs they are connected to. This way loudspeaker pairs could

be labelled ’rear,’ ’distant rear,’ and so on. Secondly, we need to

be able to identify ’rear’ and ’distant rear’ as functionally related.

More specifically, ’distant rear’ could be defined as a hierarchical

subdivision of ’rear.’ This process has been described more fully

elsewhere [1, p278-80].

Such labelling could also be applied to CASS elements. (Re-

call that in our conceptual model CASSes and CLSes are both

simply special instances of parameter Collectives.) This means

that mappings between CASSes and CLSes could take place

semi- or fully automatically if required. The left channel of a

stereophonic CASS – let’s call this Audio Stream A – might be

associated with the labels ’Mono’ and ’Left.’ Two loudspeak-

ers within a CLS – Loudspeakers x and y – might be classified

as ’Mono,’ ’Left’ and ’Mono,’ ’Right,’ respectively. If asked to

identify a suitable automatic mapping for Audio Stream A, we

would choose Loudspeaker x, because its identifiers match more

closely the labels of the Audio Stream A than do those of Loud-

speaker y.

In effect, what we are describing is a hierarchical structure of

abstract metadata identifiers.

12. RESOUND

In order to realise the conceptual model and develop it further,

the authors have founded the Resound project [10]. This is an

open-source software project licensed under the GNU Public Li-

cense (GPL). The software comprises a server component, which

amongst other things implements the mix architecture and pa-

rameter addressing paradigms described, and a graphical client,

which deals with user input as well as facilitating the manipula-

tion of Collectives and Behaviours.

13. CONCLUSION

In summary, the conceptual model of sound diffusion is as fol-

lows. The ’raw materials’ are Audio Streams; these are grouped

in to Coherent Audio Stream Sets (CASSes). The CASSes are

then diffused, via a process of abstracted control over a mix

architecture comprising a matrix of Parameters, to an array of

loudspeakers comprising multiple Coherent Loudspeaker Sets

(CLSes). Abstracted control is achieved by defining two things:

a two-dimensional array of target matrix parameters (a Collec-

tive), and the way in which these parameters behave (a Behaviour).

A Collective-Behaviour combination can then be bound to a Phys-

ical Interface Device (e.g. a fader) for user control, and the pro-

cess of mapping Collective-Behaviours can be repeated for as

many faders as there are available. Conflict between multiple

Behaviours simultaneously acting on the same Parameters is re-

solved via parameter summing within a fixed range. The model

is further refined by way of a hierarchical structure of abstract

metadata identifiers for parameters, which can be used for semi-

automated CASS-to-CLS routings and to increase interoperabil-

ity between differing loudspeaker arrays.
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