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Molecular basis for bacterial peptidoglycan
recognition by LysM domains
Stéphane Mesnage1,2, Mariano Dellarole3,*,w, Nicola J. Baxter1,2,*, Jean-Baptiste Rouget3, Jordan D. Dimitrov4,5,6,

Ning Wang7, Yukari Fujimoto7, Andrea M. Hounslow1,2, Sébastien Lacroix-Desmazes4,5,6, Koichi Fukase7,

Simon J. Foster1,2 & Michael P. Williamson1,2

Carbohydrate recognition is essential for growth, cell adhesion and signalling in all living

organisms. A highly conserved carbohydrate binding module, LysM, is found in proteins from

viruses, bacteria, fungi, plants and mammals. LysM modules recognize polysaccharides

containing N-acetylglucosamine (GlcNAc) residues including peptidoglycan, an essential

component of the bacterial cell wall. However, the molecular mechanism underpinning

LysM–peptidoglycan interactions remains unclear. Here we describe the molecular basis for

peptidoglycan recognition by a multimodular LysM domain from AtlA, an autolysin involved

in cell division in the opportunistic bacterial pathogen Enterococcus faecalis. We explore the

contribution of individual modules to the binding, identify the peptidoglycan motif recognized,

determine the structures of free and bound modules and reveal the residues involved in

binding. Our results suggest that peptide stems modulate LysM binding to peptidoglycan.

Using these results, we reveal how the LysM module recognizes the GlcNAc-X-GlcNAc motif

present in polysaccharides across kingdoms.
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M
olecular recognition of carbohydrates regulates
essential biological processes in living organisms: cell
development and differentiation1, response to bacterial

and viral infection2, cell adhesion during inflammation and
cancer metastasis3, modulation of the immune response4–6 and
signalling7. One carbohydrate binding module (CBM) conserved
across all kingdoms is LysM. It is present in bacterial extracellular
proteins including hydrolases, adhesins and virulence factors such
as Protein A from Staphylococcus aureus8. It is also found in
proteins produced by fungal pathogens acting as modulators of
host immunity9,10, and is present in a large number of proteins
from insects, mammals and plants involved in defence against
pathogens11–14 and symbiotic signalling15,16. LysM modules
consist of 43–50 amino acids that adopt a highly conserved
baab-fold, with particularly high sequence conservation in the
first 16 residues8,17. Prokaryotic LysM modules bind
peptidoglycan, the main component of the bacterial cell wall,
made of alternating N-acetylglucosamine (GlcNAc) and N-
acetylmuramic acid (MurNAc) residues, substituted by short
peptide stems18. In eukaryotes, LysM domains have been shown
to bind mainly to chitin, a b-1,4-linked GlcNAc polymer that is
the main constituent of fungal cell walls5,11,19–21, as well as to
peptidoglycan19. LysM receptors have recently been shown to
bind directly to nodulation (Nod) factors produced by nitrogen-
fixing bacteria, essential for symbiotic interaction22. Nod factors
are lipooligosaccharides consisting of 3–5 b-1,4-linked GlcNAc
residues N-acylated at their non-reducing end and decorated by
several modifications23. Interestingly, LysM proteins produced by
plants can bind two major components of bacterial and fungal
pathogen cell walls (peptidoglycan and chitin, respectively) and
activate a common signal transduction pathway leading to an
immune response19.

Despite a wealth of knowledge as to the role of LysM proteins,
only scarce information is available concerning the mechanism
underpinning LysM–carbohydrate interaction24–26. The recent
elucidation of the structure of Arabidopsis thaliana AtCERK1
LysM domain in complex with a chitooligosaccharide revealed
the molecular basis for chitin recognition25. This work identified
a complex network of hydrogen bonds between the main chain of
the LysM modules and the acetyl groups of GlcNAc residues.
Previous studies have addressed the role of bacterial
multimodular domains in peptidoglycan binding27,28, but no
functional study concerning the molecular basis of this
interaction is available.

Here, we investigate how LysM domains bind to peptidoglycan,
using as a model the multimodular LysM domain of Enterococcus
faecalis AtlA, a peptidoglycan hydrolase with N-acetylglucosami-
nidase activity involved in cell division29,30. Interestingly, our
results suggest that unlike the eukaryotic LysM domains from
plants and fungi studied so far25,26,31,32 tandem bacterial LysM
modules do not form any stable quaternary structure, and
contribute to binding in an additive manner. Using peptidoglycan
fragments and commercially available polysaccharides, we show
that LysM recognizes both the GlcNAc moiety of polysaccharides
and to a lesser extent the peptide stems. We present the solution
structure of LysM, identify the LysM residues involved in
polysaccharide binding and calculate a structure for the
complex. On the basis of our results, we discuss the molecular
basis for the promiscuous binding of LysM to polysaccharides
including chitin, peptidoglycan and Nod factors.

Results
Multiple LysM modules provide additive binding potential to
the domain. The LysM domain of E. faecalis AtlA (Fig. 1a)
contains six conserved LysM modules displaying 65–100%

similarity to each other (Fig. 1b). Each module is preceded by a
low complexity sequence of 16–23 residues, henceforth referred
to as a linker region. Six variants containing 1–6 LysM modules,
with or without a linker sequence at the N terminus, were
overexpressed and purified (Fig. 1c; Supplementary Fig. 1).
Differential scanning calorimetry (DSC) was used to investigate
the respective contributions of LysM modules and linkers to the
structural organization of the LysM domain, both in the absence
and in the presence of peptidoglycan sacculi. For all constructs,
change in heat capacity associated with protein unfolding
revealed a reversible denaturation without significant aggregation
(Fig. 1d). LysM domains made of one or two modules (1, L1, 1L2
and L1L2) presented two-state unfolding mechanisms, similar to
the Escherichia coli MltD LysM domain33. Surprisingly, LysM
variants with three and six modules showed an additional
unfolding transition at lower temperatures, suggesting that
increasing the size of the LysM domain was associated with the
existence of a folding intermediate. This folding intermediate was
also observed by circular dichroism spectroscopy (Supplementary
Fig. 2). In keeping with these results, high pressure fluorescence
experiments34 showed similar centres of spectral mass in all
constructs tested, consistent with a similar environment of
residue W31 (Supplementary Fig. 3). Dynamic light scattering
experiments revealed a positive correlation between the
hydrodynamic diameter and the number of modules in the
constructs analysed (Supplementary Fig. 4). Altogether, these
results therefore suggest that quaternary interactions are not
responsible for the folding intermediate. Aside from the
additional transition observed for L1L2L3 and L1–L6, all
variants present a melting temperature (Tm) at B80 �C
indicating that the presence of multiple tandem LysM modules
had no major impact on the thermostability of the domain
(Table 1). This observation suggests that a particular number of
LysM modules is not required to form a stable domain.
Interestingly, addition of a linker sequence at the N terminus of
the constructs with 1, 2 and 3 modules was systematically
associated with a moderate Tm increase (þ 1.6 �C for L1,
þ 0.7 �C for L1L2 and þ 0.9 �C for L1L2L3) and a significant
increase in enthalpy change (DH¼ 29 kcal mol� 1 for L1,
30 kcal mol� 1 for L1L2 and 11 kcal mol� 1 for L1L2L3)
(Table 1) indicating a stabilizing effect of the N-terminal linker.
DSC analyses of LysM domains bound to peptidoglycan sacculi
revealed similar DSC profiles for all constructs with a systematic
Tm increase due to LysM–peptidoglycan interaction (Table 1)
and DH values increasing with both the number of LysM
modules and linkers in an additive manner. Altogether, these
results suggest that multiple LysM modules do not adopt a
particular quaternary structure to generate a functional protein.
This conclusion remains valid whether LysM is bound to
peptidoglycan or not.

The independence of LysM modules is supported by NMR
analyses. Modules 1, 2 and 3 have almost identical sequences,
whereas the linkers preceding them have a number of differences
(Fig. 1b). 15N HSQC NMR spectra of labelled 1, L1, 1L2, L1L2,
1L2L3 and L1L2L3 constructs are almost superimposable,
showing that there is no interaction between modules, or between
modules and linkers (Supplementary Fig. 5). Furthermore,
analysis of NMR chemical shifts of the linker regions using the
random coil index35,36 and TALOS-N36 indicates that the linkers
are disordered.

To further explore the contribution of LysM modules 1–6 to
the binding activity of the full-length protein, we assayed by
enzyme-linked immunosorbent assay (ELISA) the binding of
constructs containing variable numbers of LysM modules to
immobilized peptidoglycan (Fig. 1e). All the constructs bound
peptidoglycan in a dose-dependent manner. A single motif was
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sufficient to bind peptidoglycan, and the presence of a linker
sequence at the N terminus of the minimal single LysM construct
had no noticeable impact on binding activity. Binding increased
with the number of LysM modules, indicating an additive

contribution of LysM modules to binding. These results are
consistent with the DSC and NMR analyses, suggesting that LysM
modules do not interact with each other, either when free in
solution or when binding to peptidoglycan, and thus behave as
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Figure 1 | Contribution of LysM modules (1–6) and linker sequences (L) to the folding and binding activity of the LysM domain. (a) Domain

organization of E. faecalis glucosaminidase AtlA and LysM-derived polypeptides studied. SP, signal peptide; T,E,P-rich, N-terminal domain of unknown

function rich in threonine, glutamic acid and proline residues. Amino acid numbers refer to the transition between modules. (b) Sequence alignment of the

six LysM modules present in the C-terminal domain of AtlA. Numbering refers to residues corresponding to the LysM module (49 residues); linker

sequences are in italics. Identical amino acids in at least four modules are in dark grey boxes, conserved amino acids are in light grey boxes. Secondary

structures determined by NMR for 1LysM are indicated. (c) SDS–PAGE of purified recombinant LysM polypeptides described in a; the molecular weight of

each purified polypeptide is indicated. (d) Differential scanning calorimetry (DSC) profiles of recombinant LysM polypeptides in the absence (No PG) and

presence of peptidoglycan (þ PG). Red and dotted blue lines are theoretical curves corresponding to a two-state or a three-state unfolding, respectively.

(e) Detection of peptidoglycan binding activities of LysM domains harbouring one to six LysM modules by ELISA.
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beads on a string rather than generating a quaternary structure
essential for binding.

The lack of interaction between LysM domains on binding is
seen most clearly by NMR titration of the 1L2L3 construct with
GlcNAc6 (Supplementary Fig. 6). The changes seen in the
spectrum on addition of GlcNAc6 are almost identical to those
seen on addition of GlcNAc6 to a single LysM module (discussed
in more detail below). Furthermore, the changes in the NMR
spectrum show a very similar dependence on ligand concentra-
tion, demonstrating that the affinity of each of the three modules
in 1L2L3 for GlcNAc6 is similar to that of the single module of
construct 1 (Fig. 1a).

Analysis of peptidoglycan properties required for binding.
Binding of LysM modules to peptidoglycan fragments was
studied using surface plasmon resonance (SPR). Recombinant
LysM proteins made of six modules were immobilized on a sensor
chip and binding was assayed using analyte mixtures prepared
from peptidoglycan sacculi hydrolysed by enzymes displaying
distinct cleavage specificities (Fig. 2). Dose-dependent binding
was observed with soluble peptidoglycan fragments resulting
from amidase or endopeptidase digestion (Fig. 2a,b). By contrast,
binding was abolished when peptidoglycan was digested with a
muramidase (mutanolysin) or when synthetic peptide stems were
assayed (Fig. 2c,d). Taken together, these results indicate that
integrity of the glycan strands is essential for LysM–peptidoglycan
interaction and that the peptide stem is not a sufficient motif for
binding.

The glycan binding activity of LysM was further analysed using
other insoluble polysaccharides (Fig. 2e; Supplementary Fig. 7).
LysM showed affinity for peptidoglycan and chitin but not for
cellulose or xylan, suggesting that the amide group at the C2

0

position of the GlcNAc residues is essential for binding.
LysM binds to both peptidoglycan and chitin. However, the

kinetics of binding to these two ligands are strikingly different.
Binding to chitin displays rapid on and off rates (Supplementary
Fig. 8), whereas binding to peptidoglycan has much slower on
and off rates (Fig. 2).

Identification of the minimal motif recognized by LysM. Chitin
oligosaccharides were used to compare the impact of multiple
modules on binding activity and define the minimal length of the
carbohydrate recognized by LysM (Table 2). Steady-state/equili-
brium SPR analyses (Supplementary Fig. 8) showed that a single
LysM module consisting of 49 amino acids was sufficient to bind
chitooligosaccharides. The presence of a linker sequence at the
N terminus of the single module did not have any impact on
binding: GlcNAc5 gave apparent KD values of 12.3±1.4 mM and
12.1±1.4 mM for polypeptides 1 and L1, respectively. In

agreement with ELISA assays using immobilized peptidoglycan
sacculi (Fig. 1e), apparent binding affinity increased with the
number of LysM modules (Table 2). For all oligosaccharides
tested, apparent KD values varied only additively (sixfold max-
imum) when the number of LysM modules increased from 1 to 6.
For example, with GlcNAc5, KD values varied from 12.1±1.4 mM
(one module) to 2.2±0.3 mM (six modules). This limited increase
in apparent affinity is expected for relatively short oligosacchar-
ides, which are likely to be recognized by a single module. Similar
binding for all LysM domains suggested that a particular number
of LysM modules is not required to generate a functional binding
domain.

A minimum of three GlcNAc residues were required for
detectable binding to a single LysM module, whereas four
residues showed close to optimal binding (Table 2). The
estimated affinities increased with oligosaccharide chain length,
with apparent KD values of 407.9±80.8 mM, 43.4±3.0 mM,
12.3±1.4 mM and 6.0±0.8 mM for GlcNAc3, GlcNAc4, GlcNAc5

and GlcNAc6, respectively, suggesting that effective binding
requires at least four GlcNAc residues. These results are in
agreement with the absence of binding when disaccharide-
peptides produced by muramidase (mutanolysin) digestion were
used as analytes (Fig. 2c).

NMR measurements of affinity between a single LysM module
and oligosaccharides confirmed the same trends, though with a
tendency to weaker affinities (Supplementary Table 1). NMR
confirmed that the minimum saccharide length needed for
effective binding is four residues, with little or no increase in
affinity on going to longer oligosaccharides; binding to xylan,
cellulose and chitosan (de-acetylated chitin) oligomers was not
detectable. The requirement for acetylation of N2

0 (that is, lack of
binding to chitosan) is not surprising and has been well
documented37,38.

NMR structure of AtlA LysM. The first LysM module of AtlA
(construct 1 in Fig. 1a and 1LysM in Supplementary Fig. 1) was
expressed in E. coli doubly labelled with 15N and 13C isotopes.
A complete resonance assignment was obtained using standard
triple resonance experiments. Structures were calculated using
1H–1H NOE-derived distance restraints, 3hJNC0 scalar couplings
obtained from a two-dimensional long-range H(N)CO experi-
ment39 (which turned out to be an excellent way to identify
specific inter-residue backbone hydrogen bonds; Supplementary
Fig. 9), and dihedral angle restraints obtained using TALOS-N36

(Fig. 3a). Members of the structural ensemble have few violations
and overlay with a backbone RMSD of 0.56 Å (Supplementary
Table 2, Supplementary Figs 10 and 11). The fold comprises
four regions of secondary structure: b-strand (T4-V8), a-helix
(L14-Y21), a-helix (V25-N32), b-strand (G42-V47) and is similar
to that of previously determined LysM modules (Supplementary

Table 1 | DSC analysis of LysM domains bound or unbound to peptidoglycan.

Protein No peptidoglycan Bound to peptidoglycan

DH1 (kcal mol� 1) Tm1 (�C) DH2 (kcal mol� 1) Tm2 (�C) DH1 (kcal mol� 1) Tm1 (�C) DH2 (kcal mol� 1) Tm2 (�C)

1 24.5±0.4 80.1±0.1 NA* NA ND ND ND ND
L1 53.7±1.2 81.7±0.1 NA NA 51.5±0.5 88.3±0.1 NA NA
1L2 122.1±0.6 80.3±0.1 NA NA ND ND ND ND
L1L2 152.6±2.4 81.0±0.1 NA NA 180.0±1.0 86.4±0.1 NA NA
1L2L3 50.6±10.1 74.3±0.6 106.7±10.2 81.0±0.3 ND ND ND ND
L1L2L3 34.4±8.6 71.5±0.1 133.3±8.7 81.1±0.1 132.7±14.9 82.3±0.6 30.1±14.5 89.4±0.45
L1–L6 150.8±1.8 69.1±0.1 114.0±1.7 80.4±0.1 141.4±8.7 71.8±0.4 145.6±8.6 81.9±0.2

ND, not determined.
Differential scanning calorimetry (DSC) data were fitted to a two- or three-state unfolding model.
*NA: three-state unfolding model not applicable.
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Fig. 12). Ramachandran analysis of f and c dihedral angles
shows that 89% of the residues are in the most favoured region
and 11% of residues lie in the additionally allowed region40.
An extensive network of hydrogen bonds stabilizes the
protein, including an unusual buried asparagine, N32, whose
sidechain makes hydrogen bonds to two backbone carbonyls
(Supplementary Fig. 13).

The LysM–peptidoglycan complex. To identify the LysM resi-
dues involved in peptidoglycan binding, NMR titrations were
carried out using chemically defined oligosaccharides (Fig. 3b)
and soluble peptidoglycan fragments consisting of glycan chains
with peptide stems attached to the MurNAc residues produced by
treatment of S. aureus cell walls with lysostaphin41 (Fig. 2b).
A considerable degree of broadening was detected during the
NMR titrations, particularly for the residues most in contact with
the ligand. For many of these residues, the backbone NH signal
disappeared completely, reappearing in some cases with a large
excess of ligand. This behaviour can indicate either slow-to-
intermediate exchange between free and bound states, or
conformational change in the protein associated with binding42.
The chemical shift changes seen in the titration are close to linear
but not completely (Supplementary Fig. 14), strongly suggesting
the presence of conformational equilibria associated with binding,
involving small populations of conformationally altered
proteins43. Line broadening has also been observed in earlier
studies of LysM24,26, suggesting that structural rearrangement is a
common feature of LysM modules. 13C HSQC titrations also
showed extensive broadening during the titration, involving the
same residues as seen by 15N HSQC experiments, but in addition,
including residues within the interior of the protein such as L28
and I39 (adjacent to the buried residues I17 and A18, which also
experience large changes in 13C shift). Because 13C chemical
shifts are affected mainly by conformational change rather than
direct effects of ligand binding42,43, these results confirm that
there is some conformational rearrangement of the protein on
binding to the oligosaccharides, which extends from the binding
interface towards the centre of the protein.

These rearrangements and line broadening do not preclude
analysis of binding and measurement of affinity using NMR,
which was therefore carried out (Supplementary Fig. 15,
Supplementary Table 1). Two groups of residues were most
affected by titration with peptidoglycan fragments (blue bars in
Fig. 3c): T13-A18, located in the loop between strand 1 and helix
1 and at the N terminus of helix 1; and D37-V41, located between
helix 2 and strand 2 (Fig. 3c,d). These residues form a contiguous
surface that was previously shown to mediate interaction with
chitin25,26, therefore suggesting that peptidoglycan binding by
LysM occurs via a mechanism common to all LysM modules so
far analysed at the molecular level.

To determine which parts of the intact peptidoglycan interact
with the protein 1LysM, titration experiments were repeated with

Table 2 | Affinity constants of LysM domains for chitooligosaccharides.

GlcNAc6 GlcNAc5 GlcNAc4 GlcNAc3 GlcNAc2

L1–L6 1.5±0.1 2.2±0.3 18.6±4.5 701.9±87.7 4,416±1,486
L1L2L3 3.0±0.1 4.6±0.4 22.3±1.8 627.7±32.8 7,100±4,842
L1L2 5.0±0.3 9.6±0.8 38.1±2.8 678.1±57.3 45,000
L1 5.6±0.5 12.1±1.4 50.4±4.1 453.0±58.6 45,000
1 6.0±0.8 12.3±1.4 43.4± 3.0 407.9±80.8 45,000

Apparent KD values of LysM domains containing different numbers of modules and linkers (L) are indicated in mM±s.d.
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Figure 2 | Identification of the structural motif recognized by LysM.

Red rectangle is GlcNAc, pink rectangle is MurNAc, blue circles are

peptide stem with (darker blue) crosslinking peptides. The six LysM

module polypeptide (L1–L6) was immobilized on a CM5 chip and binding

was measured with surface plasmon resonance (SPR) using analyte

mixtures corresponding to soluble Staphylococcus aureus peptidoglycan

fragments generated using three enzymes with distinct cleavage

specificities: (a) amidase digest, containing a mixture of peptide stems and

glycan chains; (b) endopeptidase digest, containing linear (non cross-

linked) peptidoglycan; (c) muramidase digest, containing disaccharides

linked to peptide stems, some of which are cross-linked; (d) synthetic

peptide stems. RU, resonance units (e) Affinity purification of AtlA L1–L6

LysM domain and cytochrome c with insoluble polysaccharides: 1,

peptidoglycan; 2, chitin; 3, cellulose; 4, xylan. Protein remaining in the

supernatant (Unbound) and associated with the pellet (Bound) were

analysed by SDS–PAGE and Coomassie staining. Cytochrome c was used as

a control, as this protein displays a similar isoelectric point to the LysM

domain (pI¼ 9.6 versus 10.06, respectively). No binding activity was

detected with cytochrome c using any of the polysaccharides.
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a synthetic octasaccharide, (GlcNAc-MurNac)4, lacking peptide
stems and chitooligosaccharides GlcNAc4–6, lacking both peptide
stems and the lactyl groups. In titration experiments with
octasaccharide (red bars in Fig. 3c), broadening associated with
G11, K16 and L38 drastically decreased compared with the
titrations with peptidoglycan fragments, suggesting that these
amino acids interact with peptide stems. As these residues (the
yellow residues in Fig. 3d) are located on both sides of the binding
site, our result suggests that the peptide stem can have variable
geometry, at least in the conformationally unrestricted ligands
used here. Finally, comparison between chemical shift changes
associated with the binding of octasaccharide (red bars in Fig. 3c)
and GlcNAc6 (orange bars in Fig. 3c) revealed that only T13
interacts significantly with the lactyl groups of the MurNAc
residues. This result locates a lactyl group close to T13 (Fig. 3d).
Titrations of the T13A mutant with GlcNAc6, octasaccharide and
peptidoglycan fragments show that the broadening of T13 with
octasaccharide and peptidoglycan is no longer seen in the T13A
mutant, confirming this interaction.

On the basis of these results, a structure of the complex was
determined by docking GlcNAc5 onto the solution structure of
1LysM. As expected, the protein structure rearranges slightly on
binding (r.m.s. backbone change¼ 1.3 Å, mainly at residues
G36-I39), forming a pocket within which one of the GlcNAc
N-acetyl groups is buried. The oligosaccharide binds edge-on in a
groove on the protein surface, with the N-acetyl groups from
GlcNAc sugar residues 2 and 4 forming hydrogen bonds to
backbone amide groups of residues V41 and N15, respectively
(Fig. 4a,b). Sugar 1 (on the left of Fig. 4a) stacks against the
aromatic ring of F40, and the 60-hydroxyl of sugar 3 makes a
hydrogen bond to the carbonyl group of G36, leaving the 30

position (where the peptide stem is attached) pointing away from
the protein surface. Interactions with the protein are shown in
Fig. 4c. The structure of the complex is fully consistent with the
titration and binding data. It suggests possible locations for the
peptide stems, which can be located in shallow grooves on either
side of the glycan backbone (Fig. 4d,e).

The binding site identified here is similar to that identified in
earlier studies24–26,32, implying that the binding mode is
conserved among LysM modules that bind to peptidoglycan,
chitin and Nod factors. Furthermore, interactions were observed
with lactyl groups and with the peptide stems (not present in
chitin and Nod factors), which suggests that the LysM modules of
AtlA have evolved to bind peptidoglycan. NMR shows that
LysM undergoes a slow conformational rearrangement on
binding peptidoglycan, presumably required to ensure optimal
recognition of peptidoglycan.

Mutational analysis of the LysM domain. To confirm the NMR
mapping of residues involved in binding, 11 alanine single-site
substitution mutants of 1LysM were analysed. 15N HSQC spectra
of all the mutants (Supplementary Figs 16 and 17) revealed amide
signals in similar positions and as well-dispersed as those of wild-
type 1LysM, suggesting that none of the mutants has major
conformational differences. Binding affinities of alanine mutants
to GlcNAc5 were measured by SPR (Table 3). By far the largest
effects seen were for T13A, L14A and I39A, which reduced
affinity by factors of 60, 80 and 80, respectively. D37A and L38A
reduced the affinity approximately 12-fold, whereas D12A, N15A,
K16A and F40A had only a small effect (0- to 6-fold reduction in
apparent affinity).

Peptide stems modulate LysM binding activity. To further
explore the LysM–peptidoglycan interaction, binding of a single
LysM module (1LysM) to various defined ligands was analysed by
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Figure 3 | The 1LysM module and its interaction with carbohydrates.

(a) NMR structure of 1LysM. b-Sheets are residues T4-V8 and G42-V47;

a-helices are residues L14-Y21 and V25-N32. (b) 15N HSQC NMR spectra

of 1LysM, free (blue) and saturated with 44 equivalents of GlcNAc6 (red).

Residues showing significant chemical shift changes are indicated by

arrows, and residues broadened and not reappearing by the end of the

titration are circled. (c) Summary of chemical shift changes observed

for the titration of 1LysM with peptidoglycan (blue), octasaccharide

(GlcNAc-MurNAc)4 (red) and GlcNAc6 (yellow). Results for GlcNAc5 and

GlcNAc4 are very similar to those for GlcNAc6, whereas tetrasaccharide

(GlcNAc-MurNAc)2 is similar to octasaccharide. The sugar backbone is

glucosamine for all three oligosaccharides, but in octasaccharide and

peptidoglycan alternate sugars are N-acetyl muramic acid (that is, bearing a

lactate group at O3
0), while in peptidoglycan most N-acetyl muramic acids

also carry a peptide stem. Thus, effects of the lactate are seen as

differences between GlcNAc6 and the other two, whereas effects of the

peptide stem are seen as differences between peptidoglycan and the other

two. Residues broadened in the titrations and not observed by the end of

the titration are shown as bars with a normalized shift change of 100.

Residues are not shown for which any shift change is smaller than the

mean. (d) Representation of the data shown in c. Residues broadened

beyond detection are in red, residue T13 implicated in binding the N-acetyl

muramic acid lactate group is in magenta and residues implicated in binding

peptide stems are in yellow.
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NMR. Two tetrasaccharides, (MurNAc-GlcNAc)2 and (GlcNAc-
MurNAc)2, bound 1LysM with relatively low affinities (KD values
41 mM and 650mM, respectively) as compared with GlcNAc4

(KD¼ 90 mM), thus suggesting that the lactyl group (which is
present in MurNAc but not GlcNAc) inhibits binding, possibly by
interacting unfavourably with T13. As previously shown for
chitooligosaccharides, binding affinity increased with the length
of the glycan chains (KD¼ 80mM for (GlcNAc-MurNAc)4).
Remarkably, synthetic tetrasaccharides harbouring a peptide stem
attached to the lactyl group of the MurNAc residues bound less
tightly to 1LysM than their counterparts with no peptide stem.

Although the low affinity and the limited availability of the
ligands tested did not allow us to carry out titrations with a large
excess of substrates, we were able to determine KD values of
1.8±0.5 mM and 41 mM for (GlcNAc-MurNAc-dipeptide)2 or
(GlcNAc-MurNAc-heptapeptide)2, respectively. Altogether, the
use of synthetic and purified peptidoglycan fragments indicated
that the peptide stems act as negative discriminants that
modulate, but do not prevent, binding.

Towards a common mechanism underpinning LysM–
carbohydrate interaction. A summary of binding interactions
between AtlA 1LysM and peptidoglycan strands is shown sche-
matically in Fig. 4c. Key interactions are made with the N-acetyl
groups of the GlcNAc-X-GlcNAc moiety, in which the methyl
groups fit into hydrophobic pockets while the carbonyls form
hydrogen bonds. Important interactions are located at the bottom
edge of the central sugar, in particular with the 60-hydroxyl group,
however, no interactions have been identified involving the top
edge. Thus, there is little discrimination between MurNAc and
GlcNAc sugar residues in this central position. Only one stacking
interaction involving the aromatic ring of F40 against the ring of
sugar residue 1 has been identified. However, mutation of F40 to
alanine had no large effects on affinity (Table 3) and the inter-
action is not optimal as F40 has considerable space in which to
move, giving rise to unfavourable entropy changes on binding.
Thus, the binding interaction is unusual in having no strongly
required aromatic group in the binding site44. There are sidechain
interactions with most of the amino acids that are well conserved
among LysM modules. We conclude that LysM primarily
recognizes GlcNAc-X-GlcNAc (X¼GlcNAc or MurNAc),
with further specificity (for example discrimination between
peptidoglycan, chitin and Nod factors) determined by secondary
factors, as discussed below.

Discussion
LysM domains are found in virtually all living organisms (except
Archaea) and bind polymers containing GlcNAc residues8. In this
work, we provide a detailed study of the structure/function
relationships of a LysM domain that binds peptidoglycan, the
major component of the bacterial cell wall.

Previous reports on eukaryotic LysM modules suggested that
disulphide bond formation is a posttranslational modification
essential for carbohydrate recognition31,32. Structural data of
A. thaliana CERK1 showed that the three individual modules are
tightly packed against each other. In Pteris ryukyuensis PrChi-A,
the interaction between the two modules, mediated via disulphide
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(a) Partially transparent protein surface indicated, showing the groove

along the surface, with deeper pockets to accommodate the N-acetyl

groups. The O3
0 atoms where the MurNAc peptide stems would be

attached in a peptidoglycan ligand are shown in orange. (b) Identical view,

without the protein surface. Sidechain atoms are shown for T13 and F40.

The colour schemes in a and b are the same as in Fig. 3d. (c) Key

interactions with MurNAc-(GlcNAc-MurNAc)2. Hydrogen bonds are shown

by dashed lines. The horizontal bars indicate that the hydrophobic

interaction is to the face of a sugar ring. The two pockets are indicated by

green lines. Also shown in blue is the binding location involving N15

discussed in the text which may be important for distinguishing between

chitin and peptidoglycan. As discussed in the text, residues I17 and A18

(which show large changes in 15N HSQC; Fig. 3) are buried and do not

interact directly with the ligand, but move because of conformational

rearrangement. The shift change seen for D37 HN is due to the interaction

with G36 carbonyl. (d,e) Model of the interaction between 1LysM and

peptidoglycan with peptide stem. The peptide stem is shown in two

possible orientations, either side of the glycan backbone, interacting either

with G11/K16 or with L38.

Table 3 | Binding affinities of LysM alanine mutants
determined by SPR.

LysM KD (lM) Residual binding (%)

WT 11.7±1.7 100
D12A 72.0±15.2 16.2
T13A 730.2±83.1 1.6 (17.1)
L14A 927.9±151.1 1.3
N15A 21.5±3.9 64.1 (50.0)
K16A 13.1±1.2 89.3
N32A 15.8±2.3 74.0
D37A 138.3±14.2 10.0
L38A 145.5±27.7 12.4 (28.9)
I39A 1,021±224.2 1.3 (1.6)
F40A 54.0±12.0 25.5 (29.7)
V41A 11.7±2.1 100.0 (50.1)

GlcNAc5 was used as the analyte. Residual activity is the ratio of the apparent affinity to that of
wild-type, obtained from surface plasmon resonance (SPR) or NMR (NMR values in brackets).
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bridges, is crucial for optimal stability of the domain. In both the
fungal chitin binder Ecp6 (ref. 45) and the rice chitin-elicitor
binding protein CEBiP46, recognition of chitin requires close
interaction between two or more LysM modules to afford specific
and tight binding of chitin. By contrast, prokaryotic LysM
domains usually do not contain cysteine residues8 and no
information is available concerning the role of multiple modules
in their structural organization and activity. We therefore sought
to identify potential formation of quaternary structures using a
combination of DSC and NMR. Our results strongly support the
idea that individual LysM modules do not form organized
quaternary structures, either free or bound to polysaccharide
ligands. Therefore the existence of multiple independent binding
modules may confer flexibility to the domain, a property likely to
optimize binding to a complex three-dimensional substrate such
as peptidoglycan. The presence of a variable number of modules
in LysM proteins (1–6) contrasts with other cell wall binding
domains such as the S-layer homology domain47 or the conserved
domain PF04122 (ref. 48), which are always made of three
modules. In the case of the S-layer homology domain, structural
data showed that three modules are required to generate a
functional binding site49. It seems likely that the compact
multimodular structures seen for the eukaryotic disulphide-
bonded proteins A. thaliana CERK1, Medicago truncatula NFP,
P. ryukyuensis PrChi-A, Cladosporium fulvum Ecp6 and rice
CEBiP made of several modules are not typical in prokaryotes.

We have shown that multiple LysM modules increase the
binding to peptidoglycan (Fig. 1e and Table 2) when either short
oligosaccharides or intact sacculi were used as ligands. Interest-
ingly, increasing the number of LysM modules has a more
significant impact on affinity when peptidoglycan was used as a
ligand, as compared with chitooligosaccharides. This therefore
suggests that individual LysM modules bind in a cooperative
manner to long glycan chains present in cell walls, but not to
short oligosaccharides. Similar conclusions were drawn in two
studies on the N-acetylglucosaminidase AcmA from Lactococcus
lactis27 and the D,L-endopeptidase CwlS from Bacillus subtilis28.
Although one can expect a cooperative effect of multiple modules,
a detailed study of the impact of LysM multimodularity on
binding represents a major challenge. Access to detailed kinetic
analyses is currently not possible due to the lack of a defined
substrate available in sufficient amounts. The minimal motif
recognized by a single LysM module consists of four
carbohydrates (Table 2). In a recent study, Wong et al.
reported the binding of B. subtilis CwlS LysM domain to
disaccharide-peptides linked via their peptide stem (dimers,
trimers and tetramers)28. The molecular basis for this interaction
between LysM domains and glycan chains made of two
carbohydrate residues remains unexplained. It contrasts with
our results indicating that AtlA LysM domain does not bind to
disaccharide-peptide mixtures including monomers, dimers,
trimers and tetramers (Fig. 2c).

On the basis of structural and binding properties, a simple
classification of CBMs into three types has been proposed44:
type A, surface-binding CBMs; type B, glycan-chain binding
CBMs; and type C, small sugar binding CBMs. Several lines of
evidence suggest that LysM modules belong to type B CBMs.
Unlike crystalline cellulose, which forms a relatively flat
surface recognized by type A CBMs, chitin oligosaccharides
and peptidoglycan strands display a helical structure50,51.
Accordingly, the recent three-dimensional structure of
A. thaliana CERK1 bound to a chitopentaose revealed that the
sugar backbone binds in a shallow groove formed by the loops
between strand 1-helix 1 and helix 2-strand 2 of the protein25.
Although some aromatic residues have been shown to contribute
to binding (for example, Y72 in P. ryukyuensis PrChi-A, F40 in

E. faecalis AtlA), stacking interactions have a limited role25. In the
present study, we showed that only one of the five aromatic
residues present in each LysM module interacts with the ligand.
Substitution of the corresponding residue (F40) by an alanine
retains 25% of wild-type binding activity. One hallmark of LysM
binding to carbohydrates is an important hydrogen bond network
that results from interactions with main chain atoms, ensuring a
contact surface with four sugars that represents a minimal
binding motif. In agreement with this property, we have shown
that alanine mutations have only a limited impact on binding
activity (Table 3).

Chemical shift changes observed for a LysM module upon
binding chemically defined oligosaccharides revealed line broad-
ening, a phenomenon that can be attributed to conformational
adjustment, which is confirmed by comparing free and
oligosaccharide-bound 1LysM structures (Figs 3d and 4a). This
property was also described for two other LysM domains24,26, and
is an original property for CBMs, which usually bind in fast
exchange with very small structural change44. Conformational
change on ligand binding to CBMs is typically observed
for conformationally flexible saccharides52, suggesting that
LysM may need to accommodate a range of peptidoglycan
conformations as found in bacterial cell walls.

LysM ligands are structurally related polysaccharides contain-
ing GlcNAc residues (Supplementary Fig. 7), and this amino
sugar was therefore suggested to be essential for binding8. Recent
crystallographic data revealed the presence of two well-defined
pockets that accommodate N-acetyl groups from two GlcNAc
residues separated by one pyranose, confirming the importance of
this functional group25. This finding is confirmed in the present
study.

Different LysM modules have been reported to bind to chitin
(polymers of GlcNAc), peptidoglycan (polymers of [GlcNAc-
MurNAc]) and Nod factors, which are short oligosaccharides
characterized by having hydrophobic substitutions at C2

0, C4
0 and

C6
0 of the non-reducing terminal sugar32. Recognition of Nod

factors requires a leucine as the residue facing C3
0 of this sugar,

which is L118 in the second LysM module of Lotus japonicus Nod
factor receptor 5 (ref. 32). In AtlA LysM, the residue in the
corresponding spatial position (though not in sequence) is F40,
which promotes the binding of an extended polymer rather than
a terminal sugar; aromatic residues are also found in
corresponding positions in several chitin-binding proteins24,25.
In the case of chitin recognition, an aromatic residue has been
shown to have an important role26. The absence of an aromatic
residue at the equivalent position in AtlA LysM (N15) allows
stacking against the face of a MurNAc residue in peptidoglycan.
Altogether, these results suggest that recognition of peptidoglycan
is promoted both by having an aromatic residue binding the non-
reducing end of the ligand and a non-aromatic residue in the
binding cleft mediating interactions at the reducing end of the
ligand (F40 and N15, respectively in AtlA LysM). Although
E. faecalis AtlA is a bona fide peptidoglycan hydrolase dedicated
to septum cleavage during division29,30, our results unexpectedly
show that it binds chitin with a higher affinity than
peptidoglycan. However, SPR analyses showed that binding to
these two polymers is associated with distinctly different kinetics
(compare Fig. 2 and Supplementary Fig. 8). A major determinant
explaining the weaker affinity of AtlA LysM for peptidoglycan is
the presence of peptide stems, likely due to steric hindrance. An
alternative explanation is that LysM binds with higher affinity to
peptidoglycan stretched under turgor in intact cell walls, a
property that has previously been suggested as a factor controlling
autolytic activities53. Of course, one cannot rule out the possibility
that promiscuous LysM binding might permit an undiscovered
environmental role.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5269

8 NATURE COMMUNICATIONS | 5:4269 | DOI: 10.1038/ncomms5269 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Qualitative assays revealed that prokaryotic LysM domains
bind peptidoglycan structures containing various peptide stem
compositions and cross-links18. Here, we explore LysM binding
to defined peptidoglycan fragments and provide evidence that
although the peptide stem is not necessary for binding, it interacts
with several residues and modulates binding affinity as a negative
discriminant. Access to pure peptidoglycan fragments in
sufficient amounts is a major challenge to further explore
binding specificity of LysM domains and study the impact of
their properties on binding (for example, size, amino acid
sequence, isoelectric point of individual repeats and length of the
intermodule sequence). Pursuing LysM structure/function studies
is a first step towards the engineering of LysM domains with
altered ligand repertoires. It has direct implications for the
development of novel strategies using LysM domains to target
therapeutic molecules to pathogens.

Methods
Bacterial strains, plasmids and growth conditions. Strains and plasmids used in
this study are described in Supplementary Table 3. For protein purification, E. coli
was grown at 37 �C in Luria-Bertani broth or in M9 minimal medium containing
1 g l� 1 15NH4Cl (and 3 g l� 1 13C6-glucose where necessary), supplemented with
150mg ml� 1 ampicillin. When the cultures had reached an optical density of 0.6 at
600 nm, production of the recombinant proteins was induced by addition of 1 mM
isopropyl-b-D-thiogalactopyranoside, and incubation continued for 16 h.

Purification of recombinant LysM polypeptides. The sequences of the
recombinant LysM polypeptides overexpressed and purified are described in
Supplementary Fig. 1. Induced cells were harvested and resuspended in buffer A
(50 mM Tris-HCl (pH 8.0) containing 300 mM NaCl), and crude lysates were
obtained by sonication (5� 30 s, 20% output; Branson Sonifier 450). Proteins were
loaded onto Ni2þ nitrilotriacetate agarose resin (Qiagen GmbH, Hilden,
Germany), washed with 5 mM imidazole in buffer A, and eluted with 500 mM
imidazole in buffer A. Recombinant His-tagged proteins were further purified by
size-exclusion chromatography on a Superdex75 HR 26/60 column (Amersham
Biosciences, Uppsala, Sweden). For DSC experiments, the column was equilibrated
with 50 mM sodium acetate (pH 5.0); for NMR and SPR experiments, proteins
were purified using 40 mM Na2HPO4 (pH 6.0). The fractions were analysed by
SDS–PAGE, pooled and concentrated down to 50 mM for both NMR and DSC
experiments. Protein concentration was estimated by measuring absorbance using
the theoretical extinction coefficient calculated by the Expasy Protparam tool
(http://web.expasy.org/protparam/).

Polysaccharide affinity purification. The affinity of the complete AtlA LysM
domains (L1–L6 in Fig. 1a) for various polysaccharides was determined by incu-
bating 32mg of protein with 1 mg of crab shell chitin (Sigma, Ref. C-7170), cellulose
(Sigma, Ref. 8002) or xylan (Sigma, Ref. X-0502) in a total volume of 150ml of
phosphate-buffered saline (PBS; 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4,
2 mM KH2PO4, pH 7.4). After 30 min of gentle rocking at ambient temperature,
the insoluble fraction was harvested by centrifugation (5 min, 20,000 g) and 50ml of
the supernatant was collected (unbound fraction). The remaining supernatant was
discarded and the insoluble fraction was washed three times with 1.5 ml of PBS.
The washed pellet was resuspended in 150 ml of Laemmli buffer (bound fraction)
and boiled for 5 min. Five microliters of the unbound and bound fractions were
loaded on a 13% (w/v) SDS–PAGE and stained with Coomassie brilliant blue.

Peptidoglycan purification. Peptidoglycan sacculi were extracted from expo-
nentially growing S. aureus cells with boiling SDS as previously described30. After
treatment with pronase and trypsin, peptidoglycan-bound polymers were removed
by incubation in fluorhydric acid 48% (v/v) at 4 �C for 48 h. Pure peptidoglycan
was extensively washed with distilled water and freeze-dried. For ELISA
experiments (see below), sacculi were diluted at a concentration of 10 mg ml� 1 and
broken in the presence of acid-washed glass beads (Sigma, Ref. G4649) using a fast-
prep machine (MPBio) for six cycles of 30 s at maximum speed, with 2 min pauses
between cycles.

Peptidoglycan digestion for SPR interaction assays. Peptidoglycan sacculi
were digested with well-characterized enzymes displaying distinct peptidoglycan
cleavage specificity: mutanolysin, a muramidase, (Sigma, Ref. M9901); lysostaphin,
a glycyl-glycyl endopeptidase (Sigma, Ref. L7386) or the amidase domain from
S. aureus Atl autolysin54. One milligram of peptidoglycan was digested in a final
volume of 250 ml. Specific buffers and enzyme amounts were as follows:
mutanolysin, 50U in 20 mM phosphate buffer (pH 6.0); lysostaphin, 50 mg in
25 mM phosphate buffer (pH 7.5); Atl amidase, 75 mg in 10 mM Tris–HCl

(pH 7.0) containing 1 mM CaCl2. After centrifugation for 20 min at 22,000 g, two-
fold serial dilutions of the digestion mixtures in PBS (1/200 to 1/51,200) were used
to test interaction with AtlA 1LysM domain by SPR. Muropeptide analysis of the
digestion mixture by rp-HPLC confirmed the heterogeneity of the peptidoglycan
fragments solubilised by the enzymes (Supplementary Fig. 18).

Enzyme-linked immunosorbent assay. Ninety-six-well polystyrene plates (Nunc
Maxisorp) were coated with 100 ml of pure peptidoglycan fragments diluted to
10 mg ml� 1 in PBS. After incubation for 1 h at 22 �C, the plates were washed three
times in PBS-Tween-20 (0.25% v/v; PBS-T) and residual binding sites were blocked
with 300 ml of 2% (m/v) skimmed milk in PBS-T for 1 h at 22 �C. After three
washes in PBS-T, recombinant LysM domains serially diluted in PBS-T were added
to peptidoglycan-coated plates and incubated for 1 h at 22 �C. After three washes in
PBS-T, the plates were incubated with a rat anti-LysM antibody raised against the
first LysM module of AtlA (‘1 LysM’ in Supplementary Fig. 1) diluted 1/3,000 in
PBS-T containing 2% (m/v) skimmed milk in PBS-T. After 1 h at 22 �C, the plate
was washed five times with PBS-T and incubated with a peroxidase-conjugated
goat anti-rat IgG (SIGMA Ref. A9037) diluted 1/3,000 in PBS-T containing 2%
(m/v) skimmed milk in PBS-T for 1 h at 22 �C. Immunoreactivity of IgG was
revealed by measuring the absorbance at 492 nm after addition of peroxidase
substrate (0.4 mg ml� 1 o-phenylenediamine dihydrochloride, 0.4 mg ml� 1 urea
hydrogen peroxide and 50 mM phosphate-citrate, pH 5.0; Sigma-Aldrich). All
reactions were stopped by addition of 2 N H2SO4 after the same incubation time.

Differential scanning calorimetry. LysM samples at a concentration of 50 mM
were extensively dialysed using a 3.5 kDa molecular weight cut-off membrane
(SPECTRUM Labs) at 4 �C against 50 mM sodium acetate (pH 5.0), and degassed
before DSC measurements (MicroCal VP-DSC calorimeter). The dialysis buffer
was used as a heat reference. Each sample was measured twice in the 30–110 �C
range at 1 �C min� 1 rate to corroborate folding reversibility, which was found
485% for all LysM samples. Individual experiments were carried out at least twice
for each sample. To study protein unfolding in the presence of peptidoglycan,
protein samples were incubated with 10 mg ml� 1 of pure peptidoglycan
sacculi and the mixture was dialysed, as for unbound LysM samples. To help
LysM–peptidoglycan binding, the second buffer change was performed at 20 �C.
Under these conditions, 495% of LysM proteins were bound to peptidoglycan.
Samples were then degassed, loaded and measured as for the unbound samples. As
reported previously55, the DSC profile of the peptidoglycan sacculi alone reveals a
prominent negative slope of irreversible nature. In all cases, baseline corrections
were performed by subtracting the corresponding buffer profile. Data were
analysed using the MicroCal Origin software using the provided two-state
unfolding model for 1, L1, 1L2, L1L2 proteins and three-state unfolding model for
1L2L3, L1L2L3 and L1–L6 proteins. Plots were represented using ProFit
(QuantumSoft).

Circular dichroism. The experiments were carried out in 50 mM sodium acetate
buffer (pH 5.0) using 50mM protein samples at a temperature rate of 1 �C min� 1

controlled by a Peltier adapted to Chirascan CD spectrometer (Applied
Photophysics).

Fluorescence under pressure. 50mM protein samples in 50 mM sodium acetate
buffer (pH 5.0) were excited at 280 nm and the fluorescence emission spectra was
recorded between 305 and 450 nm at 20 �C using an ISS steady-state fluorimeter
(Champaign, IL). High pressure perturbation and data analysis were carried out as
described previously34. In brief, LysM samples were subjected to pressure from 1
bar to 3 kbar in 0.2 kbar intervals. All spectra were recorded at equilibrium and
analysed by calculating the centre of spectral mass using ProFit software
(QuantumSoft). The centre of spectral mass is not significantly affected by the
number of LysM modules or by the effect of pressure. This is indicative of an
unaltered tryptophan (W31) chemical environment within the module, suggesting
the absence of quaternary structure among LysM variants56.

Dynamic light scattering. All measurements were recorded in a Zetasizer Nano S
DLS device (Malvern Instruments) in 50 mM sodium acetate (pH 5.0) at 20 �C
using 50 mM protein samples.

Preparation of sensor surfaces. LysM polypeptides were immobilized on CM5
sensor chips using a standard amine coupling method at a flow rate of 10 ml min� 1.
Briefly, the carboxymethylated dextran surface was activated by injecting 40 ml of a
solution containing 0.2 M 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide
hydrochloride (EDC; Sigma) and 0.05 M N-hydroxysuccinimide (Sigma). Covalent
immobilization of LysM polypeptides was carried out using 70 ml of a protein
solution diluted in 5 mM maleate buffer (pH 5.0). The reaction was quenched with
40 ml of 1 M ethanolamine-HCl (pH 8.5).

SPR experiments. SPR experiments were performed on a BIACORE 2000
instrument with research grade CM5 sensor chips at a temperature of 25 �C.
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The running buffer was HEPES-buffered saline (HBS-P; 10 mM HEPES (pH 7.4),
150 mM NaCl, 0.005% (v/v) Tween-20). If not otherwise indicated, the flow rate
was 10 ml min� 1. The chip was regenerated using a 1-min pulse of 6 M guanidine
hydrochloride followed by an injection of 30 ml of HBS-P buffer. Various
immobilization densities and flow rates were tested to define optimal steady-state
analysis conditions (Supplementary Fig. 8).

NMR. NMR experiments were conducted on Bruker DRX-800 and DRX-600
(plus cryoprobe) spectrometers at 25 �C in 40 mM phosphate buffer (pH 6.0).
Assignments were made with Asstools57 using standard triple resonance
experiments on a double labelled sample of L1 LysM and were transferred to other
constructs on the basis of the high similarity of shifts. Ligand titrations were carried
out on 50 mM protein solutions using SOFAST-HMQC58. The final titration had a
volume up to twice the original, but no concentration-dependent effects were
observed. KD values were obtained from fitting to standard saturation curves using
Microsoft Excel. Chemical shift changes were analysed as a weighted sum of 1H

and 15N shift changes: shift¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

H þ dN=10ð Þ2
q

(ref. 42). For the structure

calculation, NOEs were measured from a 15N- and 13C-edited 100-ms 3D NOESY
spectrum, and hydrogen bonds were identified through the direct observation of
inter-residue 3hJNC0 scalar couplings in a two-dimensional long-range H(N)CO
experiment39. Spectra were processed and analysed using TOPSPIN (versions 1.3
and 2.1) and FELIX 2007 software (Felix NMR, Inc., San Diego, CA). One hundred
structures were annealed from randomised starting coordinates, refined using the
dynamic annealing protocol within CNS version 1.21 (ref. 59), and further refined
with TIP3P explicit water molecules60. The 10 lowest energy structures were
chosen to represent the structural ensemble and the coordinates and NMR
chemical shifts have been deposited in the RCSB Protein Data Bank (www.pdb.org)
and the BioMagResBank (www.bmrb.wisc.edu) under PDB code 2mkx and
accession number 19799, respectively.

Docking. Docking was carried out using the HADDOCK approach61 with residues
12, 13, 15, 38 and 40 defined as the ‘active’ residues, based on titration data and
surface accessibility. Standard parameters were used, except that electrostatics were
turned off during the initial rigid docking; intermolecular interactions were very
weak during rigid docking and scaled up later; 1,000 structures were calculated, of
which 200 were refined in explicit water, using 2,500 steps at 300 K followed by 600
cooling steps. Following extensive docking trials to locate the sugar carbonyls
properly into the binding pockets and prevent the ligand rotating to end up side-on
to the protein (to maximize buried surface area), hydrogen bond restraints between
the GlcNAc carbonyls and the amide groups of residues V41 and N15 were added
as unambiguous restraints.

Synthesis of peptidoglycan fragments. Tetrasaccharide (GlcNAc-b� 1,4-Mur-
NAc)2 and octasaccharide (GlcNAc-b� 1,4-MurNAc)4 fragments of peptidoglycan
were synthesized on the basis of a previously reported method62. Final products
were systematically analysed by NMR and mass spectrometry. Briefly,
appropriately protected (GlcNTroc(b1-4)MurNTroc)-trichloroacetoimidate donor
and the (GlcNTroc(b1-4)MurNTroc) glycosyl acceptor (liberated at the 6-position
of the non-reducing end of GlcNTroc) were reacted with trimethylsilyl
trifluoromethanesulfonate (TMSOTf ) in dry CH2Cl2 with MS4A at � 15 �C
for 10 min. After quenching the reaction, the crude compound was purified by
silica-gel flash chromatography (toluene:EtOAc¼ 5:1) to give fully protected
tetrasaccharide or octasaccharide compounds. The ester protection of the
carboxylic acids at the MurNAc moieties was cleaved with LiOH in
dioxane:THF:H2O (2:4:1), and then all benzyl-type protections were cleaved under
H2 (20 atm) with Pd(OH)2/C in acetic acid for 1 day. The synthetic compounds
were purified by rp-HPLC using a 10� 250 mm Cosmosil C18 AR300 column
(Nacalai Tesque, Inc.). After equilibration in water-TFA (0.1% (v/v)),
tetrasaccharide or octasaccharide were eluted using an acetonitrile gradient (1 to
70% (v/v) in 45 min) and freeze-dried.
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