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Abstract

A new weighted orthogonal least squares algorithm is derived to estimate linear and
nonlinear continuous time differential equation models from complex frequency response
data. The algorithm combines the properties and advantages of both weighted and or-
thogonal least squares algorithms. A weighted complex orthogonal estimator, obtained
by combining the proposed algorithm with the modified error reduction ratio test pro-
vides an effective and robust way of detecting the correct model structure or determining
which terms to include in the model and identifying the unknown parameters. Since
the estimation procedure does not involve any numerical differentiation of the noisy
data, the performace of the estimator under the influence of significant noise is quite
satisfactory.-The proposed estimator has been successfully applied to a variety of both

linear and nonlinear systems.

1 INTRODUCTION

The literature on system identification is dominated by algorithms which fit discrete paramet-
ric models from real time domain measurements but little work has been reported when the
data are complex. Complex data, though rare in the real world is commonly found in the fields
of communication and signal processing, and the frequency domain analysis of a system often
involves the manipulation of complex data. System identification in the frequency domain

based on complex valued frequency response data has not been widely studied. The current
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emphasis on control synthesis and design tools hinge upon parametric models which in turn
have tended to inhibit parallel developments of parametric frequency domain identification
techniques which come under the nonparametric system identification frame work.
But frequency and time domain methods give complimentary perspectives of many im-
} portant problems in linear system and control theory(Ljung and Glover,1981). Occasionally

the two methods have been viewed as rivals, particularly on issues of implementation and
application to real systems. It is known that the frequency response function and the power
spectral density give good insight into properties of the data and provide information about
the system behaviour and properties.

With the advent of modern spectral analysers and high performance data acquisition
equipment, it is of practical interest to find techniques which identify linear parametric models
from frequency response data (i.e.to synthesise the transfer function).But the determination
of a linear transfer function as the ratio of two complex polynomials from the discrete fre-
quency response data is in essence a rational approximation problem and the direct solution
requires nonlinear least squares based techniques. Several approaches have been suggested
based around a linear least squares framework to try and avoid the nonlinear least squares
problem (Levy,1959, Payne,1970, Lawrence and Rogers,1979, Stahl,1984, Whitfield,1986).
2 These techniques have been put into a unified frame work by Whitfield(1987) where it was
recommended that a constrained optimisation approach was preferred to the least squares
based approaches when the data is corrupted by noise.

When the system is nonlinear higher order or generalised frequency response functions
have to be considered. These can be estimated by extending the traditional FFT, windowing
and smoothing conceptes to multidimensions (Kim and Power,1988) or by fitting a nonlin-
ear parametric model and then mapping this into frequency domain. The latter approach
developed by Billings and Tsang(1989), Peyton Jones and Billings-(1989) will be used in the
present study. Whatever method of estimating the higher order frequency response functions
1s used, parameterising these estimates is much more difficult than in linear case and very few
authors have considered this problem (Tsang and Billings,1992a, Tsang and Billings,1992b).
The main difficulty in the nonlinear case is the enormous combinatorial possibilities of terms
which could be included in the model. This is not a major problem if the system is linear
because the total number of possible terms is relatively small and an acceptable combination
of terms can usually be found without much difficulty. In the nonlinear case the number
of possible terms increases rapidly as the degree of nonlinearity and the order of the input ¢
output dynamics are increased. But estimating nonlinear differential equation models based
on the higher order frequency response functions offers a powerful method of reconstructing

continuous time models without computing derivatives and this warrants a detailed study of

this approach.




In the present study a new algorithm is derived that combines the features of

classical
weighted least squares with - orthogonal least squares and this is extended to the case

where the data can be complex. The algorithm is used to estimate nonlinear continuoys
time models from frequency response data without computing derivatives. With no a prior;
information, the reformulated error reduction ratio provides a measure of the contribution of
each candidate model term to the variance (energy) of the dependent variable. This is used
to construct nonlinear differential equation models term by term. The most significant term
is selected initially and included in the model, then the next most significant term and so on.
The orthogonality property of the estimator coupled with the modified error reduction ratio
test therefore provides vital information regarding which terms to include in the model. The
weighting property of the estimator reduces the sensitivity of the estimates to the choice of
frequency range, the number of data samples and the effects of noise. Examples showing how
the new procedure can be used to construct both linear and nonlinear differential equation

models from estimated frequency response functions are included.

2 Weighted Complex Orthogonal Estimator

Consider a system which can be modeled as

M
2(jw) = 3 bipi(jw) + £(jw) (1)

1=1
where 6,1 =1, ...... M are the real unknown deterministic parameters of the system associated

with the complex regressors p;(jw),i = 1,....M. z(jw) is a complex dependent variable or the
term to regress upon and £(jw) represents the modeling error.
If ‘N’ measurements of z(jw) and p;(jw) are available at w;,i = 1,.....N the complex

system of equation(1) can be represented in matrix form as

—

Z=P8+= (2)
where
z(jun) 6, 3
z=| : |.8=]:|.z2=]|: (3)
z(jwn) Onm En
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and

[ piGen) ma(ier) oo pu(ien) ]
P = PI(J.w:) Pz(J‘WZ) PM(:?wz) (1)
| p1(Jwn) p2(jwn) ... pm(jwn) |

is an N x M complex matrix of known regressors. The matrix ‘P’ will be referred to as the
Information Matrix.

However,Before any attempt is made to oBtain an estimate of ‘d’, the complex variables
involved in eqn(2) should be partitioned into real and imaginary parts;other wise ‘6’ could be

complex. Thus eqn(2) is represented as

Zr Pg Zr
T —— =] = |84 ] — (5)
VA Pr =1

where the subscript‘R’ denotes the real part and ‘I' denotes the imaginary part of the com-
ponent, Z = 2N x 1 real vector, P = 2N x M real constant information matrix, § = M x 1
real parameter vector and = = 2N x 1 real vector.

In a general algebraic context eqn(5) is an overdetermined set of equations for the un-
knowns #6,,6,,...... 65 and thus has a unique least squares solution provided the rank of the

information matrix ‘P’ is M. The weighted least squares solution is given by (Deutsch,1965)

6= (PTQP)'PTQZ (6)

When the weighting matrix ‘Q’ is 2 unit diagonal,eqn.(6) gives the standard least squares
solution of the parameter vector 6.

By reformulating the problem such that each parameter in ‘6’ can be estimated indepen-
dently using an orthogonal algorithm,considerable advantages can be achieved. This algorithm
is derived in Appendix-A.

The implementation procedure for the weighted complex orthogonal estimator using for-
ward regression is summarised below.

Step-1:-

o Define the model size M and consider all the regressors p;(w),2 = 1,...M as possible

candidates to qualify for wy(w) ; the first term of the auxiliary model.




A

e For i=1,....M,calculate

ERRY

o Find the maximum of ERR{" for instance if ERRY = maz{ERRP,1 < i < M}, then
the first term selected should be the jth term of eqn.(1) i.e. wy(w) = p;(w)

Step-2:-

o Consider all the p;(w),i=1,...M, ¢ # j as possible candidatesfor w,(w). For i=1,...M

and i # j,calculate

()

W,

gz

ERRY) =

(w) = piw) = alws (w)
~ (1) —

where

o Find the maximum of ERRY say if ERRS") = maz{ERR{,1 < i < M,i # j} then

the second term becomes w;(w) = w;

o Continue the process of selecting the terms until the sum of the error resuction ratio
(ERR) reaches a value close to 100%

* Recover the unknown parameters of the original system using eqn.(A.20).

—_—

3 Model Validation

Model validation is a crucial issue in black box identification where model validity tests are
generally used to attach a quality tag to a model. Note however that,the correctness of a
model] can only be definitely proved if the real process is known, in which case we do not
need identification. Hence it follows that we can only try to show that the model is invalid.
Failure to invalidate the model is then used to infer that the model is correct. From this
perspective,the term model validation can therefore be interpreted as model invalidation.

In time domain identification,the measured data are assumed to be generated by some

finite dimensional system corrupted by noise. If the model order is increased above the true

Z(w) V) . .
——< . >,where o) = wTQ

(o0 (8)

A2 = 7o (W)ws (@)

pi(w)
2(w)) i T(i
o >, where 'ug ) = wl®Q (7)
v v
(6002 (42()uf"() )
(Z2(w)Q),2(w))

(572 (40 ()0 )
@R Z()

v W), P\ W

¢ = pu(w) — arpwy (w)
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order,the model will start to fit to the noise. Several techniques are available to validate the
model and the correlation based techniques initially proposed by Billings and Voon (1986)
and improved by Billings and Zhu (1993) provide simple and effective ways of testing the
validity of the model.

Cross validation is another way of validating the model where a given data set is divided
into two disjoint sets; one set is used for identification and the other for model validation. The
model validation tests based on correlation techniques are applied to time domain models and
can not be used in frequency domain identification. In the frequency domain, cross validation
is an efficient means of validating the model. This is easily performed by dividing the frequency
response measurements into two disjoint sets; an estimation set and a test or validation set.
A natural division is to take every other frequency point as the estimation data and the rest
as the test data. A model is then estimated using only the estimation data and the quality

of the model is assessed by comparing the estimated model with the test data set.

4 Identification of Continuous Time Models from Fre-

quency Response Data

Before the problem of estimating the parameters of a continuous time model of a nonlinear
system can be formulated, the concept of Generalised Frequency Response Functions (GFRF)
must be introduced.

It is well known that the input-output behaviour of a wide class of nonlinear systems can

be represented by the Volterra series

N
¥(6)= X wn() ©)

where y,(t),the nth order output of the system is given by

ya(t) = f / n(T1y o Hu(t — 7;)dr,n > 0; (10)

=1
and h,(71,....... Tn) is known as the nth order Volterra Kernel or generalised impulse response
function of order n. The multi-dimensional (n > 1) Fourier Transform of the ‘nth’ order

impulse response yields the nth order transfer function or the Generalised Frequency Response

Function (GFRF)

Ho(jwy, ... jw,) = j / a(T1y ooy Tn)eTD(—7 (w1 Ty + .. Tr))dTy ...udTy (11)

Note that when n = 1, the above expression gives the linear transfer function. Since the
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objective is to determine the structure and estimate the parameters of a nonlinear differential
equation model from generalised frequency response functions, the first step is to compute
the generalised frequency response functions and show how this problem can be solved using

the weighted orthogonal estimator.

4.1 Problem Formulation

Consider a system whose dynamics are described by the nonlinear differential equation

N m L B . P+q . i
Z Z z cpa(ly -lpiq) H Dhy(t) H Diu(t) =0 (12)
m=1p=01[,lp44=0 =1 i=p

where ‘L’ is the maximum order of differential; p + ¢ = m, and m = 1,....N, corresponds to
various orders of nonlinearity. The operator ‘D’is the differential operator. Once ‘m’ takes a
specific number,all the mth-order terms, each of which contains a pth-order factor in ‘Dhy(t)’
and gth-order factor in * D%u(t)’, subject to p+q = m, are included and each term is multiplied
by a coefficient ¢, 4(l1,...lp+,) While the multiple summation over the l;(; = 0...L) generates
all the possible permutations of differentiations. For example, the general linear differential

equation is included in the above form by setting the order of nonlinearity ‘m’ as 1 to give:

L L
Z cllo(ll)DI‘y(t) + z co,l(ll)Dhu(t) ==}, (13)

11:0 l‘=0

As an example the differential equation

+G1 +G2y+b1

FTo) % + bu + oy’ + diu® + ey’ + dz(

7 g )21:, =0 (14)

would be represented by the model of eqn.(12) with t%l%wing definitions
c1,0(0) = az, c10(1) = a3, ¢10(2) = 1.0, c01(0) = b2, c01(1) = b1, €20(0,0) = ¢, co2(0,0) = di,
¢30(0,0,0) = ¢, :::1(2, 2,0)=d,

The frequency domain equivalent of eqn(12) is based on the generalised or higher order
frequency response functions which are given by mapping the time-domain representation

into the frequency domain (Billings and Peyton-Jones,1990)

L
> cro(l)(Fwr + ojwa)t | HEV™ (g, ..o jwn)

[;=0
L

= 3 Cc:,n(lh_"'Eﬂ)(jwl)[1 ----- (Fwn)"

11,ln=0

+ z g (f1y s 1x=+tz)(.?"**’ﬂ-q+1)'H1 (jwn)lpﬂﬂ —ep(JW1, - Jn—g)
9=1 p=1l; In=0




w I
+3° > co(lyyedp)Hnp(Gor, ... jwy). (15)

p=2l;,l,=0
where the recursive relation is given by
n—p+1 ;
Hy™()= Y, Hi(jwi,..jw)H, —ip=1(JWitn, - Jwn)(Jwr + ..+ Jw;). (16)
=1

The recursion finishes with p = 1 and H,;(jwi, ....jw,) has the property
Hop(jwry o jwn) = Ha(jwr, jwn)(jwr + ... + juwn ). (17)

Eqn.(15-17) for the GFRF will be used to derive the regression equations for estimating
the unknown parameters ¢, (.) in the continuous time model of eqn(12).

Note that, the computation of the n-th order frequency response functions is a recursive
procedure where each lower order of GFRF contains no effects from hi gher order terms. This
offers a distinct advantage since the parameters corresponding to different nonlinearities or
terms can be estimated independently ,begining with first order and then building up to

include the nonlinear terms.

4.2 Estimation of Linear Terms ; Synthesis of Linear Transfer

Functions
]

The first order frequency response is only related to the linear input-output terms. Setting

n =11in eqn(15) gives

;=0 ;=0

L L
- [Z CLU(II)UM)“] Hy(jwr) = Y con(l)(jun)". (18)

Notice that multiplying by a constant on both sides has no effect on the form of the
equation except all the parameters will be changed. This suggests that all the parameters
can not be uniquely estimated. Hence it is necessary to fix a parameter before the estimation
begins. Without loss of generality it is assumed that the parameter corresponding to the

linear output term c1,0(0) is unity. Moving all other terms to the right hand side gives

L L
- Hy(jun) = _ZI¢ ero(h)(jwr) Hi(jwr) + Y coa(l)(Gwn)". (19)

which is a linear in the parameters expression. For each value of frequency ‘w’ two equa-

tions are obtained; one corresponding to the real part and the other to the imaginary part.




However for clarity, compare eqn.(19) with eqn.(1) and relate the parameters of both the
equations.

So that from equation(1)

2(jw) = 8:p1(jew) + 0272 () + v + Opapra (i) ()

where M = 2L + 1 and

2(jw) = —Hi(jw1)

6, = 61,0(1), Pl(j“-’) = (jwl)Hl(jwl)
8; = ¢1,0(2), pa(jw) = (Jwr ) Ha(jun)

0 = cip(L),  pr(jw) = (jwi)" Ha(jwr)

Or41 = CO,I(O): PrL+1 (.’i‘-‘-’) = PM(jw) = (jw1)° =1
Or4+2 = coa(1), pry2(Jw) = (Jwr)

br+s = €0,2(2), pr+s(jw) = (jwr)?

63141 = coa(L), Par+1(jw) = pu(jw) = (jw1)L
The proposed estimation algorithm can now be applied to eqn.(19) to identify the unknown

parameters by replacing the frequency response function H;(jw, ) by estimates of this function.

4.3 Estimation of Second Order Nonlinearities

To estimate the parameters associated with second order nonlinear terms, set n = 2 in eqn.(15)

so that
L L
- 2 C1,0(Z1)(jw1 ‘f'j‘-*’z)‘1 H;sym(jwhjwz) = E Co,:’(ll,12)(.3"101)1’(.}"Wz)Iz
;=0 l3,l2=0
L
+ > c1(h, ) (jwz)? Hia(jwr)
13,l=0 =
L
+ E cao(ly, la) Ha2(jwr, jwa). (21)
13,la=0
By the recursive relation
. Hya(jun) = Hy(jwr)(jun)". (22)

Hy ™ (jwr, jwa) = Hy(jwi)Hya(jws)(jwr)"”
= Hy(jun ) Ha(jws)(jwa)" (Jun)". (23)




So that finally a linear regression equation is obtained as

B L
= 261,0(11)(.‘]"“1 + jwy) | Hy™¥™(jun, jws) = Z co2(h, 12) (jwr )" (w, )"
l3=0 1y,l2=0
L
+ Z 11l b2)(Gws) 2 Hy(jwi ) (jws )™
11,l2=0
7
+ D eaolly, ) Ha(jwr) Hy(jwz)(jwr ) (jwz)". (24)

l,1;=0

Notice that the parameters c;o(l1),l; = 0,...L on the left hand side have been estimated
as linear terms initially (section-4.2) while all the parameters on the right hand side of the
equation can be estimated from eqn(24) by replacing the first and second order frequency

response functions by their estimates and applying the new estimator.

4.4 Estimation of Higher Order Nonlinearities

When dealing with higher order terms (n=3,4,..),some parameters which have been obtained
in previous stages (for orders less than the ‘nth’) appear on the right hand side of the equation.
These are associated with lower order pure output and cross-product terms but not pure input

terms.Moving these terms to the left hand side gives

L
-— Z Cl,{)(ll)(jwl + ....jwn)h H:Sym(jwl, ...jwn)

I;=0

n=2n—g—

1 L
_Z Z Z Cp.q(lh---Ip+q)(jwn—q+1)!?+l'"(j“"ﬂ)IPHHn—q.P(jwh--j"‘*’n-q)

g=1 p=1 [},ln=0

n-1 L
— Z Z Gp'g(Il, ....lP)Hn,p(jwl, ]wn)

P=2 ly,lp=0
L I} l
— = Z Cg,-n(il, [n)(le) 1...(jwn) “
11,ln=0
n-1 L . i ‘ ;
3, Y Gl - da )it )™ (Sl H e (i g )
g=1l;,ln=0
L
+ E Cn,o(lly---lp)Hn.n(jwh--jwn)- (25)
l1,ln=0
and the recursive relation
n—-p+1 ) ) .
H7m() = E Hi(jwy, - jwi) Huipoa (jwig - Jwa)(jwr + ..jwi)7. (26)
=1

10




Equation.(21-26) holds for asymmetric frequency response data with a particular frequency
permutation and is not necessarily unique. Hence it is essential to use symmetric frequency
response data during estimation. For a given asymmetric GFRF H,(juwr, ...Jwy), the sym-
metrised GFRF is obtained by summing the asymmetric function over all possible permuta-

tions of the arguments and divided by the number to give

) ) 1 sl )
H (jwy, ...jwp) = = Z T2 s i) (27)
n!

° allpermutationso fwy,..wn
For example, in the second order case, the symmetric version of eqn.(24) can be written as

L L

= | 22 cro(h)(ws + jwa)t | H3¥™ (jwy, jwz) = 1 > coa(ls,lo) [(iwl)l’(jwz)!’ i (ng)‘l(jwl)h] /2
=0 1.12=0
L
+ 2 aalh, k) [(jwz)[’Hl(iwa)(jwl)“ +(jw1)"H1(J'w2)(jW2)l’] /2
l1,l2=0
L

+ 3 caoll ) H(jeon ) Ha(jun) [(en) ()" + (jen) (Gen)?] /2(28)
1:12=0

For higher order nonlinearities, the symmetric version of eqn.(25-26) can be implemented
accordingly and will be used in the estimation of continuous time models.

Note that since the higher order frequency response functions do not affect the lower
order frequency response functions, all the parameters in the left hand side of eqn(25) that
correspond to the coefficients of nonlinear differential terms of order less than ‘n’, have been
estimated in previous stages (section-4.2,4.3), so that the unknown parameters associated with
the nth-order nonlinearity can be estimated . The whole estimation procedure is therefore
progressive starting from first order terms and building to higher order terms. The estimation
results obtained in the previous stages must be used in later estimation but obviously not
vica versa.

Before the complex orthogonal estimator is applied it is appropriate to address certain
issues associated with the least squares estimator and provide a set of guide lines that should

be followed during the implementation phase.

4.5 Guide Lines for Implementing the Estimator

In this section an intuitive approach is followed to explain the factors that affect the perfor-
mance of the estimator by drawing analogies with the time domain algorithm.

Note that the proposed Weighted Complex Orthogonal Estimator is derived by combining
the conventional weighted least squares algorithm with the orthogonal least square(OLS)

estimator of Billings et al(1988) and extending this to the complex case. In the past few
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years, properties of the original OLS estimator and later versions such as the Fast Orthogonal
Estimator(Billings et al, 1988, Billings et al,1989, Zhu and Billings,1994) have been extensively
studied and applied to a variety of situations by Billings and his coworkers. It is known that
the properties of the OLS estimator are identical to those of conventional least squares with
the difference that the former is equipped with a powerful structure selection criteria to aid
in obtaining a parsimonious model. |

During the implementation of the estimator to the problems posed in the present chapter,
the complex data contained in the regressors are partitioned into real and imaginary compo-
nents. The estimator can not distinguish whether the data in the information matrix ‘P’ is
obtained from input-output records of a persistently excited system or if it is the real and
imaginary component of complex frequency response data. But irrespective of the nature or
source of the data, it is well known that in order to obtain an accurate estimate of the system
parameters, the data must be representative of the underlying system. In time domain iden-
tification this is achieved by exciting the system by a persistently exciting input and sampling
the signals at an appropriate rate.

Analogously the performance of the complex orthogonal estimator depends critically on
the choice of the frequency range and the number of data points. The frequency range should
therefore be selected with great care. It has been observed that when the errors are weighted
uniformly over the frequency range of interest it becomes extremely difficult to find the correct
frequency span that will give acceptable estimates. The weighted feature of the new algorithm
offers a possible solution to overcome the sensitivity of the accuracy of the estimator to the
choice of frequency range. This can be achieved by a suitable choice of the weighting matrix

‘Q’. One of the possible choices is to set ‘Q’ in eqn(6) to be (Lancaster and Salkauska,1986)

Q = diag[ql(w), ‘h(w)’ """" qN(w)] (29)

where ‘g;(w)’ is a monotonically decreasing exponential of the form

gi = ezp(—w}/X) (30)

The weighting parameter ‘A’ controls the distribuition of the weights for each frequency ‘w’

as shown in Fig-1.

12
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Fig.1l Variation of Weighting Vector with A

The basis of selecting the tuning parameter ‘A’ is intuitive. Note that the terms ‘g;’ are
positive weights which can be chosen in order to reflect information known about the accuracy
of the measurements of the dependent variable at a particular frequency. Since it is known
that the measurements of a signal in the the higher frequency range are usually more prone
to the effects of measurement noise, the errors in this range should be given comparitively less
weight than the lower frequency ranges. This is achieved by proper choice of the parameter
‘A’ and will be discussed in more detail in the simulated results. Fig-1 illustrates how the
influence of different frequency ranges is affected by different choices of ‘)’

Under ideal conditions,the total number of noise free data points needed to identify the
parameters associated with the ‘L th’ order transfer of eqn(19) is 2L + 1. However in prac-
tice,the data will rarely be noise free and the exact model structure will not be known a
priori. Extensive simulations on a large number of systems leads us to conjecture that the
performance of the estimator does not critically depend on the number of data points provided
this is within an optimum range of around 30 to 100. If the errors are uniformly weighted,
the accuracy of the estimates strongly depends on the choice of the frequency range. Since
it is difficult evenfor an experienced user to precisely know the exact frequency range that
1s suitable for a particular system,it is advisable to specify the frequency range relatively
arbitrarily and vary the weighting parameter ‘)’ interactively to obtain the final estimates.

This will be illustrated in the simulated examples.

4.6 Normalisation of Regressors

In this section the problem of possible numerical ill conditioning of the algorithm is high-
lighted and a procedure is adopted to overcome this. It is known that when estimating the
Parameters of discrete time linear or nonlinear models using either of the least squares based

algorithms,the information matrix ‘P’ consists of lagged input-output data. In general if the
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input is persistently exciting the matrix ‘PT P’ is well conditioned (i.e. the condition number
of this matrix which measures the sensitivity or variability of a least square solution is small).

However,the situation is not the same when the information matrix ‘P’ formed by taking
discrete frequency response data is analysed. For example,the information matrix for the

system of equation(19) is given as

-

(Jwr) Hy(jwn) | (Jwi)' 7 Hi(jwr) ... (e 1
(jwz)F Hy(jw,) (Jw2)!'Hy(jwz) ... (Jwr)E 1
S ) ; o\L-1 ; .
p= (Jws) I-{l(.?w-'i) (jws) :Hl(Jwa) (Ju.i;.;)L 1 (31)
(ij-l)LHl (Jwrn-1) (ij—l)L—lHl(ij—l) cen (in—1)L 1
(jwn)*Hi(jww) (Jon) T H(juw) ... (uw)® 1

Note that,the last column vector of the information matrix corresponding to the pure input
term contains a one, whereas the first column vector of the matrix related to the Lth-order
derivative of the output contains the terms (jwi)lH(jwy),for k = 1,....N. The ratio of the
norms of these two vectors at relatively high values of ‘L’ is quite large which at the outset
indicates that the condition number of the matrix ‘PT P’ will be very large making the matrix
highly ill-conditioned. It has been found in several cases that the condition number of the
matrix ‘PTP’ can become in the range of 10?7. Although the present estimator does not
estimate the parameters by explicitly computing the inverse of the matrix ‘PT P’; numerical
problems of this nature need to be avoided.

It is therefore recommended that the information matrix should be normalised prior to

applying the weighted complex orthogonal estimator. For example, consider the model of
eqn.(1)

z(jw) = LM, bipi(jw)
= -p1(Jw) + O2p2(Jw) + ... + Omprm(Jw)

e 5 jpen . " (32)
1llpa (51 2By + 6allpaGell 22y + ool par () | 2L,

= 0Py + 07 Py + .. + O3 DY

where the superscript ‘nr’ denotes normalised term. Thus we get the orthogonal version of

..... 637. The original

parameters of the model are then recovered directly from the normalised parameters.

the normalised equation and estimate the normalised parameters e T,
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5 Simulated Examples

In the present section the effectiveness of the new estimator is demonstrated using three dif-
ferent types of systems. The first example represents a linear mechanical oscillator possessing
three dominant modes with varying degrees of damping. The second example refers to the
modified Van der Pol equation and the third example represents the dynamics of a nonlinear

system exhibiting chaotic behaviour.

5.1 Example-1

Consider a mechanical oscillator with three degrees of freedom shown in Fig-2.

/
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Fig.2 A Three Degree freedom Mechanical Oscillator

The equations of motion for three masses are given by

my; = k(y2 — 2y1) + u
mis = k(ys — 2y2 + y1) — ¥z (33)
mys = k(—2ys + yz)

—_—

where y; (1), y2(t) and y3(t) represent the displacements of the three masses from static equi-
librium as a result of the force u(t) acting on m. The constants ‘c’ and ‘A’ represent the
viscous damping and stiffness of the system.

For a steady state response to harmonic excitation defined by u(t) = e’**, the linear

transfer function between y; and u is given as

m2s?® + mes® + 4mks? + 2¢cks + 3k?

Hi(jw) =
I(Jw) m3s6 + m2cs5 + 6m2ks? + dmcks® + 10mk2s? + 4ck?s + 4k3

(34)

When the parameters of the system are m = 1kg,c = 0.3 Ns/m,k =1 N/m, the transfer
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function is given by (Newland,1989)

s* 4035 +4524+06s5+3

Boliel =
1) = o3 1 6t +12:°+10s?+12s+ 4 (33)

The magnitude and phase response of the system are shown in the Fig-3.

Linear Frequency Response
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Fig.3 The Gain and Phase Response of system of Example-1

Initially,a set of 100 equally spaced frequency response data were generated from eqn(35)
in the frequency range 0 -2.0Hz and these were used to estimate the parameters of the transfer
function. An overparameterized (8th order) transfer function was initially specified for the
estimation to tesﬁhe capability of the proposed algorithm to detect the correct model struc-
ture. It was found that when the weighting matrix ‘Q’ was specified to be a unity diagonal
matrix,implying that the errors are weighted uniformly over the entire frequency range,the
estimator failed to detect the correct structure from the specified 8th order model. However,
when the range of frequency was fixed from 0-0.5 Hz,the estimator identified both the correct
model terms and parameters. It is found that when the errors are weighted uniformly the
performance of the estimator strongly depends on the choice of the frequency range and the
number of data points. However,the sensitivity of the estimator to the above factors was
considerably reduced when the errors were weighted nonuniformly using the parameter ‘A’.

Parameter ‘)’ was chosen interactively and fixed at a value of 5.0. Table-1 shows the terms
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that were selected as the iteration proceeded together with the error reduction ratios. The

parameters of the model are shown in Table-2.

Table-1 : Parameters of the Auxiliary model for Example-1 A = 5.0

iteration | selected Terms (p;) | ERR | Par.of Aux.model
1 d*y/dt? 89.6036 2.0191
2 u 5.1892 -2.1138
3 dv/dt? 0.0976 0.0774
4 dzu./dt2 2.8879 . -1.4754
5 du/dt 0.1495 0.2318
6 d®u/dt? 0.1127 0.0326
7 d*u/dt* 0.0838 -0.0088
8 by /dt® 1.7397 10.9830
9 dy/dt 0.0054 0.0228
10 By/dt? 0.0113 0.1113
11 d*y/dt® 0.1190 0.3018

Since in practice the frequency response data could be corrupted by noise,the performance
of the estimator was studied by adding various levels of noise to the frequency response data.

At any frequency response data point H'(jwy),the noise corrupted data was taken as
H(jwe) = H'(jwi) + £(7we) (36)

where each component of the noise term is assumed to have the form

E(jwi) = Er(wi) + 7€(wk) (37)

{r(wi) and £7(wy) are zero mean independent noise sequences with equal variance; and
B(€(jwm)€(iw)T) =0 Vm #1 (38)

The results of the estimation for different levels of noise are summarised in Table-2 from
which it is evident that as the noise level in the data were increased, the weighting parameter
‘A’ was decreased to obtain the correct model structure and parameters. This is in accordance
with the fact that since the accuracy of the frequency response estimates in the higher fre-
quency range is poorer compared to the lower frequency range under the effect of significant
measurement noise, the errors in higher frequency ranges were given less weight to provide

better estimates. Note that ,although the results given here are for specific values of ‘)’ sim-
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ulations show that the exact value of ‘A’ used is not crucial. The determination of the model
structure and the parameter estimates are much the same for the range of values around that
given for ‘A’ in Table-2. Thus the algorithm does not seem to be sensitive to a reasonable

range of values for ‘A’

Table-2 : Parameters for Example-1 at Different Levels of Noise

Candidate | True | Estimated | Estimated | Estimated | Estimated
Terms Values | Values Values Values Values
(35.38db). | (25.84db) | (21.40db)
A=35.0 A=1.0 A=0.9 A=0.7
dby/dt® 1.00 1.0033 9973 0.9920 1.0004
d®y/dt® 0.3 0.3018 0.2984 0.2940 0.2916
d4y/dtt 6.0 6.0158 5.9920 5.9756 5.9950
d3y/dt® 1.2 1.1995 1.2022 1.2024 1.1997
d?y/dt? 10.0 10.0185 9.9952 9.9851 9.9915
dy/dt 1.2 1.2028 1.2095 1.2244 1.2268
d‘*u/dt‘l 1.0 1.0032 0.9935 0.9814 0.9899
* d3u/dt3 0.3 0.3084 0.2969 0.2853 0.2539
{:1’.'211./&2 4.0 4.0084 3.988 3.9663 3.9762
du/dt 0.6 0.6218 0.5916 0.5668 0.5154
u 3.0 3.0007 2.9987 2.9962 2.9954

5.1.1 Parameter Estimation From Frequency Response Estimates

Rather than synthesising the transfer function by generating-data from the exact system

transfer function (eqn.35), it is possible to obtain data from an estimate of the system transfer
function. To further illustrate the effectiveness of the algorithm, the transfer function was
estimated directly from input-output data using the functions available in MATLAB . The

plot of the estimated transfer function is shown in Fig-4.
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Linear Frequency Response
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Fig.4 The Gain and Phase of Estimated Transfer Function for Example-1
From the plot it is evident that the transfer function estimate is not accurate in the entire
frequency range (compare with Fig-3). However, 100 equally spaced frequency response data
were taken in the frequency range 0 -0.37 Hz to estimate the parameters of the transfer
function. Table-3 shows the terms that were selected from an 8th order linear model with
‘A = 2', as the iteration proceeds, together with the associated error reduction ratios. Note
that the estimator is capable of capturing the correct model structure. From this, it is found

that the estimated parameters compare well with the true parametrs.
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Table-3a : Parameters of the Auxiliary model of Example-1 based on Estimated
Data

iteration | selected Terms (p;) | ERR | Par.of Aux.model
1 dy [ dt? 96.8824 2.0098
2 u 1AL -2.2968
3 d*y/dt* 0.2536 0.7185
4 d?u/dt? 0.8258 -2.0339
5 d®y/dt® 0.2137 0.4521
6 diu/dt 0.2725 ~ -1.0009
7 d3u/dt? 0.0009 0.0262
8 du/dt 0.0013 0.1524
9 déy/dt® 0.0001 -0.0009
10 dy/dt 0.0072 0.2293
11 dy /dt3 0.0269 1.2091

5.1.2 Table-3b : Parameters of Example-1 based on Estimated Data

Candidate Terms | Estimated Parameters | True Parameters
d®y/dt® 0.9975 1.00
d*y/dt® 0.2983 0.3
dy/dt* 5.9788 6.0
d3y/dt® 1.2091 1.2
d*y/dt? 9.9588 10.0

dy/dt 1.2206 1.2
diu/dt 0.9759 1.0
d3u/dt? 0.2783 0.30
d’u/dt? 3.9525 4.0

dufdt 0.5717 0.6

u 3.0204 3.0

6 Synthesis of Nonlinear Transfer Functions

When the system is nonlinear,the traditional method of computing generalised frequency
response functions (GFRF) involves extending the classical cross and power spectral density
concepts to multi-dimentions and using correlation or FFT based techniques coupled with
multidimensional windowing and smoothing (Kim and Power,1988)

An alternative indirect approach is to estimate a nonlinear time domain model (usually

a polynomial or rational NARMAX model)(Leontaritis and Billings,1985) from the sampled

20




input output data and then to compute the GFRF of the system from the unbiased process
model using the recursive algorithms proposed in (Billings and Tsang,1989,Peyton Jones and
Billings,1989). The advantages of the latter approach is that only a small data sets are
required and the complexities of multi-dimensional windowing and smoothing are avoided.

The prcedure for implementing the above procedure is summarised below.

e Fit a discrete model (often a polynomial or rational NARMAX model) to the input-
output data.

o Compute the frequency response functions i.e. Hy(jwi), Ha(jwr,jw2),... Ha(Jwi, --.jwn)

from the estimated model.

e Estimate the parameters of the nonlinear continuous time model using the new estimator

replacing the frequency response functions by their estimates in eqn.(19-26).

The effectiveness of the new estimator in estimating the parameters of nonlinear systems

using the above procedure is demonstrated in the follwing two examples.

6.1 Example-2

Consider the following modified Van der Pol Equation

d’y 2
A - t

%

% + wly(t) = u(?) (39)

The system posesses nonlinear damping behaviour and has a stable node at the origin
with a domain of attraction which lies within an unstable limit cycle. For { = 0.01 and
w, = 457rad/sec,the linear frequency response exhibits a resonant peak at a frequency of
22.5Hz. In order to estimate a discrete model of the system, the system was excited by a
unifomly distributed white noise sequence with rms value 10 and input-output data were
collected by sa,m—pTng at 200Hz. A discrete NARMAX model was estimated using structure

detection,parameter estimation and model validation to yield the model

y(k) = 1.4858y(k —1)— 0.9859y(k —2)
+0.000025u(k — 1) + 0.0141y(k — 1)y(k — 1)y(k — 1)
—0.0141y(k — L)y(k — 1)y(k — 2) + Te(k — 1)O¢ + £(k) (40)

where the last two terms of eqn.(40) represent the noise model which was included to ensure
unbiased process model coefficients. This model can now be used to compute generalised
frequency response functions using the procedure of Peyton Jones and Billings (1989). The

Procedure consists of computing a set of explicit algebraic equations in a recursive framework.
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To estimate the coefficients of the linear terms, 100 equally spaced frequency response data
were generated in the frequency range of 0-20.0Hz. To further demonstrate the effectiveness
of the proposed estimator in detecting correct model structure, initially an overparameterised
model (linear continuous time model having 5th order dynamics of input and output) was
specified. The weighted parameter ‘A" was chosen to be 10. The selected terms together with
the associated error reduction ratios are shown in Table-4a. It was found that after three
iterations the sum of the error reduction ratios equaled 100% indicating that these three

terms have captured the linear dynamics associated with the system.

Tabl-4a Parameters of the Linear Auxiliary Model for Example-2

iteration | selected Terms (p;) | ERR | Par.of Auxiliary Model
1 u 99.9788 -0.0005048
) Py d? 0.0208 0.000466
3 dy/dt 0.0004 0.000019

It is evident from the model of eqn(40) that the system does not posses second order non-
linear terms implying that the system does not have a second order transfer function. Hence
the continuous time model of the system will not have any second degree nonlinear terms.
To estimate the terms corresponding to third order nonlinearity, 27 equally spaced frequency
response data were generated in the frequency range of 0-5Hz. Intially an overparameterised
model having third order nonlinear terms was specified. It was found that with the inclusion
of a term ‘y?2’, which contributes 99.923% in the first iteration, the contribution of other
terms in the next iterations are insignificant. The final estimated parameters of the system
are shown in Table-4b which indicates that the estimates are in good agreement with the true
parametrs of the system. Notice that in all the examples no prior knowledge of the model
structure or terms to include in the model was assumed. The algorithm selected appropriate

model terms and parameter estimates automatically from the data samples provided.

Table-4b : Final Parameters for Example-2

Candidate Terms | True Value | Estimated Value
&2y /dt? 1.0 0.9904
dy/dt 2.8286 2.8213
u 1.0 0.99999
y? 2.8286 2.8113
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6.2 Example-3

Consider the well known Duffing-Holmes equation (Moon,1987) given by

dy _d
5 Py b

de2 Et- — By +y° = Acos(w(t)) | (41)

For § = 0.15,8 = 1.0,A=0.3 and w = 1.0 rad/sec, the system exhibits chaotic behaviour and
settles to a strange attracter. The estimated discrete NARMAX model of this system at a
sampling frequency of 4.4446Hz is given by (Aguirre and Billings,1995)

y(k) = 0.84725y(k — 1)+ 0.35713y(k — 3) — 0.069431y(k — 1)
+0.01278y(k — 4) + 0.061319u(k — 1) + 0.40325y(k — 2)
—0.00024349y(k — 1)y(k — 2)y(k — 5) — 0.46215y(k — 5)
+0.096339u(k — 3) — 0.15316y(k — 2)y(k — 3)y(k — 4)
—0.0073618y(k — 1)*y(k — 5) + 0.071822y(k — 1)y(k — 3)y(k — 4)
+0¢ +£(2) (42)

From the model it 1s evident that the system has a linear and third order transfer functions.
To estimate the parameters of the linear part of the continuous time model of the system, 100
equally spaced frequency response data were generated from eqn(42) in the frequency range
0-2.0Hz with the weighting parameter ‘A’ equal to 0.8. To further show the capability of the
proposed estimator in selecting the correct model structure, an overparametrised linear model
of 5th order was specified. Table-5a shows the selected terms together with the associated
error reduction ratios as the iteration proceeds. It was found that after three iterations,the
sum of error reduction ratios of the first three terms selected equaled 99.9998% which implies

that these three terms are adequate to represent the underlying linear dynamics of the system.

Table-5a : Parameters of the Linear Auxiliary Model for Example-3

iteration | selected Terms (p;) | ERR | Par.of Aux.model
1 u 94.0888 0.8003
2 d*y/dt? 5.5058 -0.9658
. 3 dyf i 0.4052 -0.1530

For the estimation of the third order nonlinearities, 27 frequency response data were used
in the frequency range of 0-0.2Hz. An overparameterised model of third order nonlinerity was
intially specified and it was found that in the first iteration with the selection of the term

%, the total ERR becomes 99.99%. The contribution of other terms in subsequent iterations
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were insignificant;thus indicating that the term y*® captured the nonlinear dynamics of the
system. The final estimated parameters of the system are shown in table-5b which compare

well with the original system parameters.

Table-5b : Final Parameters for Example-3

Candidate Terms | True Value | Estimated Value
Py /dt? 0.15 0.15297
dy /dt 1.0 0.97946
u’ 1.0 0.99560
y® 1.0 0.9942

7 Conclusions

A new complex orthogonal estimation algorithm has been derived to estimate continuous
time nonlinear differential equation models from frequency response data. The algorithm
includes structure detection procedures which determine which linear and nonlinear terms to
include 1n the estimated continuous time model. This means that given frequency response
estimates and no other a prioriinformation about a system, parsimonious differential equation
models can be determined without the need to compute derivatives. The frequency response
estimates can be determined by any procedure which yields unbiased estimates. The effects
of weighting were investigated and shown to have a significant effect on the quality of the
estimates obtained. Several simulated examples including both linear and nonlinear systems

were included to demonstrate the effectiveness of the new procedure.
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A APPENDIX

A.1 Weighted Orthogonal Least Squares

The weighted complex orthogonal estimator is derived under the assumption that the mod-
elling error

E(jw) = Er(w) + jZE1(w) (A1)

in eqn(2) is a complex white noise sequence of zero mean and variance ¢ and the matrix
PTQP is positive definite.
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Consider the complex system of eqn(2) which after partitioning,as shown in eqn.(5), is
represented as

Z=P§+= (A.2)

Introducing a weighting matrix ‘Q’ (normally a symmetric positive definite matrix or a
diagonal matrix) the matrix PTQP can be shown to be symmetric and positive definite,and
hence can be expressed as

PTQP=T7DT (A.3)

where ‘D’ is a diagonal matrix and ‘T’ is an upper triangular matrix with unity diagonal
elements such that

(1 oz i3 ... om |
0 1 Q23 W Qo
1 am-im
b 0 1 -

Since TTT = I the model of eqn(A.2) can be transformed to an auxiliary model parameterised
with respect to vector ‘g’ as

Z = P+Z=
= P(T™'T+E (A.5)
= Wg+=
where
W =PT"! ,and g=T4 (A.6)

The properties of the matrix W are such that WTQW is orthogonal because

WIQW = (PT-Y)TQ(PT)= (T-*)TPTQPT-!

= (T7)TTDTT~' =D (A7)
Further let
V=wTQ (A8)
Therefore s .
VW=D | (A.9)

Now premultiplying W7Q and post multiplying by T in eqn.(A.6),we have
WTQWT = WTQPT-'T

— WTQP (A.10)
Hence
T = (WIQW)'WTQP
= (VW) VP (A.11)
= D'VP

The regressors of the auxiliary model of eqn.(A.5) can be obtained recursively from

~W=P-W(T-1I) (A.12)
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that 1s
w(w) = pi(w)
il . A.13
wi(w) = pi(w) — El apwi(w) for k<1 ( )
where from eqn.(A.4,A.11)
— (] («)Q)pi(w))
K ﬁ(wf(u)a).wk(w)) (A.14)
H . vi(w),pi(w - 3
= Gaoiee) for k=1...2-1
and ‘(.,.)‘ denotes the dot product of the vectors. The auxiliary parameter vector
91
g=1 (A.15)
gm
satisfies the equation
g=D"'WTQz - DT'WTQ= (A.16)
so that the estimated ‘g’ is given by
§=DT'WTQZ (A.17)
i (2(),w(w)
w), vi(w :
§i=-——+—-L fori=1,.M A.18
), w:() ads)

Inspection of eqn(A.18) indicates that if v;(w) and hence w;(w) is not related to the output
Z(w), the estimated parameter §; will be small, since the average value (Z(w),vi(w)) will
not be significant. Hence the orthogonal parameter ‘g;’ could be used as an indicator of the
significance of the terms ‘w;(w)’. If the magnitude of the estimated orthogonal parameter ‘g;’ is
less than a certain threshold,the associated term ‘w;(w)’ should be regarded as insignificant.
However,the value of the threshold depends critically on the problem under consideration.
Hence it is desirable to have a structure selection criteria based on the Error Reduction Ratio
which is derived section A.2

Once the parameters g;,7 = 1,...M are estimated,the original system parameters 6;,1 =
1,...M can easily be recovered according to the formula

b=4-(T-Df (A.19)
that is
- M .
6, = Gr— Y awpb;, fork=1,.M-1 (A.20)
1=k+1

Therefore by using the above equations,the unknown parameters 6;,z = 1,....M can be esti-
mated step by step.

28




A.2 Error Reduction Ratio for the Weighted Complex Orthogo-
nal Estimator

The proportion of the variance of the dependent variable explained by w;(w) is

g7 (vi(w), wi(w))
(27 (w)Q), z(w))

(A.21)

This is because from eqn(A.5)
Z7Qz gTWIQWe+ETQZ + gTWTQE + ETQWy

I . A.22
gTVWe+ZTQ= + ¢TVE+ ETQWyg ( )

The assumption on noise properties ensure that E[VZ] = 0, and E[ZTQW] = 0; hence

((Z7(w)Q), 2(w)) = Zsu vi(w), wi(w)) + ((E(w)@), E(w)) (A-23)

When the model is empty, i.e. no term is selected (M = 0), the weighted mean square of
the magnitude of the prediction errors will achieve a maximum value of

(E@)Q), Z(w)) =0 = (27 (w)Q), Z(w)) (A.24)

Once significant terms have been included,the mean square value of the prediction error
=(w) will be reduced accordingly. The reduction resulting by including the term ‘g;w;(w)’ can

be expressed as a percentage reduction in the total mean square of the prediction errors by
defining

2
92 (vi(w), wi(w))
ERR; =
((2T(w)@), 2(w))
This can be used as a selection tool to determine which terms are to be included in the
final model. However the value of the ERR; may depend upon the order in which the term

pi(w) (eqn.(1)) enter into the equation. This problem can be overcome by using the forward
regession procedure of Billings et al(1988) described in section-2.

x100%, i=1,..M (A.25)
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