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Abstract 

An experimental investigation was carried out on a wind tunnel scale vertical axis wind turbine with 

unsteady wind conditions. The wind speed at which testing was conducted was 7m/s (giving a Reynolds 

number of around 50,000) with both 7% and 12% fluctuations in wind velocity at a frequency of 0.5Hz. 

Rotational speed fluctuations in the VAWT were induced by the unsteady wind and these were used to derive 

instantaneous turbine rotor power. The results show the unsteady power coefficient (CP) fluctuates following 

the changes in wind speed. The time average of the unsteady CP with a 7% fluctuation in wind velocity was 

very close to that with steady wind conditions while 12% fluctuations in wind speed resulted in a drop in the 

mean CP, meaning unsteady winds of such amplitudes are detrimental to the energy yields from these wind 

turbines. At mean rotational speeds corresponding to tip speed ratios (λ) beyond peak CP, no significant 

hysteresis was observed for both 7% and 12% fluctuations. However, substantial hysteresis is seen for 

conditions where mean λ is below peak CP. 

Nomenclature 

A rotor frontal swept area, 2RL  Vmean mean speed of unsteady wind 
 c blade chord   
 CP power coefficient  λ tip speed ratio, RΩ/V∞ 
 fc characteristic frequency of unsteady wind  λmean tip speed ratio corresponding to Ωmean 
 Irig rotor rotational mass moment of inertia  ξ rotor angular acceleration 
 L blade length  ρ air density 
 N number of blades  σ rotor solidity, Nc/R 
 PB blade power (three blades)  Ω rotor angular speed 
 Pw wind power  Ωmean in unsteady wind, mean of Ω 
 R rotor radius   
 Tapp applied brake torque  HAWT horizontal axis wind turbine 
 TB blade torque (three blades)  VAWT vertical axis wind turbine 
 Tres resistive torque   
 Vwind instantaneous wind speed   
 V∞ free stream wind speed   
 Vamp amplitude of fluctuation of unsteady wind   
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I. Introduction  

The use of wind turbines has risen rapidly in recent years because of the potential that they offer for carbon 

free power generation. Winds are usually unsteady with high levels of turbulence for significant proportions 

of the time, resulting in air flows characterised by rapid changes in speed and direction. It has been pointed 

out several times in literature [1-4] that vertical axis wind turbines (VAWT) may be more appropriate for 

urban applications because of a number of distinct advantages it presents over the conventional horizontal axis 

wind turbines (HAWT). These advantages include no need to include a yawing mechanism to adjust the rotor 

to the changing wind direction, ease of maintenance due to the location of the gearbox – generator system at 

the base of the turbine, as well as potentially better performance in unsteady and skewed wind conditions [5-

7].  

However, very little work has been carried out into the effects of VAWT performance in unsteady wind 

conditions. The vast majority of research published (both numerical and experimental) has been with steady 

wind flows probably because the detailed analyses of blade loading and rotor performance are well established 

and fairly straightforward. However, there have been a handful of efforts (mostly numerical) that have 

attempted to provide initial understanding of the VAWT performance in unsteady wind. Earlier attempts to 

understand the performance of VAWTs in unsteady wind were carried out by McIntosh et al [8, 9] through 

numerical modelling. The VAWT was subjected to fluctuating free stream of sinusoidal nature while running 

at a constant rotational speed. An increase in energy extraction was attained using a rotational speed greater 

than the calculated steady state maximum. The over–speed control technique resulted to a 245% increase in 

energy extracted. Further improvements in the performance can be attained by using a tip speed ratio feedback 

controller incorporating time dependent effects of gust frequency and turbine inertia giving a further 42% 

increase in energy extraction. At low frequencies of fluctuation (0.05Hz) away from stall, the unsteady CP 

closely tracks the steady CP curve. However at higher frequencies (0.5Hz), the unsteady CP is seen to form 

hysteresis loops with averages greater than steady predictions.  

Hayashi et al [10] examined the effects of gusts on a VAWT by subjecting a wind tunnel scale rotor to a 

step change in wind velocity. Two types of control were implemented: constant rpm and constant load torque. 

When subjected to a step change in wind speed from 10m/s to 11m/s under constant rpm control, the VAWT 

torque was observed to respond almost instantaneously and attained a steady state in less than 3s. However 

when constant load torque control was employed, the initial response is similar to the constant rpm control 

where the torque instantly jumps to a higher level. The subsequent behaviour is a combination of a gradual 

increase in rpm with a slow decrease in torque until steady state is attained. Despite an observed transient 

VAWT response that does not follow steady state power curves, they contend that the adopted step change in 

wind speed is not normally observed in the real world and most likely a more gradual increase is expected. 

The VAWT behaviour will thus follow a quasi–static condition during the gust.  



In 2010, Kooiman and Tullis [11] experimentally tested a VAWT within the urban environment to assess 

the effects of unsteady wind on aerodynamic performance. Temporal variation in speed and direction was 

quantified and compared to a base case wind tunnel performance. Independence of the performance in 

directional fluctuations was seen while amplitude–based wind speed fluctuation decreased the performance 

linearly. For their particular urban site, the degradation in performance was deemed minimal.  

Danao and Howell [12] conducted CFD simulations on a wind tunnel scale VAWT in unsteady wind 

inflow and have shown that the VAWT performance generally decreased in any of the tested wind 

fluctuations. The amplitude of fluctuation studied was 50% of the mean wind speed and three sinusoidal 

frequencies were tested: 1.16Hz, 2.91Hz, and 11.6Hz where the fastest rate is equal to the VAWT rotational 

frequency. The two slower frequencies of fluctuation showed a 75% decrease in the wind cycle mean 

performance while the fastest rate caused a 50% reduction. Closer investigation revealed that for a 2.91Hz 

fluctuation rate a large hysteresis is seen in the unsteady CP of the VAWT within one wind cycle. This 

hysteresis occurs in the positive amplitude portion of the wind fluctuation where the blades passing the 

upwind progressively stall at earlier azimuths and experience very deep stall due to significant reduction in the 

effective λ. Negative amplitude in wind fluctuation does not produce significant hysteresis. However, the 

unsteady CP traces a curve that does not follow the steady CP curve but somehow crosses it down to a lower 

level performance curve.  

Following the work of Hayashi in 2009, Hara et al [13] studied the effects of pulsating winds on a VAWT 

and the dependence of the performance to changes in the rotor’s moment of inertia. The fluctuating wind was 

not sinusoidal but alternating gusts and lulls that were equally distant from a mean wind speed. This was 

implemented by a blade pitch–controlled fan blowing to an Eiffel–type wind tunnel with the rotor 1.5m from 

the tunnel outlet. Results show a phase delay in the response of the rotational speed from the wind variation 

but held a constant value of about π/2 regardless of amplitude. This was explained as an effect of the distance 

of the VAWT from the tunnel outlet where the hotwire was installed. The energy efficiency of the VAWT was 

observed to be constant in changing rotor moment of inertia and fluctuation frequency but a decrease is seen 

when fluctuations have large amplitudes. Further work for a larger scale VAWT using numerical techniques 

confirm their experimental observations and a locus of torque is produced as the VAWT response to the cyclic 

changes in wind speed.  

In 2012, Scheurich and Brown [14] published their findings on a numerical model of VAWT aerodynamics 

in unsteady wind conditions. The fluctuating wind had a mean speed of 5.4m/s with a fluctuating frequency of 

1Hz. Different fluctuation amplitudes were investigated for three blade configurations: straight, curved, and 

helical. Constant rotational speed was used in the numerical simulations and the boundary extents were far 

enough for the model to be considered as open field. Both straight and curved blades exhibited considerable 

variation in blade loading which is also observed in steady wind results. These variations in CP over one 

revolution are more significant than those induced by the unsteadiness of the wind. Helical blades perform 



much better with the unsteady CP tracing the steady performance curve quite well. Overall performance 

degradation is observed when fluctuation amplitudes are high while the effect of frequency is minor for 

practical urban wind conditions. Hysteresis loops of the CP are seen on the helical configuration that extend 

beyond the steady CP variation especially for the high frequency of wind fluctuation.  

The conflicting conclusions from previous published research suggest that very little is still understood 

about the performance and aerodynamics of VAWTs in unsteady winds. Any generalisations made about 

VAWT performance in the urban environment may well be completely erroneous.  

The research presented with unsteady wind conditions are, to the Authors’ knowledge, the first 

experiments of their kind and the paper will further the understanding of VAWT performance in unsteady 

wind conditions.  

II. Experiment Methods  

Wind Tunnel Facility  

The wind tunnel used for these experiments was the University of Sheffield – Department of Mechanical 

Engineering’s low–speed wind tunnel. The tunnel is an open-circuit suction type with an axial fan located at 

the outlet (Figure 1). The wind tunnel has a total length of 8.5m, including the 3m long test section. At the 

inlet, a honeycomb mesh straightens the inlet flow and breaks up any large scale flow structures present in the 

room. A series of fine meshes and a settling section permit turbulence and non-uniformities to dissipate, after 

which the flow is accelerated by a 6.25:1 contraction cone leading to the 1.2m high by 1.2m wide test section. 

At inlet to the working section the turbulence level is around 0.4%, but a turbulence grid was placed at this 

location to generate turbulence at the VAWT test position of about 1%. A value of 1% turbulence intensity 

was used in this paper because it shows both positive performance at high TSR as well as very well defined 

vortices and stalling behaviour at low TSR. Too low turbulence intensity (0.4%) causes negative performance 

(CP) all throughout the range of TSR tested, whereas higher turbulence intensity (2.6%) suppressed the 

formation of a leading edge separation bubble that would eventually form into the dynamic stall vortex.  



 
Figure 1. University of Sheffield wind tunnel facility with gust generators installed. 

The tunnel was modified by the installation of shutters (downstream of the test section) which can be made 

to oscillate open and closed and generates the required unsteady wind velocities. These shutters can be held 

open and stationary for steady wind experiments. The shutters can be made to oscillate at different frequencies 

and different amplitudes. There are four slats on the right of the mechanism that close towards the right wall 

and another four on the left that close towards the left wall. This arrangement is chosen to avoid a biased 

lateral movement of the flow to one side of the tunnel, thereby minimising any unnecessary direct or indirect 

effects to the VAWT performance. A DC motor coupled to a 75:1 worm gear speed reducer drives a 

mechanism composed of bar linkages, cables and pulleys, and a pin–slot linkage.  

Time resolved measurement of wind speed within the wind tunnel is carried out by a calibrated hot wire 

probe. The hot wire probe is calibrated in-situ with reference to a Furness Controls micro-manometer 

connected to a Pitot–static probe placed adjacent to the hot wire in the wind tunnel. These measurements are 

taken 20 rotor blade chords upstream of the turbine. Performance measurements from the turbine with and 

without the hot wire and Pitot probe present show that they have no effect on the performance of the turbine. 

Wind Turbine Model  

The VAWT used for this study is straight-bladed and mounted on a 25mm diameter central shaft running 

through the top and bottom walls of the test section where the bearings are located. The turbine is mounted in 

the centre of the test section cross section area but slightly downwind along the test section length. The turbine 

is based on three NACA0022 blades with chord c = 0.04m each supported by two support arms based on 

NACA0026 profiles (of 0.03m chord) at 25% and 75% rotor blade span positions. The rotor radius R is 0.35m 

and the blade span L is 0.6m giving the VAWT a solidity of σ = 0.34 following the conventional definition (σ 

= Nc/R, where N: number of blades). The turbine drive shaft is connected to a DC motor which provides the 

drive to spin the VAWT up to operating speed via an electromagnetic clutch. The drive shaft connected to 

Magtrol hysteresis brake to provide braking torque while a 3000–slot optical encoder provides a means to 



measure rotational speed and its variation during a revolution. Torque is measured using a calibrated position 

based torque sensor. 

It was not necessary to consider the effects of blockage in this investigation because absolute levels of 

performance were not important; only relative values of performance were needed as the paper’s aim is to 

elucidate the flow physics present for the first time in an experimental setup. 

Steady Blade CP  

Measurement of the steady rotor blade power was carried out using an indirect method following a 

procedure developed by Edwards et al. [3]. The VAWT performance is first measured by allowing the rotor to 

spin down from a high rotational speed and the deceleration rate monitored using the optical encoder. For 

each test condition, two spin down tests are needed to determine the full performance of the rotor blades. The 

first involves the spin down of the rotor without the rotor blades but including the support arms. This is 

necessary to determine the system resistance which is always negative and includes the drag induced by the 

support arms as well as the bearings and hysteresis brake etc. It has been determined that the system resistance 

is independent of wind speed over the range tested here, i.e. the resistive torque curves from different spin 

down tests conducted at different wind speeds are identical [3]. The second spin down test is conducted with 

the rotor blades fitted and so measures the full turbine performance. For both spin down tests, the 

instantaneous torque is computed by multiplying the instantaneous rotational deceleration (ξ) by the rig’s 

rotational moment of inertia (Irig). The rotor blade torque is then the difference between the rotor torque (TB) 

and the system resistance (Tres), see Equation 1. Instantaneous blade power is derived via Eq. 2. This system is 

used to determine the performance of the VAWT when it cannot self-sustain itself, i.e. the system resistance 

(due to bearing friction, and support arm drag) is greater than the torque developed by the rotor blades. For 

this particular turbine this usually occurs at wind speeds below 7m/s. 

 B res app rigT +T +T =I ξ  (Eq. 1) 

 B BP =T Ω  (Eq. 2) 



 
Figure 2. Steady torque results plotted over transient torque data. 

The transient spin down method was shown by Edwards et al [3], to be a useful method of determining 

turbine CP. Since the technique is used again here in a modified form to determine the performance of the 

turbine with unsteady wind, further proof of the transient methods validity and accuracy are presented as 

performance coefficients in Figure 2. This shows the CP vs. λ for a wind speed of 7m/s, where the solid black 

line represents the data from the spin down method and the red circles represent the direct torque 

measurement of CP. It is clear that the results are well matched.  

For tests at wind speeds of 7m/s and greater, the application of the hysteresis brake (Tapp) is required to 

slow the turbine because positive rotor torque is developed which prevents the VAWT decelerating at these 

higher wind speeds (Reynolds numbers). Blade power is computed by subtracting both system resistance and 

brake applied from the rotor torque. The reader is referred to Edwards et al. [3] for the full details of the 

method including limitations and assumptions used. Maximum CP for 7m/s is around 21% and positive blade 

performance is observed between λ = 3 and λ = 5. The figure also indicates Reynolds number dependency of 

blade performance at this scale of the VAWT. Higher wind speeds result in higher CP and a wider λ band of 

positive performance, but for structural and safety reasons, spin down tests were conducted up to a maximum 

wind speed of 9m/s.  

Measurement of Rotor Blade CP (Unsteady) 

Measurement of the rotor blade CP of the VAWT running in unsteady wind requires a modification on the 

test procedure for the steady case presented above. The fundamental relationship of the torque terms involved 

is identical, see Eq. 1 and Eq. 2. The procedure for collecting the data for the unsteady wind experiments is 

complicated in practice, but simple in terms of data processing and is now described. Firstly, a steady wind 

speed is selected and the turbine operated at a constant rotational speed. The wind is then set fluctuating at the 

required amplitude and frequency by setting the required power input into the shutter drive mechanism. At 

this point some adjustment to the wind tunnel wind speed may be required to bring the mean wind speed back 



to the required value. Once this is achieved, the turbine is now operating in unsteady wind conditions with the 

desired mean wind speed. This unsteady wind operation is continued for appropriately 10 minutes and until 

the turbine operates in a fully periodic manner i.e. periodic over a long time scale. Only after attaining 

periodicity are the turbine conditions measured. For each test condition, two minutes duration of data is 

logged, which equates to approximately 29 cycles of the wind fluctuation at its slowest rate. It was determined 

that ensemble averaging the data over this number of 30 of the wind variation gave the best quality results. It 

should be noted that the hysteresis brake applies a constant torque independent of rotational speed of the 

turbine. The data measured is the fluctuating variation with time of the rotor speed as recorded by the 3000 

slot per rotation optical encoder. It is then possible to use this RPM variation with time to calculate the 

rotational acceleration of the turbine (ξ) with time and determine the instantaneous torque developed by the 

turbine. The resistive torque was determined during the first spin down tests and the combination of these 

measurements allows the determination of the rotor blade performance. 

III. Experiment Results 
 
The Reference Case. 

Tests conducted at Ωmean = 791 rpm (λ ~ 4) were used as a reference case as this is very near to the 

optimum λ of the steady wind performance curve. With the present test parameters (R = 0.35m, fc = 0.46Hz, 

V∞ = 6.97m/s) this resulted in the wind turbine executing 29 revolutions for one period of the wind speed 

fluctuation. The wind gust length scale is an order of magnitude larger than the rotor diameter implying that 

the wind turbine should be able to physically resolve the structures containing the majority of the unsteady 

energy within the wind cycle [15]. However, this does not imply that the turbine will be able to track the 

optimum λ as the wind fluctuates, it is only argued that the available energy in the unsteadiness is ‘visible’ to 

the VAWT and with the appropriate control system the VAWT will be able to extract much of the energy 

contained within the gust. Many VAWTs are small machines without complex control systems and so will 

operate in a manner similar to the turbine used here. If a turbine were to be operated at constant RPM the λ 

would of course still vary with the wind speed and in this case the torque what would have to be continuously 

varied to absorb the changes in power in the wind. The Sheffield 0022 turbine operates with constant applied 

torque and the RPM varies. 

 
 a. b. c. 
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Figure 3. Unsteady kinetics of the VAWT: a) wind velocity, b) RPM, c) acceleration,  
d) torque terms for one cycle, and e) wind power and blade power. 

A wind turbine with low moment of inertia is desired so as to reduce the need for highly sensitive 

measurement sensors and transducers thus allowing the VAWT to be able to respond sufficiently enough to 

make measurements a possibility. The current VAWT has a rotational mass moment of inertia about the 

VAWT axis equal to 0.1805kg–m2. This is slightly high for a VAWT of this scale but is unavoidable because 

of the construction techniques required to manufacture this turbine. Despite this inertia, the current 

instrumentation allows for the detection of less than 1 rpm change in rotational speed and as such this 

measurement resolution is perfectly acceptable. 

As can be seen from Figure 3a, the profile of the fluctuating wind is a distorted sine wave. The positive 

fluctuation of the cycle is slightly shorter than the negative section because the latter involves the closing of 

the shutters against the wind. The power supply for the shutter drive responds to this resistance by increasing 

the input current while maintaining a constant voltage and in the absence of a full control system on the speed 

of rotation of the drive causes this skewed unsteady wind profile. Despite the lack of control system for the 

shutter mechanism, the resulting fluctuating cycle is very close to the desired sinusoidal shape and most 

importantly it is periodic. 

The fluctuating rpm of the wind turbine shows a π phase lag from the wind, Figure 3a and 3b. The peak of 

the rpm occurs half way in the cycle where the wind speed is close to the mean value. The lowest point in the 

rpm cycle is at the beginning and end of the cycle where the wind speed is also close to the mean value. This 

behaviour suggests that there is little time delay in the response of the VAWT to the fluctuating wind. This is 

to be expected given the rotational frequency of the turbine is so much higher than that of the wind fluctuation 

frequency. An inspection of the acceleration shows that the peak and trough of the acceleration coincide with 

the wind speed maximum and minimum quite well. The distortion in the acceleration curve is also similar to 

that of the wind profile. When the acceleration of the VAWT is highest, this corresponds to the point of 

maximum wind speed and the steepest positive slope in the rpm curve. On the other hand, the lowest point in 

the acceleration curve coincides with the point of lowest wind speed and steepest negative slope in the rpm 

curve. Therefore the response of the VAWT to the changing wind is considered to be almost instantaneous. 



The rotor torque Irigξ, which is the net torque, varies with respect to zero (Figure 3d). Positive acceleration 

produces positive rotor torque and reaches maximum at 0.19N·m. As the wind speed drops to the second half 

of the cycle, the acceleration plunges to the negative region resulting to negative net torque on the rotor. For 

the case shown, the applied torque Tapp is zero while the resistive torque Tres is constant at –0.18 N·m. A point 

to note is the dependence of the resistive torque on the rotor rpm and while the rpm is fluctuating with the 

wind, the amplitude of the rpm fluctuation is very small compared to the magnitude of its mean value. The 

resistive torque corresponding to the changing rpm has a standard deviation of 7e–04N·m hence a constant 

resistive torque is observed. Solving for the blade torque TB from Eq. 1 essentially pushes the net torque 

upward by an amount equal to the resistive torque Tres. The unsteady blade power is computed using the 

known blade torque TB and rotational speed. Maximum blade power is 31.04W while the minimum is close to 

zero at –0.27W. The unsteady wind power can easily be derived. Maximum wind power is computed to be 

120.11W while the minimum is 56.13W. Figure 3e shows the plots for the blade power and the wind power in 

one fluctuation cycle. The cycle average wind power was mentioned earlier to be 85.44W while the cycle 

average blade power is 15.35W. The power coefficient of the VAWT over one wind cycle is 0.18. 
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The unsteady tip speed ratio λ is the instantaneous relationship between the rotational speed and the wind 

speed. When plotted against time, the unsteady λ curve is a mirror image of the unsteady wind profile (Figure 

4a). This suggests λ is more sensitive to wind speed changes than to rotational speed variation. As the wind 

speed fluctuates to the positive peak, the λ drops from 4.11 at the start of the cycle to 3.68 close to the point of 

maximum wind speed. It does not occur at the point of maximum wind speed because the changing rpm also 

contributes to the unsteady λ and the relationship is non–linear. After reaching minimum value, λ steadily 

rises as the wind speed drops to the lowest magnitude. Close to the lowest point of the wind speed cycle λ 

attains its maximum value of 4.74.   

 
 a. b. 



Figure 4. Unsteady performance of the VAWT vs. time: a) λ, b) CP. 

From Eq. 3, the CP is dependent on two fluctuating parameters: wind speed and rpm. The 180° phase 

difference of the rpm relative to wind speed does not make the relationship straightforward. The performance 

of the VAWT (Figure 4b) is highly dependent on the interaction of the two parameters and this makes the 

analysis more complicated. Although the profile of the wind speed variation is periodic and sinusoidal, the 

available wind power is a function of its cube. However, the blade power is a function of the rotational 

acceleration derived from the fluctuating rpm. Additionally, wind power varies with larger amplitudes and has 

a substantially higher mean compared to blade power. This induces a unique variation in the CP as the wind 

speed fluctuates. During the first half of the wind cycle where the speed changes from the mean to the 

maximum value and back, the CP is observed to rise gradually and flattens out early on before coming back to 

near its value at the start of the cycle. Conversely the behaviour of the CP in the second half of the cycle is 

sudden and steep with a deep trough at the point of lowest wind speed. Afterwards, the CP rises rapidly and 

attains higher values as the wind speed recovers to its mean state. From Figure 4b, one can see an increase in 

CP as the wind speed rises. From the start of the cycle where the CP is 0.18, the performance rises and slowly 

tapers off to a maximum of 0.26 after which drops to 0.19 midway in the cycle. At the start of the second half 

of the cycle, the drop in the value of the CP is observed to be faster than the section that just preceded it and 

eventually ends with a value of zero before rising again to 0.18 as the wind cycle is completed. When 

compared to the increase in CP of 0.08 in the first half of the cycle, the decrease of the CP in the second half 

is more than double at 0.19. The peak and trough of the unsteady CP curve are consistent to the maximum and 

minimum of the wind speed profile suggesting a Reynolds number dependence of the CP.  

 
Figure 5. Unsteady wind performance versus steady wind performance. 

A further inspection of this behaviour is carried out by overlaying the unsteady CP of the VAWT over 

steady CP curves at different wind speeds (Figure 5). One can see that the unsteady CP does not trace the 

steady performance curve of the VAWT at 7m/s. The unsteady curve cuts across the steady CP curves as the 

performance fluctuates with the changing wind. This is a very different observation compared to similar work 



by McIntosh et al [9] and Scheurich and Brown [14] on a larger VAWT scale. Both numerical studies show 

that the performance of a 5kW VAWT in unsteady wind closely tracks the steady CP curve when the mean λ 

is higher than the optimum λ. A possible explanation for this is the difference in Reynolds number between 

the large scale VAWT and the wind tunnel scale VAWT. From a value of 0.18 at the start of the cycle, the 

unsteady CP increases with the wind and approaches the steady CP curve for 8m/s. The subsequent drop in 

wind speed does not cause the CP to follow the same path but trace a new one with slightly higher values. The 

small hysteresis loop in the unsteady CP implies slight dynamic stalling of the blades as they see more rapidly 

changing relative velocities and tip speed ratios than steady wind conditions. As a reference point, the 

equivalent steady CP of the VAWT at the mean rpm is 0.205 while the instantaneous CP at two points in the 

unsteady curve with the same λ value are both lower and the cycle average CP is also lower. When the wind 

speed reaches is lowest value in the cycle, the unsteady CP is already lower than the 6m/s steady CP curve 

even though the actual wind speed is still higher at 6.1m/s. 

Effect of Varying the Mean λλλλ 

The performance of the VAWT in unsteady wind is further investigated by changing the mean λ while 

preserving the unsteady profile of the wind. This is accomplished by applying the brake on the VAWT to 

increase the resistive forces and reduce the mean rpm of the rotor. The plots of the fluctuating wind speed for 

the two different mean λ cases are shown in Figure 6a. There is a difference in the observed period of 

fluctuation between the two. The reference case with the higher mean λ has a period of t = 2.17s (fc = 0.46Hz) 

while the case with the lower mean λ has a period of t = 1.91s (fc = 0.52Hz). The difficulty in controlling the 

experiment parameters with their inter–dependent properties implies that the unsteady wind profiles cannot be 

matched precisely when run settings are changed. Nevertheless, the dissimilarity in periods is considered 

small when compared to the overall effect of the magnitude of the fluctuating wind speed. The mean wind 

speeds for both cases are very close at 6.97m/s for λmean = 4.1 and 6.96m/s for λmean = 3.8. The amplitudes of 

fluctuation are also very similar at 0.88m/s for λmean = 4.1 and 0.81m/s for λmean = 3.8, just more than 12% of 

the Vmean.  

  
a. b. 
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Figure 6. Unsteady kinematics for different mean λ: a) wind velocity, b) RPM, c) acceleration. 

Shown in Figure 6b is the plot of the unsteady rpm for the two cases. The mean rpm is 791rpm for λmean = 

4.1 while it is 731rpm for λmean = 3.8. The resistive torque corresponding to these cases are 0.18N·m and 

0.165N·m, respectively. From the torque equation (Eq. 1), this suggests a lower vertical shift of the blade 

torque TB for λmean = 3.8 from the initial rotor torque Irigξ position. However, there is an additional brake 

torque Tapp of 0.03N·m for λmean = 3.8 that is not present in λmean = 4.1. This pushes the TB curve of λmean = 3.8 

closer, but still lower, to that of λmean = 4.1.  

It can be seen that the peak–to–peak value of the rpm fluctuation is 6.73rpm for λmean = 4.1 and 3.77rpm 

for λmean = 3.8. The difference, which is almost double, greatly affects the computed rotational acceleration of 

the VAWT. More gentle slopes in rpm for λmean = 3.8 mean lower values of acceleration while larger 

amplitudes as in the case of λmean = 4.1 result to higher magnitudes of acceleration (Figure 6c). Since blade 

torque TB is directly proportional to acceleration, the λmean = 4.1 case generates greater torque variation than 

the λmean = 3.8 case. The amplitudes of fluctuation of λ for the two cases are noticeably different as seen in 

Figure 7a. The amplitude for λmean = 4.1 is 0.53 while it is 0.46 for λmean = 3.8. Since the wind speed variation 

between cases do not vary much, λ is now dependent only on the rpm fluctuation. With the observed lower 

peak–to–peak variation of rpm in λmean = 3.8, the same can be expected on fluctuating λ with a lower peak–to–

peak value.  

The behaviour of the time varying CP cannot be simplified in the same manner. Both cases show a gradual 

rise and tapering off in CP during the first half of the wind cycle but a steep and sudden drop in the second 

half (Figure 7). From the start of its cycle, λmean = 4.1 gains 0.08 in CP from 0.18 to 0.26 before dropping to 

0.19 as the first half of the cycle ends. However, the CP continues to drop and loses more than 0.19 of its 

value to less than zero. Similarly, λmean = 3.8 exhibits an initial slow rise in CP of 0.04 from 0.17 to a peak 

value of 0.21 and a subsequent deep trough in the second half with a loss of 0.1 from 0.19 to the lowest value 

of 0.09. The preceding observations point to a negative bias in CP variation even in a symmetrically 

fluctuating wind. There is more negative effect in performance despite constant energy content in the wind 

suggesting that unsteady wind is detrimental to the overall VAWT performance. 



 
 a. b. 

Figure 7. Unsteady performance of the VAWT for the two λ cases: a) λ, b) CP. 

The unsteady CP variation of the two λ cases is plotted against λ in Figure 8. Compared to λmean = 4.1, the 

unsteady CP of λmean = 3.8 shows a large hysteresis loop which further supports the argument that it is not 

possible to trace the unsteady performance of a micro–scale VAWT on steady CP curves. The hysteresis 

indicates the presence of deep stall, a phenomenon that is likely to occur at λ below the optimum performance 

point. Similarly, McIntosh et al [9] investigated a variety of mean λ and found that hysteresis loops in CP are 

formed when λmean is close to the optimum λ. However, the similarity ends there. McIntosh et al have seen a 

significant increase in the cycle CP of the VAWT especially at higher fc whereas this study sees the opposite.  

 
Figure 8. Unsteady performance of the VAWT at different mean λ. 

The unsteady CP moves between different steady CP curves clearly showing Reynolds number 

dependency at this scale. Both cases illustrate a trend in the band of unsteady performance. The VAWT CP is 

expected to fluctuate from one steady CP curve to another depending on the amplitude of the fluctuating wind. 

For the cases considered, the amplitude is around 0.9m/s hinting that the CP should fluctuate between the 

6m/s and 8m/s steady CP curves. The cycle CP for both cases is 0.18 while the steady wind CP counterparts 

are just above 0.20.  



Effect of Varying the Fluctuation Amplitude 

The influence of varying the amplitude of fluctuation was also investigated. Achieving this necessitated the 

changing of the closing angle of the shutters to change the flow restriction in the downwind of the test section. 

As with changing any test parameters from the reference test case, difficulty was encountered in trying to 

change only one setting without significantly affecting other settings. To achieve the same mean wind speed 

while having smaller amplitude, getting the same period of fluctuation was inevitably going to be difficult. 

The new case with the smaller amplitude fluctuation Vamp = ±7% has a period of t = 1.87s (fc = 0.54Hz) 

(Figure 9a). This is close to the λmean = 3.8 case of the previous section and not too far from the reference case 

Vamp = ±12% of t = 2.17s (fc = 0.46Hz). The mean wind speed for Vamp = ±7% is 6.87m/s, a slight drop from 

the 6.97m/s wind speed for Vamp = ±12%. The 0.1m/s difference between mean values is deemed small since 

its effect on the wind power is only a 3.5W drop, about 4% power reduction. The amplitude of wind 

fluctuation for Vamp = ±7% is approximately 7% of the Vmean at 0.47m/s.  

There is a very small difference in the rotational speed profiles between the two cases.  As reported in the 

previous section, the mean rotational speed Ωmean for Vamp = ±12% is 791rpm. On the other hand Ωmean = 

795rpm for Vamp = ±7%, a mere 0.5% difference. In terms of the resistive torque corresponding to these rpm 

levels, Tres = 0.18N·m for both Vamp = ±7% and Vamp = ±12%. An expected outcome is the difference in the 

peak–to–peak value of the rpm fluctuation (Figure 9b). For Vamp = ±7% this turns out to be 3.58rpm, which is 

about half of the value for Vamp = ±12%. The smaller peak–to–peak results to a similar outcome in rotational 

acceleration as the λmean = 3.8 case where the gentler slopes in the rpm profile cause smaller magnitudes in 

rotational acceleration (Figure 9c). Consequently, the magnitudes of the unsteady torque are much smaller 

than the reference case. The mean λ is 4.2 for Vamp = ±7%, slightly higher than λmean = 4.1 for Vamp = ±12%. 

This is to be expected because for the Vamp = ±7% case, Ωmean is a little higher and Vmean is a bit lower. 

Additionally the amplitude of λ fluctuation is smaller as a direct consequence of the smaller amplitude of the 

unsteady wind (Figure 10a).  

  
a. b. 



 
c. 

Figure 9. Unsteady kinematics for different Vamp: a) wind velocity, b) RPM, c) acceleration. 

The variation of the CP versus time when Vamp = ±7% is similar to the previous cases investigated (Vamp = 

±12% at λmean = 4.1 and λmean = 3.8). As already seen in the previous section where a bias towards the negative 

performance is observed, such observation is also true with a smaller amplitude of fluctuation (Figure 10b). At 

the start of the cycle, the instantaneous CP is 0.204 and gradually rises to a peak value of 0.257. The 

subsequent fall of the wind speed causes the CP to follow suit and return to a value close to the initial CP at 

0.197. As the wind speed continues to drop to the minimum, the CP also decreases until it reaches its lowest at 

0.099. Between the initial CP and the maximum, the increase in CP is 0.053. However, the drop in CP 

between the initial value and the minimum is almost double at 0.105. The results are consistent to the previous 

test cases where the overall cycle CP is reduced when the VAWT is subjected to unsteady wind conditions.  

 
 a. b. 

Figure 10. Unsteady performance of the VAWT for the two Vamp cases: a) λ, b) CP. 

Figure 11 shows the unsteady CP plotted against λ. Noticeably the path that the CP traces does not form a 

hysteresis loop. This is expected since the wind speed amplitude is small enough that deep stalling is 

suppressed at these operating λ. Scheurich and Brown [14] observe a similar trend in the CP curve with 

varying amplitudes. In their investigation, a fluctuation amplitude of ±30% induces hysteresis in the unsteady 

CP while a ±10% amplitude does not. The unsteady λ barely drops below the optimum λ value. When the 

VAWT is operating at these conditions, the blade stall behaviour is similar to a very slowly pitching aerofoil 

in constant free stream. The separation starts from the trailing edge and moves up towards the leading edge. A 

leading edge separation bubble never forms and most of the time only partial stall is seen. The path of the 



unsteady CP is also comparable to the previous results where the curve cuts across the steady CP curves 

approach the adjacent curves as the wind speed fluctuates to its extreme values. The cycle CP for Vamp = ±7% 

is 0.18, a 0.01 drop from the steady CP value of 0.19. 

 
Figure 11. Unsteady performance of the VAWT at different Vamp. 

  



VI. Conclusions 

Unsteady wind experiments have shown that unsteady VAWT performance does not follow steady CP 

curves. For the mean wind speed of Vmean = 7m/s, the instantaneous CP rises and approaches the steady CP 

profile of a higher V∞ as the wind speed increases. The maximum unsteady CP is 0.26 and is greater than the 

maximum CP in steady wind. The fall of CP from the mean to its lowest value causes the CP to fall and move 

towards the steady CP profile of 6m/s. The cycle average CP of the VAWT is lower at 0.18 compared to the 

steady CP value of 0.205 at the corresponding λ.  

Lowering the λmean from 4.1 to 3.8 still shows the unsteady CP-λ profile to cut across steady CP curves. 

However, the unsteady CP profile now shows a large hysteresis that drastically affects the overall 

performance of the VAWT despite the minimum CP falling to only 0.09 versus the reference case minimum 

of just below zero. The cycle CP of the λmean = 3.8 case is equal to the reference case at 0.18.  

When the amplitude of fluctuation Vamp is changed instead, a similar deterioration of performance is 

measured. The extents of the unsteady CP profiles are much shorter than the reference case when the Vamp is 

reduced from ±12% to ±7%. No visible hysteresis in the CP is seen and the reduction in cycle CP is much less 

from the steady CP value of 0.19 to the unsteady cycle CP of 0.18.  

All in all, unsteady free stream causes a drop in performance of the laboratory scale VAWT tested. 
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