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The role of the Karakoram fault (KKF) in evolution of the Tibetan–Himalayan orogenic belt is controversial. Some consider
the KKF to be a stable, long-lived feature with several hundred kilometres of offset along its entire current trace, whereas
others interpret it as having propagated along its NW–SE trend since initiation at ∼16 Ma with small-scale slip being
gradually absorbed by transfer structures along the fault trace. Here we report new zircon U–Pb and mica 40Ar/39Ar ages
related to the Ayi Shan detachment to better constrain the activity of the KKF in southwestern Tibet. The zircon U–Pb
data show migmatite ages of 489, 478, and 435 Ma from the footwall of the Ayi Shan detachment involved in the KKF
ductile shear zone. Mylonitized migmatite in the South Ayilari did not record any KKF activity. Similarly aged magmatic
and metamorphic information recorded in mylonites and undeformed rocks of the Animaqing Group around the North
Ayilari also rules out the effect of KKF movement on zircon growth. Cenozoic information recorded in North Ayilari zircons
evidently resulted from Trans-Himalayan magmatic belt (THB) magmatism during 45–50 Ma and 32–25 Ma. Four mica
dates from the same mylonitized samples all cluster around 12 Ma. Combined zircon U–Pb and mica 40Ar/39Ar ages from
the mylonites and undeformed rocks support the hypothesis that the KKF imposed a structural fabric on the rocks of the
Animaqing Group and the THB granites at around 12 Ma in the Ayilari Range. Chronologic, kinematic, and geometric
studies demonstrate that the fault propagated southeastward into SW Tibet at 12 Ma.
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Introduction

The NW–SE-trending Karakoram fault (KKF) is one of

the most prominent morphologic features in the western

Himalayan–Tibetan orogen and central to the debate con-

cerning end member models of continental deformation

(Searle et al. 2011).

Over the initiation age and evolutionary history of

the fault, data that are utilized to critically assess com-

peting models of continental deformation have resulted

in contrasting interpretations of faulting and relevance to

these competing models. In the extrusion model, the KKF

is interpreted as a stable, long-lived feature initiating at

32–25 Ma along its entire current trace, with only minor

changes in kinematics (e.g. Peltzer and Tapponnier 1988;

Armijo et al. 1989; Lacassin et al. 2004). In the distributed

deformation model, the KKF is interpreted as propagat-

ing continuously along its NW–SE trend since initiation

(e.g. Searle 1996; Murphy et al. 2000; Robinson 2009).

Over the last few decades, field and laboratory work has

been conducted along different segments of the fault, and

great progress has been achieved in investigating its geo-

metric, kinematic, and chronological characteristics (e.g.
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Armijo et al. 1989; Ratschbacher et al. 1994; Searle 1996;

Searle et al. 1998; Phillips et al. 2004, 2013; Murphy et al.

2000, 2002; Lacassin et al. 2004; Robinson et al. 2004;

Phillips and Searle 2007; Wang et al. 2009, 2011, 2012,

2013; Murphy et al. 2010; Robinson et al. 2012).

Initial characterization of the fault by Peltzer and

Tapponnier (1988) and Liu (1993) suggested a fault model

that supported the extrusion hypothesis, namely that the

fault initiated in the Eocene, had an offset of 1000 km,

and a corresponding long-term slip rate of ∼30 mm/year.

This contrasted strongly with improved fault chronology

and mapping by Searle (1996) and Searle et al. (1998), who

argued that the fault initiation age was significantly later at

18 Ma and displayed a maximum offset of 120–150 km,

providing a slip rate of ∼8 mm/year. Searle et al. (1998)

argued that these data did not support the extrusion model

because the fault was too young and displayed a limited

offset and slip rate. In more recent years, the debate has

strengthened as more detailed mapping and chronologi-

cal techniques have been undertaken along the length of

the fault. Laccasin et al. (2004) revised the maximum

offset to 280–400 km with a slip rate of ∼10 mm/year.

© 2014 Taylor & Francis
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Searle and Phillips (2004) argued that the interpretation

of Lacassin’s offset granites as being ‘syn-kinematic’ was

incorrect, and instead postulated that ∼16 Ma granites were

prekinematic, had a maximum offset of 40–120 km and a

corresponding slip rate range of 4–10 mm/year. Analysis

in the North Ayilari (Zhaxigang), South Ayilari (Namru),

and Kunsha areas (Wang et al. 2009, 2011, 2012) confirms

a late Miocene initiation age of 12 Ma and a low offset of

52 km. Wang et al. (2013) further points out that the gran-

ites referred in Leloup et al. (2013) are part of the Ayi Shan

detachment (Sanchez et al. 2010; Zhang et al. 2011).

The debates on the role of the KKF are more and

more dependent on quantitative analysis data on the ele-

ments relating to the KKF, and specific data on the blur

Ayi Shan detachment and its relationship with the KKF

would be valuable. Here we are reporting some new

petrologic and chronologic data on the Ayi Shan detach-

ment; next, we discuss its constraints on the activity of

the KKF.

Geological setting

The KKF, the Great Counter thrust (GCT) fault and the Ayi

Shan detachment are three regional tectonic features in the

Ayilari Range (Figure 1). The GCT, also named the South

Kailas thrust fault in the Kailas area, is a steady tectonic

feature in the study area (Yin et al. 1999; Harrison et al.

2000; Murphy et al. 2010). The fault is a N-directed thrust

Figure 1. Geologic map of the Ayilari Range showing the first-order geologic structures exposed in the range and location of rock
samples analysed by Valli et al. (2007, 2008) and Lacassin et al. (2004) in the North Ayilari. The red star shows the location of the
samples dated in this article.

Notes: GCT, Great Counter thrust; KKF, Karakoram Fault System; MBT, Main Boundary Thrust; MCT, Main Central Thrust; MFT, Main
Frontal Thrust; STD, South Tibetan Detachment. Map is compiled from Murphy et al. (2000), Xizang BGMR (2005), Sanchez et al.
(2010), and Wang et al. (2011).
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fault system, with lenses of serpentinized mafic rocks hun-

dreds of metres long and ultramafic rocks that crop out

locally along the fault zone, which defines the surface trace

of the Indus-Yalu suture zone. The strata involved in the

hanging wall of the GCT are mainly of the Palaeozoic–

Mesozoic Tethyan sedimentary sequence, and mélange

from the Indus-Yalu suture (Xizang BGMR 2005). The

rocks involved in the footwall are mainly different episodes

of granites of the Trans-Himalayan magmatic belt (THB;

Miller et al. 2000; Wang et al. 2009, 2011), which form the

Ayilari Range topographically. Southeast of Namru village,

the Neogene strata of the Namru–Menshi basin overlap the

pre-Tertiary rocks, and the sequence of brown and purple

sandstones that interbed with grey conglomerate resembles

the low magnetostratigraphic sequence in the Zhada basin,

which has been dated between 7 and 5 Ma (Wang et al.

2008b; Saylor et al. 2009). The KKF cuts through the north

slope of the Ayilari Range in the Namru–Menshi pull-apart

basin, as indicated by the tectonic geomorphology features

and ductile shear zones. Between the trace of the GCT

and the KKF, the low-angle normal fault of the Ayi Shan

detachment is developed (Figure 1), with the THB gran-

ite being the hanging wall, mylonitic orthogneiss, biotite

schist, and migmatite of the Proterozoic Animaqing Group

being the footwall (Xizang BGMR 2005).

Rock samples and analytical methods

Samples were collected from the footwall of the Ayi Shan

detachment at the southern and northern extent of the

Ayilari Range (Figure 1). The rocks in the Ayi Shan

detachment setting show obvious NNW-trending bedding

cleavage with moderate dip. The strike of the active KKF

parallels the Ayi Shan detachment at the northern slope

of the Ayilari Range. The KKF cuts the GCT southeast

of Namru village; the relationship between the KKF, the

GCT, and the Ayi Shan detachment can be seen in the pro-

file in Figure 2. Samples SK-7, SK-8, and Z-13 represent

the mylonitized migmatite melanosome and leucosome

(Figure 2), whilst sample Z-07 represents a granodioritic

gneiss sampled adjacent to the ductile shear zone.

Zircons were separated by heavy-liquid and magnetic

methods at the Laboratory of the Geological Team of Hebei

Province, China. Cathodoluminescence (CL) images were

then acquired to check the internal structures of individual

zircon grains and to select positions for dating analyses.

U–Pb dating of zircon from samples SK-7 and SK-8 was

conducted using the Chinese Academy of Sciences Cameca

IMS-1280 ion microprobe (CASIMS) at the Institute of

Geology and Geophysics in Beijing. U–Pb dating of zircon

from samples Z-07 and Z-13 was acquired by laser abla-

tion inductively coupled plasma mass spectrometry (LA-

ICP-MS) at the Key Laboratory of Continental Collision

and Plateau Uplift, Institute of Tibetan Plateau Research,

Chinese Academy of Sciences. Both analytical methods

follow the procedures of Li et al. (2009). The natural zircon

reference materials, Plesovice (337 ± 0.37 Ma; Slama et al.

2008) and Qinghu (159.45 ± 0.16 Ma, Li et al. 2009),

were used as external standards for the matrix-matched

calibration of U–Pb dating. Weighted mean calculations

and probability density plots of U–Pb ages were made

using Isoplot/Ex_ver 3 (Ludwig 2001). Table 1 presents

the zircon U–Pb dating results.

Four mica samples from SK-7 and SK-8 were selected

and purified using a Frantz magnetic separator and conven-

tional heavy organic liquid techniques. Individual grains

Figure 2. Cross-section through the South Ayilari Range showing the relationship between the Great Counter thrust, Ayi Shan detach-
ment, and the KKF. The Animaqing Group forms the footwall of the GCT and the Ayi Shan detachment and was cut by the movement of
the Karakoram fault.
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Table 1. CASIMS and LA-ICPMS U–Pb isotopic compositions and ages (Ma) of zircons in samples from the Ayilari Range.

Concentration (ppm) U–Th–Pb isotopic ratios Ages (Ma)

Spot Pb∗ Th U Th/U 207Pb∗/206Pb∗ 1σ 207Pb∗/235U 1σ 206Pb∗/238U 1σ 207Pb∗/206Pb∗ 1σ 207Pb∗/235U 1σ 206Pb∗/238U 1σ

SK-7
SK-7@01 99.0 192 522 0.37 0.0737 0.5862 1.6333 1.6166 0.1608 1.5066 1032 12 983 10 961 13
SK-7@02 153.6 71 1864 0.04 0.0563 0.5200 0.5994 1.5904 0.0772 1.5030 466 11 477 6 479 7
SK-7@03 94.8 181 1124 0.16 0.0566 0.6613 0.5945 1.6425 0.0762 1.5034 474 15 474 6 474 7
SK-7@04 51.5 151 598 0.25 0.0571 1.1539 0.5985 1.8925 0.0760 1.5000 496 25 476 7 472 7
SK-7@05 54.6 152 618 0.25 0.0566 1.0083 0.6096 1.8074 0.0781 1.5001 475 22 483 7 485 7
SK-7@06 359.6 165 2017 0.08 0.0714 0.3579 1.6008 1.5440 0.1627 1.5019 968 7 971 10 972 14
SK-7@07 39.2 309 401 0.77 0.0549 1.1538 0.5755 1.8925 0.0761 1.5001 406 26 462 7 473 7
SK-7@08 98.4 414 1064 0.39 0.0571 0.6618 0.6186 1.6395 0.0786 1.5000 496 15 489 6 487 7
SK-7@09 94.2 112 1070 0.11 0.0566 0.6318 0.6302 1.6339 0.0808 1.5068 475 14 496 6 501 7
SK-7@10 138.6 570 641 0.89 0.0746 0.5475 1.6322 1.5992 0.1588 1.5025 1057 11 983 10 950 13
SK-7@11 69.9 193 822 0.23 0.0568 0.8734 0.5895 1.7372 0.0752 1.5017 485 19 471 7 468 7
SK-7@12 142.9 160 1643 0.10 0.0564 0.6279 0.6221 1.6284 0.0800 1.5025 468 14 491 6 496 7
SK-7@13 125.2 78 1615 0.05 0.0565 0.5404 0.5643 1.5951 0.0725 1.5007 471 12 454 6 451 7
SK-7@14 165.4 236 546 0.43 0.0979 0.4398 3.3453 1.5639 0.2478 1.5008 1584 8 1492 12 1427 19
SK-7@15 124.8 190 533 0.36 0.1035 0.4551 2.6917 1.5679 0.1885 1.5004 1689 8 1326 12 1113 15
SK-7@16 87.2 319 355 0.90 0.0768 0.6389 1.9240 1.6320 0.1817 1.5018 1115 13 1089 11 1076 15
SK-7@17 206.4 249 1198 0.21 0.0714 0.4102 1.4941 1.5561 0.1517 1.5011 969 8 928 10 911 13
SK-7@18 74.3 33 999 0.03 0.0568 1.0373 0.5460 1.8250 0.0697 1.5016 484 23 442 7 434 6
SK-7@19 150.3 93 1290 0.07 0.0689 0.6133 1.0122 1.6398 0.1065 1.5208 897 13 710 8 652 9
SK-8
SK-8@01 22.3 185 218 0.85 0.0570 1.5605 0.6170 2.1646 0.0785 1.5001 491 34 488 8 487 7
SK-8@02 9.2 81 91 0.90 0.0588 2.4078 0.6194 2.8418 0.0764 1.5094 559 52 489 11 475 7
SK-8@03 42.2 130 357 0.36 0.0712 1.0275 0.9549 1.8182 0.0972 1.5000 964 21 681 9 598 9
SK-8@04 133.1 767 1379 0.56 0.0561 0.6177 0.6159 1.6234 0.0796 1.5013 457 14 487 6 494 7
SK-8@05 12.5 95 127 0.74 0.0578 2.6169 0.6141 3.0179 0.0771 1.5032 522 56 486 12 479 7
SK-8@06 80.8 552 760 0.73 0.0574 0.9758 0.6568 1.8287 0.0830 1.5467 507 21 513 7 514 8
SK-8@07 26.3 175 268 0.65 0.0544 1.6609 0.5900 2.2388 0.0787 1.5012 387 37 471 8 488 7
SK-8@08 131.8 314 614 0.51 0.0752 0.5692 1.8267 1.6044 0.1761 1.5001 1074 11 1055 11 1046 14
SK-8@09 23.1 96 240 0.40 0.0610 1.6219 0.6930 2.2109 0.0825 1.5025 638 35 535 9 511 7
SK-8@10 143.0 71 256 0.28 0.1592 0.4316 9.9429 1.5620 0.4531 1.5012 2447 7 2429 15 2409 30
SK-8@11 41.8 269 423 0.64 0.0572 1.2790 0.6237 1.9761 0.0791 1.5064 499 28 492 8 491 7

(Continued)
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Table 1. (Continued).

Concentration (ppm) U–Th–Pb isotopic ratios Ages (Ma)

Spot Pb∗ Th U Th/U 207Pb∗/206Pb∗ 1σ 207Pb∗/235U 1σ 206Pb∗/238U 1σ 207Pb∗/206Pb∗ 1σ 207Pb∗/235U 1σ 206Pb∗/238U 1σ

SK-8@12 22.3 180 223 0.80 0.0570 1.5659 0.6072 2.1686 0.0772 1.5003 492 34 482 8 480 7
SK-8@13 45.1 281 461 0.61 0.0568 1.3357 0.6210 2.0091 0.0793 1.5007 484 29 491 8 492 7
SK-8@14 61.2 342 628 0.54 0.0563 0.9596 0.6233 1.7822 0.0803 1.5018 464 21 492 7 498 7
SK-8@15 17.1 93 186 0.50 0.0564 2.1547 0.5973 2.6255 0.0768 1.5001 467 47 475 10 477 7
SK-8@16 213.6 998 2227 0.45 0.0572 0.4836 0.6376 1.5784 0.0808 1.5025 501 11 501 6 501 7
SK-8@17 90.7 486 943 0.52 0.0560 0.8992 0.6161 1.7491 0.0798 1.5002 452 20 487 7 495 7
SK-8@18 201.9 1076 2086 0.52 0.0569 0.5053 0.6319 1.5881 0.0805 1.5056 488 11 497 6 499 7
SK-8@19 78.5 459 798 0.58 0.0565 0.8177 0.6230 1.7085 0.0799 1.5000 473 18 492 7 496 7
SK-8@20 48.4 276 503 0.55 0.0567 1.0984 0.6170 1.8592 0.0790 1.5000 479 24 488 7 490 7
Z07
Z07-01 5.3 1623 1345 1.21 0.0474 0.0036 0.0232 0.0017 0.0035 0.0001 71 132 23 2 22.8 0.4
Z07-02 48.6 105 528 0.20 0.0648 0.0019 0.7670 0.0211 0.0859 0.0007 768 62 578 12 531 4
Z07-03 17.9 72 135 0.53 0.0681 0.0075 1.1606 0.1268 0.1237 0.0034 871 183 782 60 752 20
Z07-05 70.5 453 567 0.80 0.0638 0.0019 1.0561 0.0294 0.1202 0.0013 734 41 732 15 732 7
Z07-06 48.2 185 400 0.46 0.0686 0.0018 1.1733 0.0287 0.1241 0.0013 886 34 788 13 754 7
Z07-08 76.0 540 922 0.59 0.0577 0.0009 0.6281 0.0091 0.0790 0.0006 519 19 495 6 490 4
Z07-09 67.3 380 1449 0.26 0.0530 0.0009 0.3706 0.0057 0.0508 0.0004 327 21 320 4 319 2
Z07-10 24.1 537 3716 0.14 0.0470 0.0037 0.0456 0.0035 0.0070 0.0001 48 138 45 3 45.2 0.7
Z07-11 95.1 223 852 0.26 0.0667 0.0009 1.1042 0.0121 0.1200 0.0009 830 11 755 6 731 5
Z07-12 183.8 1451 1341 1.08 0.0700 0.0014 1.1931 0.0212 0.1237 0.0011 928 22 797 10 752 6
Z07-13 177.4 312 1273 0.24 0.0697 0.0009 1.4520 0.0159 0.1511 0.0011 920 11 911 7 907 6
Z07-14 108.3 381 1549 0.25 0.0565 0.0007 0.5902 0.0062 0.0758 0.0006 472 11 471 4 471 3
Z07-15 15.6 133 1589 0.08 0.0474 0.0019 0.0652 0.0025 0.0100 0.0001 70 70 64 2 64 0.6
Z07-16 100.5 531 799 0.66 0.0637 0.0009 1.0885 0.0126 0.1241 0.0009 730 12 748 6 754 5
Z07-18 33.4 238 198 1.20 0.0683 0.0024 1.3546 0.0463 0.1439 0.0015 878 53 870 20 867 9
Z07-19 28.7 111 240 0.46 0.0647 0.0020 1.0845 0.0314 0.1216 0.0014 765 42 746 15 740 8
Z07-20 38.4 203 300 0.68 0.0662 0.0030 1.1076 0.0493 0.1215 0.0018 811 69 757 24 739 10
Z07-21 138.2 604 1100 0.55 0.0643 0.0012 1.1035 0.0188 0.1245 0.0011 752 22 755 9 756 6
Z07-22 50.3 23 781 0.03 0.0542 0.0009 0.5543 0.0086 0.0742 0.0006 380 21 448 6 461 4
Z07-23 108.1 335 914 0.37 0.0646 0.0021 1.1062 0.0344 0.1242 0.0011 762 50 756 17 755 6
Z07-24 68.4 188 581 0.32 0.0635 0.0017 1.0673 0.0272 0.1220 0.0013 725 36 737 13 742 7
Z07-25 67.1 231 469 0.49 0.0673 0.0010 1.3080 0.0170 0.1410 0.0011 848 14 849 7 850 6

(Continued)
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Table 1. (Continued).

Concentration (ppm) U–Th–Pb isotopic ratios Ages (Ma)

Spot Pb∗ Th U Th/U 207Pb∗/206Pb∗ 1σ 207Pb∗/235U 1σ 206Pb∗/238U 1σ 207Pb∗/206Pb∗ 1σ 207Pb∗/235U 1σ 206Pb∗/238U 1σ

Z13
Z13-01 16.7 3654 3768 0.97 0.0476 0.0021 0.0309 0.0013 0.0047 0.0001 77 75 31 1 30.4 0.3
Z13-02 73.1 609 630 0.97 0.0640 0.0012 1.0651 0.0174 0.1207 0.0010 742 21 736 9 735 6
Z13-03 30.8 274 1198 0.23 0.0507 0.0023 0.2228 0.0096 0.0319 0.0004 227 77 204 8 202 2
Z13-04 79.3 397 1368 0.29 0.0533 0.0013 0.5191 0.0116 0.0706 0.0006 343 35 425 8 440 4
Z13-05 30.1 33 563 0.06 0.0556 0.0014 0.5292 0.0125 0.0691 0.0006 435 37 431 8 431 4
Z13-06 74.8 244 437 0.56 0.0784 0.0022 2.0548 0.0563 0.1902 0.0019 1157 39 1134 19 1122 10
Z13-07 19.4 55 549 0.10 0.0522 0.0012 0.3260 0.0072 0.0453 0.0004 295 35 287 5 286 2
Z13-08 71.3 199 375 0.53 0.0819 0.0011 2.3839 0.0266 0.2113 0.0016 1242 11 1238 8 1236 8
Z13-09 212.9 366 3901 0.09 0.0532 0.0009 0.5091 0.0072 0.0695 0.0005 336 19 418 5 433 3
Z13-10 57.6 52 1062 0.05 0.0557 0.0009 0.5331 0.0078 0.0694 0.0005 442 20 434 5 432 3
Z13-11 4.7 166 1940 0.09 0.0466 0.0055 0.0194 0.0023 0.0030 0.0001 27 204 20 2 19.5 0.5
Z13-13 27.4 33 493 0.07 0.0583 0.0018 0.5581 0.0168 0.0695 0.0007 540 48 450 11 433 4
Z13-14 53.4 119 613 0.19 0.0614 0.0009 0.8820 0.0118 0.1042 0.0008 653 16 642 6 639 4
Z13-15 84.9 146 689 0.21 0.0684 0.0017 1.3711 0.0326 0.1453 0.0014 882 33 877 14 875 8
Z13-17 166.6 393 1545 0.25 0.0647 0.0007 1.1187 0.0100 0.1255 0.0009 763 9 762 5 762 5
Z13-18 29.6 150 1494 0.10 0.0493 0.0024 0.1587 0.0075 0.0234 0.0002 161 90 150 7 149 2
Z13-19 108.6 259 1788 0.14 0.0618 0.0016 0.5961 0.0146 0.0700 0.0007 665 36 475 9 436 4
Z13-20 20.8 38 829 0.05 0.0505 0.0028 0.2156 0.0117 0.0310 0.0004 216 102 198 10 197 3
Z13-21 16.0 72 2618 0.03 0.0470 0.0031 0.0481 0.0031 0.0074 0.0001 51 121 48 3 47.7 0.5
Z13-22 70.6 242 545 0.44 0.0674 0.0011 1.3008 0.0181 0.1400 0.0011 850 17 846 8 845 6
Z13-23 35.7 93 583 0.16 0.0563 0.0032 0.5562 0.0304 0.0717 0.0011 463 93 449 20 446 7
Z13-24 182.6 87 3171 0.03 0.0554 0.0007 0.5367 0.0052 0.0702 0.0005 430 11 436 3 438 3
Z13-26 128.7 147 2175 0.07 0.0544 0.0007 0.5282 0.0058 0.0704 0.0005 389 13 431 4 439 3
Z13-27 67.1 187 1974 0.09 0.0512 0.0010 0.2891 0.0052 0.0410 0.0003 251 28 258 4 259 2
Z13-28 61.3 341 442 0.77 0.0667 0.0011 1.2728 0.0192 0.1384 0.0011 829 19 834 9 836 6
Z13-29 25.2 121 385 0.31 0.0570 0.0033 0.5469 0.0311 0.0697 0.0011 490 97 443 20 434 7
Z13-30 73.0 97 1243 0.08 0.0555 0.0024 0.5224 0.0216 0.0683 0.0009 432 69 427 14 426 5

Note: Isotopic ratios and ages were corrected by common lead, following the methods reported by Andersen (2002).
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were then selected under a binocular microscope. Using

an atomic reactor belonging to the Research Institute of

Atomic Energy of China, we set the mica samples, a

Fish Canyon Tuff sanidine (standard), and a ZBH biotite

(132.9 ± 1.3 Ma, standard sample in China) in an H8 hole

for fast neutron irradiation. Irradiation lasted 36 h with

a total neutron dose of 2.65 E13 n for targeted minerals.

We co-irradiated pure salts of K2SO4 and CaF2 with values

of (40Ar/39Ar) K = 0.002004, (39Ar/37Ar) Ca = 0.00081,

and (37Ar/36Ar) Ca = 0.0002398 to calculate any interfer-

ing nuclear reactions of K and Ca. Samples were loaded

in aluminium packets and placed into a double vacuum

furnace and step heated in the classic fashion, usually

from 750◦C to 1350◦C. The gas was purified by means

of Ti and Al–Zr getters. Once cleaned, the gas was intro-

duced into a Helix mass spectrometer at the Institute of

Tibetan Plateau Research, CAS. Four to five minutes were

allowed for equilibration before performing static anal-

yses. Measured mass spectrometric ratios for 40Ar/39Ar

analysis were extrapolated to zero time, normalized to the
40Ar/36Ar atmospheric ratio, and corrected for neutron-

induced 40Ar from potassium and 39Ar and 36Ar from

calcium. We calculated dates and errors using formulae

recommended by Steiger and Jager (1977). The computer

program used for calculations comes from the Berkley

Geochronological Center (Ludwig 2001). Table 2 presents

the mica 40Ar/39Ar dating results.

Results of zircon U–Pb and mica 40Ar/39Ar dating

Zircon U–Pb age

Zircons from sample SK-7 appear light pink or colour-

less and prismatic (∼100–300 µm long), and show clear

oscillatory zoning and inherited cores (Figure 3). Of the

19 zircon grains dated in this sample, 11 grains with clear

oscillatory zoning have Th/U ratios varying from 0.08 to

0.89 and yield concordant 206Pb/238U ages of 434–501 Ma

(Table 1), with a mean of 478 ± 6 Ma [mean square

of weighted deviation (MSWD) = 0.86] (Figures 4A and

4B). We interpret this to be the crystallization age. Six of

the remaining eight analyses on the inherited cores plot

along the concordian diagram line and yield ages rang-

ing from 652 Ma to 1427 Ma (Figure 4B). These inherited

zircon cores are interpreted as reflecting stages in the

tectonomagmatic history of the terrane.

Zircons from sample SK-8 are light pink or colour-

less and prismatic (∼100–300 µm long), and show clear

oscillatory zoning and inherited cores (Figure 3). Of the

20 zircon grains dated in this sample, 17 grains with

clear oscillatory zoning have Th/U ratios varying from

0.28 to 0.9 and yield concordant 206Pb/238U ages between

475 and 514 Ma (Table 1), with a mean of 489 ± 5 Ma

(MSWD = 1.5) (Figure 4C). We interpret these ages to

represent granite crystallization. Results from two of the

remaining three analyses of inherited cores plot along the

concordia line and yield inherited core ages of 1046 Ma

and 2409 Ma (Figure 4D), reflecting the earlier tectono-

magmatic history of the terrane.

Zircons in sample Z-07 are light pink or colourless and

prismatic, with clear oscillatory zone and inherited cores

(Figure 3). Thirteen of the 22 reliable grain data, whether

in rims or in cores, yield mean concordant 206Pb/238U

ages of 746.1 ± 6.9 Ma (MSWD = 2.4), with their Th/U

ratios varying from 0.15 to 1.2 (Table 1, Figures 4E and

4F). We interpret these ages to represent the crystalliza-

tion period of granodioritic gneiss forming during the late

Proterozoic. Three data samples from zircon cores are

from 850 Ma to 907 Ma, indicating an inherited core

from an older tectonomagmatic source. Four data sam-

ples from oscillatory rims are around 470 Ma with their

Th/U ratios between 0.2 and 0.5, indicating a magmatic

activity. Additionally, two individual data samples from

the oscillatory rims are 45 Ma and 22.8 Ma, with Th/U

ratios of 0.14 and 1.2, showing later magmatism during the

Cenozoic.

Zircons in sample Z-13 are light pink or colourless

and prismatic, most with clear oscillatory zone and inher-

ited cores (Figure 3). Eleven of the 27 reliable grain

data, whether in rims or in cores, yield mean concordant
206Pb/238U ages of 435.1 ± 2.9 Ma (MSWD = 1.3),

with their Th/U ratios varying from 0.03 to 0.29 (Table 1,

Figures 4G and 4H). Eight data samples from zircon cores

are from 639 Ma to 1236 Ma, indicating an inherited core

from an old tectonomagmatic source. Four data samples

from the oscillatory rims are 149 Ma to 286 Ma, indicating

that they experienced later magmatic events. Younger rims

are dated at 47.7 Ma, 30.4 Ma, and 22.8 Ma, with Th/U

ratios of 0.05 to 0.97 showing magmatic or metamorphic

fluid activity.

Mica 40Ar/39Ar results

Four mica samples from the mylonitic migmatites were

collected for 40Ar/39Ar measurements (see Figure 1 for

sample sites). The mica samples display a plateau defined

for about 90% of the 39Ar released at 11.8 ± 0.2 Ma,

12.3 ± 0.2 Ma, 12.4 ± 0.2 Ma, 12.1 ± 0.2, and

11.6 ± 0.1 Ma, respectively (Table 2, Figure 5). Isochron

and plateau ages of these samples agree within error.

We conclude that the plateau ages in Figure 5 provide

meaningful cooling ages and that they reflect distinct

episodes of the Ayilari granitoid emplacement.

Discussion

Chronological data on Ayi Shan detachment

The SK-7 and SK-8 samples have similar ages analysed

from zircon rims and cores, indicating that the migmatites

were formed around 490 Ma. Some of the zircons have
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Table 2. 40Ar/39Ar stepwise-heating results for mica.

Temp ◦C 40(r)/39(k) 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 40Ar(r) (%) 39Ar(k) (%) Age (Ma) ± 2s

SK-7 Biotite (J = 0.0004520)
750◦C 13.180689 55.43576 5.75978 0.14458 23.67 4.68 10.7 1.5
830◦C 14.156731 20.25756 1.62977 0.0211 69.79 30.78 11.5 0.3
880◦C 14.223743 16.01217 0.11572 0.00608 88.82 16.24 11.6 0.2
930◦C 14.441703 15.57706 0.01064 0.00384 92.71 8.24 11.8 0.2
980◦C 14.231744 15.77026 0.31554 0.00529 90.22 8.41 11.6 0.2
1030◦C 14.287921 17.1668 1.19964 0.01007 83.15 10.96 11.6 0.2
1070◦C 14.36712 18.74942 2.01966 0.01539 76.5 14.48 11.7 0.2
1100◦C 14.069127 18.25116 0.21793 0.01421 77.07 4.56 11.5 0.3
1200◦C 14.365274 18.59523 0.31469 0.0144 77.23 1.49 11.7 0.6
1450◦C 8.686818 48.37142 49.2078 0.20374 17.24 0.16 7.1 8.3

SK-7 Muscovite (J = 0.0004626)
750◦C 14.474355 35.40243 0.58829 0.07099 40.87 0.99 12.1 1.0
830◦C 14.070704 24.28116 2.2292 0.03517 57.84 2.76 11.7 0.5
880◦C 13.68839 44.92706 6.02987 0.10738 30.32 5.5 11.4 1.1
930◦C 14.645723 26.94918 0.7502 0.04184 54.31 21.32 12.2 0.4
970◦C 14.612688 17.97469 0.29944 0.01146 81.28 21.53 12.2 0.2
1010◦C 14.295238 19.8445 2.08942 0.01936 71.91 16.22 11.9 0.3
1060◦C 14.322671 22.70977 4.82686 0.02973 62.82 10.81 11.9 0.4
1130◦C 14.636662 20.89005 3.88208 0.02225 69.84 12.89 12.2 0.3
1250◦C 14.445119 17.12414 2.67208 0.00981 84.17 6.42 12.0 0.2
1450◦C 11.96461 19.53218 9.93494 0.02832 60.76 1.57 10.0 0.9

SK-8 Biotite (J = 0.0004335)
750◦C 15.475673 44.43541 5.36001 0.09951 34.68 6.14 12.1 1.0
830◦C 15.561513 20.50716 1.18499 0.01707 75.81 31.23 12.2 0.2
880◦C 15.791823 17.17114 0.57541 0.00483 91.92 11.39 12.3 0.2
930◦C 16.106989 17.15252 0.36894 0.00364 93.88 7.35 12.6 0.2
980◦C 16.004798 17.69079 0.26649 0.00578 90.45 8.14 12.5 0.2
1020◦C 15.900965 17.54051 0.61837 0.00572 90.61 12.96 12.4 0.2
1060◦C 15.88645 18.6305 0.17522 0.00933 85.26 11.89 12.4 0.2
1100◦C 16.224857 19.16052 0.00777 0.00993 84.68 7.52 12.7 0.2
1170◦C 17.149416 19.01235 2.1791 0.00692 90.04 2.96 13.4 0.3
1450◦C 5.840577 37.24366 92.9616 0.13007 14.5 0.42 4.6 5.3

SK-8 Muscovite (J = 0.0004417)
750◦C 21.934298 31.43554 26.90717 0.04022 68.25 1.18 17.4 0.8
830◦C 17.08225 22.5743 5.88598 0.02027 75.31 3.56 13.6 0.3
880◦C 15.674134 28.84741 3.38458 0.04553 54.19 5.53 12.5 0.5
930◦C 15.254797 26.69203 0.87045 0.03895 57.11 24.02 12.1 0.4
980◦C 15.269595 18.29049 0.92414 0.01048 83.42 26.09 12.2 0.2
1020◦C 15.168045 20.13507 1.895 0.01734 75.22 14.75 12.1 0.3
1060◦C 15.556861 22.89403 1.88956 0.02536 67.85 6.44 12.4 0.4
1120◦C 15.774095 22.32232 2.67801 0.02291 70.51 7.17 12.6 0.3
1200◦C 15.660113 17.94322 0.66286 0.00791 87.23 9.45 12.5 0.2
1300◦C 17.27145 18.86267 1.45148 0.0058 91.46 1.81 13.7 0.7

Note: r, radiogenic 40Ar; k, potassium feldspar.

inherited Proterozic cores, reflecting an older tectono-

magmatic history. The micas from samples SK-7 and

SK-8 are obviously authigenic minerals that recorded the

latest tectonic event that the rock experienced. The samples

Z-13 have similar ages to SK-7 and SK-8, and inherited

Proterozoic cores. Moreover, the zircons in the Z-13 sam-

ple had a growth margin of different generations, indicating

that the granodioritic gneiss had undergone metamorphism

and magmatism around 149–268 Ma, 47 Ma, and 20 Ma,

respectively. Z-07 yielded mean ages of 746.1 ± 6.9 Ma,

and is concordant with the age attributed to the Animaqing

Group (Xizang BGMR 2005). The Z-07 rim records a

490 Ma magmatic event, as seen in samples of SK-7, SK-8,

and Z-13. The zircon also records magmatism at 45 Ma and

22 Ma, as in Z-13.

Because the Ayi Shan detachment is characterized by

the THB granites as the hanging wall and the Animaqing

Group as the footwall, it seems its activity time should be

sometime later than the 32–25 Ma period, which is the lat-

est intrusion time of the THB around the Ayilari Range

(Wang et al. 2011). Valli et al. (2007) obtained a 14 Ma

mica 40Ar/39Ar age from the North Ayilari section, which
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Figure 3. Cathodoluminescence images of sample zircons, with age dates reported in the text.

we attribute to the initiation time of the Ayi Shan detach-

ment (Wang et al. 2013). The initiation time of the Ayi

Shan detachment is similar to the initiation of the gneiss

domes in southern Tibet such as the Kangmar and Kampa

Domes (e.g. Chen et al. 1990; Lee et al. 2000; Queigley

et al. 2006), implying similar tectonic backgrounds in the

Himalayan Orogen in the Miocene.

Since the Proterozoic and Ordovician migmatitite and

granodioritic gneiss lies north of the Yarlung-Zangpo

suture, they should be part of the Lhasa block base-

ment rocks. The Lhasa block basement is well known for

its Permo-Carboniferous metasedimentary rocks (Xizang

BGMR 1993). Until now, only one location of Ordovician

magmatism has been reported within the north edge of

the Lhasa block (Ji et al. 2009; Zhu et al. 2012). These

papers report zircon U–Pb ages of ∼493 Ma, similar to the

zircon U–Pb ages shown in this study. The discovery of the

Proterozoic and Ordovcian migmatitite and granodioritic

gneiss around Ayilari Range will benefit the study of the

evolutionary history of the Lhasa block.

Chronological constraint on activity of KKF

The new Zircon U–Pb ages reported in this study confirm

that the Proterozoic to Ordovician rocks in the footwall of

the Ayi Shan detachment are part of the Ayilari Ranges

(Xizang BGMR 2005; Sanchez et al. 2010; Zhang et al.

2011; Wang et al. 2013). Previous research has shown that

the Ayilari Range consisted mainly of three episodes of

granites at ∼60 Ma, 45–50 Ma, and 32–25 Ma (Lacassin

et al. 2004; Valli et al. 2007, 2008; Wang et al. 2009, 2011).

Additionally, the mylonites at the North Ayilari are mainly

granitic with a 32–25 Ma zircon U–Pb age. Whilst some

authors attribute the 32–25 Ma granite to be part of the

THB (Wang et al. 2011), others suggest that this reflects

syn-kinematic granitoid magmatism associated with initi-

ation of the KKF (Lacassin et al. 2004; Valli et al. 2007,

2008).

Sample Z-13 was collected from the KKF ductile shear

zone in the North Ayilari Range. The zircons record mag-

matic or metamorphic fluid activity during the period

47 Ma and 32–25 Ma. Further, some of the zircons from

sample Z-07, which was collected away from the KKF duc-

tile shear zone in North Ayilari, also recorded magmatic or

metamorphic fluid activity during the same periods. The

zircon ages of the two samples, regardless of whether they

were in the fault zone, have similar Cenozoic magmatic

or metamorphic information, indicating that the activity

of the KKF had no effect on the growth of the zircon.

It is suggested that the THB magmatism that occurred at

45–50 Ma and 32–25 Ma affected some of the zircons in

the Animaqing Group. If this is correct, then this implies

that deformation associated with movement along the KKF

is initially recorded in the THB and Animaqing Group at

12 Ma, as dated by the authigenic mica age in the ductile

zone (Valli et al. 2007; Wang et al. 2011).

Granite of Ordovician age (SK-7 and SK-8) was later

deformed in the KKF ductile shear zone in the South

Ayilari, but the zircon U–Pb ages of samples SK-7 and

SK-8 do not record any Cenozoic magmatic or metamor-

phic fluid activity, indicating that KKF deformation did not

result in the formation of new zircon rims. This is the same

scenario as with the 60 Ma and 45–50 Ma THB granites

involved in the KKF ductile shear zone in the South Ayilari
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Figure 4. Concordia diagram of zircon CASIMS and LA-ICP-MS U–Pb dating of the Animaqing Group.

Note: MSWD, mean square of weighted deviation.

(Wang et al. 2009, 2011). Moreover, the mica 40Ar/39Ar

ages of the Ordvician granites (SK-7 and SK-8) all fall

around 12 Ma, similar to the mica 40Ar/39Ar ages of THB

granites in the KKF ductile zone around Namru (Wang

et al. 2009, 2011). Therefore, the combined zircon U–Pb

data and 40Ar/39Ar mica ages strongly support the concept

that deformation related to the KKF first initiated in the

southern Ayilari Range at ∼12 Ma.

New data reported in this article suggest that the KKF

propagated to the southern and northern Ayilari Range
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Figure 5. 40Ar/39Ar age release spectra for mica.

Note: MSWD, mean square of weighted deviation.

by 12 Ma. The data do not support the proposal that

the initiation time of the KKF was around 32–25 Ma, as

deduced from the granite zircon U–Pb ages at the North

Ayilari (Valli et al. 2007). Below, we highlight additional

concerns regarding earlier movement along the KKF (in the

period 32–25 Ma) as outlined by, for example, Valli et al.

(2007).

(1) Given that the KKF is dominantly strike slip with

an offset of 52–60 km (e.g. Murphy et al. 2000;

Wang et al. 2012) and since age data in the South

Ayilari suggest movement at ∼12 Ma (Wang et al.

2009, 2011, this article), transfer structures should

exist between the northern and southern Ayilari

Range to absorb such a large offset if the movement

of the KKF is around 32–25 Ma at the North Ayilari

as Valli et al. (2007) suggest. However, the geo-

logical features of the Ayilari ranges do not show

such features (e.g. Murphy et al. 2000; Wang et al.

2008a).

(2) Thermo-chronological data from the ductile shear

zone in the same area should record similar ther-

mal events associated with fault activity, such as

the 12 Ma mica 40Ar/39Ar age in the southern

and northern Ayilari Range. However, based on the

growth of zircons in the ductile zone around the

South Ayilari, the cooling history of the rocks in

the KKF ductile zone endured none of the thermal

events manifested in the North Ayilari granite at

32–25 Ma.

(3) The 32–25 Ma magmatism is widespread in the

2000 km-long THB (e.g. Harrison et al. 2000;

Chung et al. 2003, 2005; Mo et al. 2006). Wang

et al. (2009) also report evidence of a 32 Ma

episode of magmatism far away from the ductile

shear zone in the South Ayilari. It appears that the

32–25 Ma magmatism resulted from regional mag-

matic events in the Lhasa block, rather than from

syn-kinematic granites related to the KKF.

A model for the role of KKF in Tibetan deformation

Leloup et al. (2011) summarized almost all the zircon

U–Pb age data along the entire KKF zone, and these data

show that granite age dates between 32–25 Ma are derived

only from the northern Ayilari Range. These authors also

found an 18–16 Ma age for the KKF at the middle seg-

ment of the fault, as had Searle et al. (1998) and Phillips

et al. (2004). Since all the data in this article suggest

that the North Ayilari granite is not syn-kinematic gran-

ite of the KKF, we conclude that the KKF initiated its

strike slip after 18 Ma in the middle part of the KKF trace

and it propagated southeastward into southwestern Tibet

around 12 Ma.

The KKF offsets the GCT fault in the Namru–Menshi

basin (Figure 1). This thrust fault was active before 13 Ma,

having been offset by the KKF by about 52–66 km (Yin

et al. 1999; Murphy et al. 2000; Wang et al. 2012). If the

displacements show the greatest offsets along the south-

ern segment of the KKF, one can calculate a long-term slip

rate of 4.3 ± 0.2 mm/year based on the 12 Ma initiation

time in this segment of the KKF. Our calculated slip rate

of ∼4.3 mm/year indicates that the fault has undergone

a slow average slip since ∼12 Ma. Previous studies show

that most of the 66–52 km offset has been absorbed by

the Zhada–Ayilari–Menshi basin-range system (Wang et al.

2008a, 2008b) and the Gurla Mandhata detachment sys-

tem (Murphy et al. 2000, 2002). To the east, the fault trace
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Figure 6. Tectonic model for the spatial and temporal evolution of the KKF (After Robinson 2009; Wang et al. 2011). Continuing
northward movement of the western syntaxis resulted in the propagation of the KKF into the Gar-Pulan area with a distributed deformation
manner.

becomes discontinuous and finally disappears in the middle

of southern Tibet (Murphy et al. 2010). These observations

indicate a distributed deformation character of the fault

(Figure 6), rather than large-scale crustal extrusion sug-

gested by Leloup et al. (2013); Valli et al. (2007, 2008);

and Lacassin et al. (2004).

Conclusions

New zircon U–Pb ages demonstrate that Ordovician

migmatite (489, 478, and 435 Ma) from the footwall of the

Ayi Shan detachment was later deformed within the KKF

ductile shear zone. Proterozoic gneiss of the Animaqing

Group is also part of the detachment footwall. Zircons in

the South Ayilari mylonitic migmatites were unaffected by

activity along the KKF; similar Cenozoic magmatic and

metamorphic data recorded in mylonites and undeformed

rocks of the Animaqing Group also rule out the possibil-

ity that KKF movement influenced the growth of North

Ayilari zircons. The Cenozoic information recorded in the

North Ayilari zircons reflects magmatism at 45–50 Ma and

32–25 Ma. Based on zircon U–Pb age and mica 40Ar/39Ar

ages from mylonites and undeformed rocks, it appears that

the KKF first deformed the Animaqing Group and THB

granites at ∼12 Ma Thus, we interpret the 12 Ma mica

age in the ductile shear zone as evidence for the initiation

time of the KKF movement in the Ayilari Range. Whilst

slip along the central segment of the fault, in Ladakh,

northwest India, was initiated at ∼16 Ma, our data sug-

gest that the fault lengthened its trace along strike into the

Namru–Menshi area at ∼12 Ma. Chronologic, kinematic,

and geometric studies of the KKF demonstrate that the fault

propagated southeastward into SW Tibet in a distributed

manner.
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