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Abstract

Sequences of images of the cortical surtace can be processed to reveal “information -
about the cortical micro-circulation, regional cerebral blood flow (rCBF).and changes
induced by neuronal activity. Images of rat sensory motor cortex and testes were
processed using different analysis methodologies. The study examined the generalised
linear model (GLM) approach. and compared the results with standard signal
processing methods including principal component analysis (PCA). The'GLM ‘method
has been used by Friston (1994) in the analysis of functional. magnetic resonance
imagery (IMRI) to identify regions of focal activity. We investigated the use of this
method to analyse video image data of the modulation of rCBF from rat cortex. The
results revealed spatio-temporal variations in rCBF in response to stimulation within
local regions of cortex. The advantage of the GLM method is that it augments
ordinary signal processing methods with an estimate of statistical reliability.

- Using different wavelengths ol illumination reveals different spatial structures with

i different temporal relationships. In image time series data collected under green and
red illumination a phase dilference was found in the low frequency ~0.1Hz
vasomotion oscillation. This phase difference occurred in data tfrom both cortex and
testes. A possible explanation of these differences is that the spectral absorption
characteristics of the tissue reflect changes in the volume proportions of the different
hemoglobin derivatives in intcracting with the modulation of the volume of blood
known to occur. It is known that nitric oxide is involved in the modulation of the
blood volume and flow, and that spectral changes occur as the nitric oxide is
scavenged by hemoglobin to produce met-hemoglobin and nitrosyl-hemoglobin
difterentially produced in arterial and venous blood. It is proposed that the
combination of these effects gives rise to the phase ditlerences we detect.
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1. Introduction

Recent developments in the use of video imagery have been used to investigate cortical
functional architecture (Blasdel and Salama 1986; Grinvald. Licke ct al. 1986). These studies
monitor the differental changes in image intensity produced under different stimulus
conditions. Images under one stimulus condition, subtracted from images taken under another
reveal functional structure. In in virro preparations, similar imaging techniques have been used
o investigate activily induced changes in the transmission characteristics of neural tissue
(MacVicar and Hochman 1991; Andrew and MacVicar 1994). These studics are gencrally
referred Lo as inrrinsic imaging and a review, evaluation and simulation study of the intrinsic
imaging methodology can be found in Mayhew and Zheng (1996). Video imaging is also
increasingly used to investigate the micro-circulation and the regulation of rCBF by neural
activity (Woolsey and Rovainen 1991; Cox. Woolsey et al. 1993). In the latter case the major
variables are changes in the dimensions of the surface microvasculature, transit times and
velocities. These are measured using standard image processing technigues. Recently we have
begun to exploit intrinsic imaging in the investigation of the neural activity induced changes in
the micro circulation and in particular the investigation of the low frequency oscillations in
rCBF (Mayhew, Askew et al. 1995; Mayhew, Askew et al. 1996). We refer to these low
frequency oscillations as the V-signal to distinguish them [rom the increases in blood flow and
volume which are generally referred to by the term rCBF. '

Our data consists of a sequence ol 2D images of the reflectance of the surface of the brain
taken under ditferent conditions of stimulation. The sequences often last several minutes and
are captured at video frame rates. As a data sequence this may be regarded as a 2D analogue
of the 3D data scquences characteristically captured in fMRI though with much finer spatial
and temporal resolution. The grey level variation over time of each pixel in the image provides
a time series. These can be processed using standard linear and non-lincar signal processing
techniques. In this study we explore the use of linear and multivariate statistical techniques
previously evaluated by Friston and colleagues in the analysis of fMRI data sequences. Some
of the details of these methods can be found in standard texts but we know of no easy guide to
the others, so to aid the reader bricf descriptions are included in Appendix L

2. Materials and Methods

2.1 Imaging

Images werc captured using a Panasonic camera (WV-BL602) and a Leica operating
microscope (MZ 6). The images were digitised to 8 bits and a 200 x 20) pixel region of
interest was stored direct 1o disc using an SGI Onyx computer equipped with a Sirius Video
board. At the magnification used this corresponds to a 2 by 2 mm region of cortex (1 pixel =
10 microns). IHumination, matched for intensity at wavelengths 565nm and 660nm was by
LEDs (L-53S) (FWHM <30nm) Home brew electronics were used to drive the LEDs and the
video signal was used to trigger them so that alternative fields were illuminated with different
wavelengths (the illumination cross talk between successive ficlds was less than 3%). This
allowed the near synchronous collection of images under different illumination at the cost of
reducing the vertical resolution by hall.. The aspect ratio was restored by spatially smoothing
the images with a 2:1 elliptical mask and subsampling appropriately to give a final pixel
resolution of 20 microns.
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2.2 Subjects

Anaesthetised (urcthane 1.3mg/kg) male Sprague-Dawley rats (280-320g) bred in the
Sheffield Psychology Department laboratory were used. After anacsthesia induction the
[emoral arteriecs were cannulated lor the purposes of monitoring MABP and for
exsanguination. The animals were then placed in a stercotaxic frame and the dorsal surface of
the skull thinned to provide a closed cranial window through which the surface of the brain
could be viewed. A shallow well (sculpted from dental cement) surrounding the window and
filled with saline minimised specular reflections. The systemic parameters: heartbeat, breathing
and blood pressure, were monitored and the rectal temperature was maintained at 37°C using a
thermostatically controlled heating blanket. The femoral arterics were cannulated for the
purposes of monitoring MABP and for exsanguination.

2.3 Experimental Procedures

Representative data from three experiments were selected for the evaluation of the different
methods of analysis. The physiological relevance of the experiments will be reported
elsewhere, the emphasis in this report is on the methodology of the analysis. The experimental
data are from the following experiments:

Experiment 1: The eftects on rCBF in sensory cortex produced by a tail pinch of moderate
intensity. Data was collected for total of 41 seconds (1025 video frames). Starting on frame
513, a tail pinch was administered lasting two seconds (50 frames).

Experiment 2. The effects on rCBF in sensory cortex produced by exsanguination were
examined. Baseline data was collected for 3() seconds before MABP was reduced by slowly
withdrawing 1 ml of blood over a period of several seconds. Blood pressure was allowed to
stabilise and then a 2nd ml of blood was withdrawn over a period of several seconds followed
by another period of stabilisation before a 3rd and final ml was withdrawn. The modulation of
rCBF was monitored continuously using video data.

Experiment 3. The modulation of local blood flow in rat testes. There was no intervention
other than the exposure of the testes as part of a cremaster muscle preparation. Video data
was collected over a period of 3 minutes.

3. Results and Discussion

The strategy we adopt is to first perform an analysis of the experiments using well tried signal
processing techniques. This preliminary stage of processing is used to inform and direct the
subsequent stages of the statistical analysis. We then evaluate the correspondence between the
different approaches, with particular cmphasis on whether one can determine a measure of the
statistical confidence in the conclusions.

3.1 Preliminary Analysis of Experiment 1

At isobestic wavelengths reflectance changes due to hemoglobin absorption are independent of
the state of oxygenation of hemoglobin and thus changes under the 565nm illumination are
predominantly due to volume changes. At 660nm changes in absorption may be due to either
changes in volume or changes in state ol oxygenation. Under 565nm  illumination both
arterioles and venules are apparent in the surface microvasculature, whereas under 660nm
illumination the venules are more visible than the arterioles.




Figure I(a, b) shows pscudo colour plots of the mean images (rom the first 512 frames of
Experiment | under the green (565nm) and red (660nm) illumination conditions. There is a
clear difference in the visible microvasculature in the two images which is used o classify the
image outlined regions as venules(1), arteriole(2) and parenchyma3). Figure I(c.d) shows the
time series of the mean over the image for the different illumination conditions. We use the
term mean image 1o reler to the image produced by collapsing the data sequence over time.
We usc the term mean time series (0 refer Lo the time series produced by taking the average
grey level of each image or region of interest. From Figures 1c and 1d we can see: i) that the
response under the (wo illumination conditions are very diflerent, and ii) that there is cvidence
ol a low [requency oscillation in both time series.

Analysing the data at higher spatial resolution, Figure 2(a.b.c) shows smoothed mean time
series under the different illumination conditions from regions designated as venules, arterioles
and parenchyma in Figurc 1. It can be scen that in veins and parenchyma there are clear
differences in the response to the stimulation under the different illumination conditions. In
contrast. in the region classificd as arterioles the time series under the two illumination
conditions are somewhat similar and show clear evidence of the presence of the V-signal
oscillation. In these regions there is little evidence that the response to the stimulation was an
increase in volume per se. This would have increased absorbance and produced a decrease in
the time series amplitude lollowing the stimulus.

Figure 3 shows the results of principal component analysis (PCA) applicd to the image
sequences under the diflerent illumination conditions (details of the procedure are given in
Appendix II). Figure 3(a.b) shows the [irst twenty eigen values. only the first 4 to 6 are of
significant. Figure 3(c.e) shows the cigen vectors corresponding to the first four highest cigen
values. Figure 3(d.f) shows a mosaic ol the corresponding ‘cigen images’. One should note the
difference between the structures revealed under the different illumination conditions. It is
difficult to interpret the higher order eigen images (Friston has recommended the use of
canonical variate analysis in this situation), however the first PCA clearly reveals activity in
very different areas in the two illumination conditions.

Figure 4(a.b) shows correlation maps produced by taking the correlation (pixel by pixel) of the
time series under the two illumination conditions with the time series of the hemodynamic
models. They show maps of the ‘lags of the maximum correlation’ and the values of the
correlation at those lags. Figure 4(al, bl and a3, b3) are produced by correlating the time
series of the hemodynamic model Pl and P3 (see below) with the sequence under red
illumination, and Figurc 4(a2.b2) show the map produced by correlating the time series
obtained under green illumination with the hemodynamic model P2 (see below) These
correlation maps reveal spatial structure by showing arcas which have similar temporal
relationships, and as can be seen, there is considerable spatial structure in the mosaics under
both conditions of illumination. This implies that response to the stimulation occurred with
ditferent lags at dilferent spatial positions. These lags will be used in the subsequent
application of the GLM method described below, but in the interim, it is important to note that
the clear disassociation of the P1 and P2 models and that the red and green undershoot occur
at difterent times in the two data sequences.

The physiological significance of this data is discussed below. However we will brietly make

the following points:

¢ The area of cortex is of the same size which is typically monitored using laser Doppler
flowmetery which produces a single time series. Mayhew ¢t al (1995) have shown the




ST e e e

similarity between the mean time serics from optical imagery and concurrent laser Doppler
flowmetery (LDF).

e When analysed on a regional hasis it can be scen that even at this resolution, the data
contains considerable  spatio-lemporal variaion which is different under the two
illumination conditions. The time serics under red and green illumination reveal different
spatial structurcs with different time courses.

¢ The data contains an oscillatory component which is present before the presentation of the
stimulus upon which is superimposed the response to the stimulation. We refer to this low
frequency oscillation as the V-signal and believe it to be the imaging analogue of the
vasomotion signal measured using LDF.

The purpose of the study is to evaluate the GLM methodology for analysis of intrinsic image
data and whether it is possible to cstablish the statistical reliability of the above descriptive
analyses using this technique.

3.2 The use of GLM to monitor changes in rCBF.

3.2.1 The Generalised Linear Model.

This method was proposed by Friston and colleagues (Friston, Frith ct al. 19915 Friston,
Jezzard et al. 1994; Friston, Worsley K et al. 1994) in the context of the analyis of IMRI data.
In its simplest form the method uses least squares to solve a linear equation of the form
X =GB +e using the pseudo-inverse. X is the data vector, G the design matrix, f3 a vector
of coefficients and e is random noise. Least squares estimate of b is given by the expression

B=(G"-G)"-G-XT

The situation differs slightly when the data has been smoothed and subsampled. The primary
effect of smoothing the data is to colour the noise. Least squares assumes that the noise is
white. However, because the data is very noisy and the signal to noise ratio low we smooth
and subsample the data both spatially and temporally. Thus the original expression above
becomes

K- X=K-G-B+K-e

where K is the appropriate convolution matrix. The effects of this are: i) to modify the analysis
(see appendix for the mathematical details) to take into account the correlation which colours
the noise. and ii) to change the number of the effective degrees of freedom and hence the
eslimation of the residual. The details do not concern us now. However it is important to
realise that the GLM method is applicd to the individual pixels completely independently. For
each pixel the result is a vector of parameter values and an associated residual matrix
containing the errors. These can he used to scale the parameter values Lo provide a statistic
satisfying a (-distribution. We reler o the statistic as the ‘z" score, and the images produced
by plotiing the ‘z’ score of cach pixcl as a grey level, as statistical parameter maps (SPMs).

3.2.2 Tests for Significance.

An issue that is not totally resolved is how to choose the threshold of the *z” score appropriate
for a particular level of statistical significance. Appendix I contains technical details from
Worsely (1992) and Friston et al (1994). Briefly the method selects a threshold value that is
scaled by the confidence level, the number of pixcls in the image and the spatial scale of any




smoothing function uscd. The resulting threshold is somewhat conservative. Intuitively, so
many ‘tests’ are being done that some false positives will occur by chance (distributed in
small parches over the image) so a stiffer criterion must be used. An alternative method is to
chose a lower threshold. Thresholding at this level produces regions ol connected pixels of
different sizes. It is then possible at this level of *z° score to seleet a confidence level. The
method (Friston, Worsley K ¢t al. 1994) then provides a size threshold.  The size ol the
regions ol connected pixels with “z” scores above that level can be used to assign a level of
significance 10 that particular region Regions cqual or greater in arca arc considered
statistically significant. Intitively, so many tests are being done that some false positives will
occur by chance (distributed in small patches over the image) but if these ‘false positives’
occur in connected regions greater than a certain size we can consider them significant. This
is cffectively the same as choosing a ‘7’ score threshold appropriate to the size of the region
(number of pixels) that one regards as being in some sense ‘significant’ based on expectations
from prior information. The formulac lor these operations are given in Appendix 1.

In what follows we have chosen Lo present the SPMs unthresholded in most cases bul where
appropriate overlaid with the 95% confidence ‘contour’ given by the conservative method of
estimating the statistical significance. This is only in part because we had no principled prior
expectations of spatial scale with which to sclect the area of pixels Lo usc as the size threshold.

3.2.3 Designing the Design Matrix

The structure of the design matrix is the important feature of the method. It has as many rows
as there are data, i.ce.. its columns arc explicit time series which retlect the statistical model of
the experiment. Thus some columns contain temporal models of the neuro-hemodynamic
responses, others contain components ol the V-signal, ramps Lo capture linear trends in the
data cte., while others simply reflect the order of the experimental conditions. Thus the
number of columns is the same as the number of parameters that are to be estimated using
least squares. Associated with cvery pixel there is a data vector (a time series of the raw grey
level intensity of the pixel), and a design matrix of the same length and as many columns as
there are parameters. To illustrate: in the cortex of Experiment 1, the design matrix contains a
parameter corresponding to a DC or constant time series, but because there was no obvious
trend, a ramp was not included. To extract the 0.1 Hz V-signal, a unit sine and cosine time
series with a frequency ol ~0.1Hz are used to estimate the amplitude and phase. The actual
frequency used was estimated from a preliminary analysis using non-linear least-squares
(Levenberg-Marquardt) analysis applicd to the first 512 (before stimulation) frames of the
mean tme series. Interestingly we find a 10% difference in the frequencies under the two
illumination conditions (().1133 and ().1011 Hz under 565 and 660 nm respectively).

Three other vectors are used in the design matrix. They are time series representing neuro-
hemodynamical responses. These are modelled using differently parameterised gamma
functions. The paramcters of the neuro-hemodynamics functions were estimated from the
mean time series for the different illumination conditions using non-linear least squares.
Because the structure to be used in the linal analysis is a linear sum, the non-linearity in this
stage ol the analysis is contined o the estimation of the parameters ol [unctions combined in a
simple additive way. We refer o the parameters of neuro-hemodynamic functions as Pl, P2,
and P3. They arc characterised by dillerent delays and widths (corresponding (o the mean and
variance of the gamma [unctions used as models). P1 and P3 represent the undershoot and
subsequent overshoot under red illumination. P2 represents the post stimulus response under




green illumination. These time series are the models of the hemodynamics used in generating
the correlation maps described above.

The estimation of the V-signal parameters is done using the same additive model. The
designing of the design matrix is a complicated art form needing both good taste,
perseverance, and several passes through the data. One particular problem in this application is
that the V-signal is not always casily represented as a simple sinusoidal oscillation. We are
currently exploring the use of an adaptive wacking strategy 1o provide a parameterised model
of the V-signal oscillation.

Alfter the design stage the data time series for every pixel is smoothed and subsam pled. Exactly
the same smoothing procedure is then applied to every column in the design matrix using the
convolution matrix K. We used two dilferent smoothing and sampling strategics. One used a
running window with a forgetting factor of 0.9, and subsampled the data and design matrix
every 10 frames. The other simply averaged successive blocks of 10 [rames. The primary
difference is that the second method has no effect on the colour of the noise which remains
white. The manipulation had no important effect on the results and thus the experiments we
report here all used the running window smoothing method.

Figure 5 shows the three hemodynamic models used in the design matrices for the first study.
The design matrix also contained vectors for DC, and sine and cosine terms to model the V-
signal. In this first study there was no compensation for the different temporal lags revealed in
the correlation maps, but they were used in subsequent analyses.

3.2.4 The Analysis of the Data

Figure 6 shows parameter maps (PMs) lor the two illumination conditions in which the value
of the parameters is represented in pscudo colour and scaled to make use of the whole range.
These maps are not statistical parameter maps (SPMs). They represent only the value of the
parameters, not estimates of their statistical reliability. Figure 6(a) shows PMs corresponding
to the amplitude of the hemodynamic response functions. Figure 6b shows the spatial
distribution of the amplitude of the V-signal. It is obtained by taking the square root of the
sum of the squares of the parameters lor the sine and cosine [unctions. Figure 6¢ shows the
corresponding phase map. It is the arctangent of the ratio of the parameters for the sine and
cosine functions.

Figure 7(a.b.c) show the corresponding SPM(z) for the above maps. P1, P2 and P3. These
show the distribution of the *# scores. The SPM(z)s for the amplitude of the V-signal are not
shown as they convey little more information than the parameter maps and reached statistical
significance only in few small regions.

Subject Lo the appropriate reservations concerning their statistical significance, the PMs ol V-
signal paramelers arc not spatially homogeneous (Figure 6b.c). We find that both the phase
and amplitude maps differ under the two different illumination conditions. The amplitude
(Figure 6b) picks out different regions not confined to the different types of surface
vascularity. The phase of the V-signal (Figure 6¢) also shows spatial variation across the
image. These results suggest that the V-signal is not confined to the surface microvasculature
but is present in the underlying capillary beds in parenchyma. We will show [urther evidence
from other experimental data that supports these conclusions.

The parameter maps of the hemodynamic response models under both illumination conditions
reveal varied spatial structure. There is considerable and obvious correspondence with the
surface microvasculature, however much of the signilicant activity occurs in regions where




there is little surface microvasculature and in these regions the signals are derived Irom the
underlying capillary beds.

o Pl (delav: peaking at ~4 seconds) This parameter models the mean time series decrease in
intensity preceding the overshoot under red illumination. An interpretation of the SPM(z)
under red illumination is that it shows arcas corresponding to a signilicant decrease in
intensity derived primarily from a reduction in the proportion ol oxygenated hemoglobin
and related changes in the absorption spectra of hemoglobin induced by increased neural
activity, rather than from an increase in blood volume pe se. Ol particular note is region 1.
This arca, in a vein, does not show a significant change. Al a coarse scale the map shows
the maximum activity occurring in the right bottom image quadrant.

o P2 (delay: peaking at ~7 seconds) This parameter models the mean time series decrease in
intensity seen under green illumination. The SMP(z) shows a statistically significant
response overlapping almost all the imaged arca as shown by the Pl map, but with
increased vascular detail which shows up as areas which don’t reach significance. PCA
(Figure 3) under green illumination also has greater vascular detail than under red. The
‘peak” of the activity appears in region 2 which we belicve to be an arteriole. There is a
region clearly corresponding to a major blood vessel (region 1) which shows no significant
change under the green illumination. It seems that the P2 parameter is relatively blind (o the
activity of veins and venules.

o P3(delay: peaking ar ~13 seconds) This parameter models the mean time series overshoot
or rebound in image intensity under red. The SPM(z) shows signilicance over all the
imaged region. The obvious spatial structure shows very high activity in the previously
insignilicant arcas revealed in the P2 map.

The interpretation of the maps is not quite straight forward. The intensity of a pixel at any
point in the image is potentially produced by a combination of at least three sources. These are
from veins and venules, arterics and arterioles, and from the underlying parenchyma. The
measured lime serics al any point is thus a spatio-temporal function of signals which will
depend on the order of the sources down the line of sight (a pixel from a region of wvein
overlying an artery which itsell is lying on the parenchyma will have a dilferent time scrics
from one in which the artery overlics the vein). Evidence of this mixing ol sources can be scen
at several places in the above maps.

Given this general caveat, we conclude [rom this analysis that the effect of stimulation was Lo
produce a transicnt decrease in the blood oxygenation (either by reduction to Hb or to metHb)
later followed by an increase in blood volume and flow. The evidence for the increase in flow
is the large overshoot in intensity suggestive of hyper-oxygenation of both the venules and
parenchyma. This conclusion is in contrast to that reported by Turner and Grinvald(1994) in
monkey cortex. They suggested that capillaries in active tissuc do not become hyper-
oxygenated and that only draining venules do so. However we find the overshoot
commonplace in our studics, occurring regularly in both venules and parenchyma. The
discrepancy may have arisen because of the differences in the illumination wavelengths used.
We cannot comment on Turner and Grinvald’s conclusion that BOLD MRI techniques will be
likely to fail o localise cortical structures of the scale of the ocular dominance columns but the
above analysis (of a single trial) suggests the deoxygenation and subscquent hyperoxygenation
response Lo a Lail pinch in rat occur over an area about a 2 mm square.

In order to cxamine the stability ol the maps we obtained above, we repeated the study while
modilying the design matrix in several ways to answer the following questions.




(a) What is the effect of including inappropriate models in the design matrix?

We repeated the above study using all three models in the design matrices for the different
illumination conditions, (¢.g.. the analysis under green illumination included hemodynamic
models Pl and P3 as well as P2). We do not show the results but the maps obtained were
very similar to those shown above.

(b) The accuracy of the models and correcr temporal positioning.

If the models used in the design matrix are incorrect then although least squarces will do its
best. it might not be good enough. We have found that the particular shape of the hump
functions used to model the hemodynamics is not particularly important in determining the
spatial structure of the resulting maps. For cxample the use of appropriately positioned and
scaled Gaussians gave near identical results to those obtained using gamma lunctions as did
the use of the mean time series as the model. If the data has litle noise, the model is a
parameterised function. and if the computational expense can be met, one could simply use
non-linear least squarcs to fit the model parameters for each pixel time serics independently
and compare the distribution of the parameters under different experimental conditions.

To evaluate the sensitivity of the method to the temporal positioning of the hemodynamic
model functions the time scries for cach pixel was correlated with the general model (e.g.. the
one obtained from the mecan time series) to find the ‘appropriate” lag. The model was then
shifted accordingly for cach pixel. As this involves forming individual design matrices for
every pixel, it makes the algorithm slightly more complicated and obviously incurs
computational overhead. The bencfit is that the map of the lags reveals the emporal structure
of the different responses and the parameter maps show the amplitude of the responses
unconfounded with any dillerences in their timing. Figure 8(a.b.c) shows the corresponding
SPM(z)s. Though almost indistinguishable [rom those shown in Figurc 7 the maps in Figure &
are in a sense more correct given that we know trom the correlation maps that the data is
temporally heterogeneous.

There are other strategies (or dealing with the temporal differcnces. For example, each of
models P1, P2, P3 could be independently modelled as the sum of temporal basis functions,
and GLM straightforwardly applied to find the blend of the parameters that optimally fits the
data. This is formally what happens using sine and cosine functions to model the V-signal. The
choice of strategy depends on the identification of theoretically relevant constraints on both
the model and the interpretation ol the results.

(c) What is the effect of excluding the V-signal from the design matrix?

We examined this question for several reasons. Firstly some people simply ignore the presence
of the V-signal relying on averaging techniques to remove it. Secondly, it cannot easily be
removed from the data by bandpass filtering becausc of the overlap with the neuro-
hemodynamic responses. In the previous analysis of the data the parameters for the V-signal
amplitude did not reach significance and not surprisingly excluding the V-signal from the
design matrix has little eftfect on the spatial maps for the hemodynamic paramelters.

However, the map of the residual shows clear evidence of structure, and the Fourier spectrum
shows clear peaks in the low requency region. Figure 9(a.b) shows three comparison maps of
the variance of the residual from dilferent analyses under the (2) green illumination and (b) red
illumination. The design matrix included : i) the appropriate hemodynamic models without
correction for lags and without the V-signal components (the left maps); ii) components to
extract the V-signal but no correction for lags of the hemodynamic parameters (the centre
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maps); and iii) components to extract the V-signal and lags of the hemodynamic. We find the
lag correction has almost no clfect whatever on the residual maps and - that the very obvious
structure in the residual maps is largely produced by very low frequency signal of ~0.05 Hz.
This obvious spatial structure in the residual maps is clear evidence that more sophisticated
methods of analysis is needed. One possibility is to first use the hemodynamic models and
GLM to remove activity induced changes from the data. then the residual time series can be
further analysed using multi-taper methods of spectral analysis (Thomson 1982: Thomson and
Chave 1991) to reveal the spatio-temporal structure of the V-signal. We are currently
exploring both these methods.

(d) The use of the mean time series in the design matrix.

If this is ever appropriate, it is so only when there is no temporal variation across the image
(e.g.. if the correlation mosaic shows no spatial structure), and there is no other way ol
obtaining a model. It is quick. dirty and biased but worth a look.

3.3 The use of GLM to investigate the V-signal

In this and in the following scction we use GLM to investigate the spatial structure of the V-
signal using data [rom two preparations unconfounded by changes in rCBF in response to
sensory stimulation. In the first, we analyse data from an experiment monitoring the effect of
reducing the MABP by exsanguination (a replication of an experiment by Morita et al (1992)),
and in the second. the V-signal [rom rat testes was explored without any physiological
intervention.

3.3.1 V-signal in cerebral cortex
Modulation of rCBF by reduction of MABP.

Exsanguination produced a rather obvious change in the amplitude and frequency of the V-
signal. Figure 10(a) shows the time serics of the MABP and Figure 10(b) shows the mean time
series of the data collected under red and green illumination. It can be seen that there is a
degree of correspondence between the green and red time series until after the second blood
withdrawal. We do not have a complete explanation for this decoupling ol the two signals,
though we have found it in other cxperiments in this preparation, and is currently a
phenomenon awaiting further exploration.

The GLM analysis was used to reveal maps of V-signal amplitude and phase and to compare
the differences before and after the first withdrawal of blood. Non-linear least squares was
used to identify the frequency under cach illumination condition and for each section of the
data. Before blood withdrawal they were 0.094 and 0.095 Hz for the green and red conditions
respectively, and after withdrawal they were 0.0791 and 0.0788 Hz. A similar change in
frequency after withdrawal has been described by Morita et al (1992). The design matrix was
partitioned into before and after exsanguination sections. It included sine and cosine functions
of the appropriate frequencies (0.094, 0.079) and DC and linear trend terms for the amplitude
of the sine and cosine functions. The maps of the amplitude are shown in Figure 11(a) and the
phase maps are shown as arrows superimposed on images of the surface vascularity in Figure
L1(b) for the two illumination conditions. The maps reveal spatial inhomogenetics in the
amplitude of the V-signal which is not confined to the surface vascularity and is dilferent
under the two illumination conditions. Under green illumination, although the V-signal was
present cverywhere, ‘peak activity” was confined to a relatively small region. The maps
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, showing the phasc of the V-signal are different under the red and green illumination and

- histograms, weighted by amplitude. support this and show that the V-signal under red
illumination lcads by ~0.5 radians which at this frequency is slightly less than a second. It is
noticeable that the phase structure of the maps is more coherent after blood withdrawal. In the
case of the phase map under green illumination before withdrawal, the ‘jitter” in the angle map
may have been produced by the rather small amplitude of the V-signal.

The problem then is how to test for the significance of the difference between the amplitude of
the V-signal before and after withdrawal. This would be straight forward if it were simply the
: comparison of a single parameter, but the amplitude is given by the square root of the sum of
the squared coefficients for the sine and cosine parameters. One strategy is to use the first pass
of the data to estimate (for cach pixel) the phase of the sinusoidal oscillation. This is then put
into the design matrix as a single explicit model. The analysis is then repeated but with a single
parameter for the V-signal oscillation. Direct comparison is now possible between the
conditions using the contrast vector (this is used to apportion the variances appropriately; see
Appendix I).

Figure 11(c) shows the SPM(z)s of the difference between the conditions using this strategy.
A histogram of the amplitudes of the V-signal before and after the withdrawal of blood
showed clear differences under both illumination conditions. However, the SPM(z) maps of
the pre and post withdrawal difference under both green and red illumination show spatial
structure but neither reached significance. This is despite the lact that under red illumination
there was an increase in amplitude in the time series of every pixel. Histograms of the ‘7’
scores of the before, after and difference maps under the different illumination conditions
suggest that our naive usc of Worsley's method (Worsley. Evans et al. 1992) for calculating
5 the significance level is too conservative. However, in this data. it is not clear what more
information would be gained over and above that already displayed in the SPMs by arbitrarily
lowering the threshold and adopting the region counting strategy (described above and in
Appendix I). This produces several large regions with extremely high confidence levels but of
not much significance. Not withstanding, the results of the analysis are interesting. The
changes in signal produced by cxsanguination have no reliable correspondence with the
surface microvasculature, and of particular importance (and completely unpredicted) was the
finding of the phase difference under the two illumination conditions. This will be discussed
after the analysis of Experiment 3 below (re-examination of the V-signal data from Experiment
I also revealed a phase difference under the two illumination conditions. though smaller than
in Experiments 2, and 3).

3.3.2 V-signal in periphery

Modulation of blood flow in rar resres.

This analysis used GLM to evaluate data from an experiment examining the spatial distribution
of phase and amplitude of the V-signal in peripheral tissue (rat testes). The importance of this
data for the present study is that it presents an intercsting analysis problem, however the data
- has important physiological implications. We find an obvious and significant phase difference
between the mean time series of the V-signals under red and green illumination. This awaits a
full explanation, however, it is clear that this phase difference is a challenge to the idea that the
V-signal is a simple modulation ol hematocrit. Figure 12a shows the mean image under the
green illumination with the location of the surface microvasculature (little of which is visible
under the red illumination which implics that it is predominantly arterial). From the mean time
series under red and green illumination conditions (Figure 12b) it is clear that not only is there




a large phase difTerence between the red and green signals. but that the amplitude of the V-
signal changes over time, and that under the green illumination it is considerably larger than
under red. This data requires a slight increase in complexity in the design matrix. The
parameters [or the amplitude of the sine and cosine terms are lincar trends (the design matrix
also included DC and lincar trend terms). Non-lincar least squares estimaltes ol the frequencics
of the V-signal were 0.0938 and (1.0926 Hz for the green and red illumination conditions. We
used (0.0938 Hz in the design mauwix for both. Figure 13 shows the results of the analysis.
Figure 13 (a, b) show amplitude and phasc maps. Angle maps in which the phase of the V-
signal is represented as arrows superimposed on images of the surface vascularity are shown in
Figure 13(c). The analysis reveals differences between the two illumination conditions in the
major vessel on the right of the image. Under green illumination the amplitude of the V-signal
in this area is very small and not signilicant (in contrast to the amplitude in the same area
under the red illumination condition). Thus in this region the phase angle maps under green
should be considered unreliable. However the differences revealed by the illumination
conditions are not confined o the obvious surface vasculature but are also present in arcas
where the signal are derived from the underlying capillary ‘beds. The V-signal under red
illumination leads the V-signal under green, histograms of the phase maps showed no overlap
and the peaks of the distribution are scparated by more than a radian which at this frequency
corresponds to ~1.7 scconds. It is possible using GLM that errors in the estimated [requency
used in the design matrix can show up as phase dilferences. This is unlikely in the above
analysis as the differences are so large, nevertheless an alternative method for analysis of
simple oscillatory signals. complex demodulation (CDM, see Appendix 1) was used to test
for the variation in Irequency. Figure 14 shows maps of the [requency cstimated using iterated
CDM under the two illumination conditions. Under green illumination there is little variation in
frequency where as under red the results suggest a drift from bottom right to top lefl. The
same direction of trend can be seen in the phase map shown in Figure 13(bh).

4. Summary

4.1 Analysis methodology

We have described here the use of GLM (general linear models) in the analysis ol experiments
exploring activity in both cerchral and peripheral micro-circulation. The spatial structure
revealed in the statistical parameter maps was tested for statistical reliability using the methods
described by Worsely(1992) and Friston (1994).We find that GLM can usefully augment the
basic repertoire of classical signal processing methods particularly in analysing data in which
changes in rCBF arise in response to neural activity. In this case. models of the neuro-
hemodynamics can be exploited. These models can either be obtained from the data as
described above or {rom other sources. On the other hand we have reservations aboul its use
as a tool for the examination of the V-signal due to its spectral complexity.

The methods [or thresholding the SPM(z)s are independent of whether or not GLM is used in
the analysis, however, we believe there are still developments needed here. They may not
wholly applicable to the sort of data we have, though they are sulficiently conservative that we
have no reservations about the conclusions we have drawn. They were designed primarily to
distinguish regions of increased activity in the context of the null hypothesis that a smoothed
Gaussian random field would present regions of high activity with certain height and scale
purcly by chance. Developed in the context of detecting regions of focal activity in PET and
fMRI data, it is rcally only appropriate in analyses to detect relatively small bounded regions of




activily. and not in our case when the maps show large complex structures containing holes '
and bounded by image cdges that in a strict sense violate the mathematical assumptions
underpinning the method. We are currently investigating this issuce in greater detail.

We believe that a better approach to the examination of the structure of the V-signal is to use
multi-taper-window  spectral analysis  spectral  analysis and  jackkniled crror estimaltes
(Thomson 1982; Thomson 1990: Thomson 1995). This mecthodology has recently been
exploited by Mitra ct al (1996: personal communication) Lo examine the spatial structure of
~0).1Hz oscillations in IMRI data sequences. One possibility is to exploit these advanced multi-
taper window methods on the residuals following a preliminary pass through the data using
GLM to remove the ncuro-hcmodymic responses and trends. In the context of the
investigation of the spatio-temporal structure of the V-signal we believe the most appropriate
strategy to be the usc of spectral coherence analysis (this is currently being explored and will
be the subject of a subsequent report).

The use of this method will not linesse the issuc of how to choose the significant level lor
spatially distributed SPMs. but there is an important shift in emphasis. If' the question being
asked is whar are the values of the parameters and how reliable are their estimates rather
than are the measurements greater in this area than in that one then different methods may
be more suitable in one case than in the other. It is certain that more than one method of
analysis will be needed and the importance of the developments by Worsely(1992) and Friston
(1994) will increase in analyscs where known anatomical structures are being probed (c.g.
intrinsic imaging mapping studies (Masino, Kwon et al. 1993; BonhocfTer, Kim ct al. 1995)).
In these cases prior information concerning spatial scale and position could be properly
exploited o determine the strategy for selecting the parameters on the significance threshold
calculations that optimise the power ol the test.

4.2 Physiology

There is some interesting, cven lantalising physiology in this data. The most striking is the
differences between the time scrics under the red and green illumination conditions. We
expected to see differences in the hemodynamics of rCBF in response to stimulation under the
different illumination wavelengths because the usual explanation of the intrinsic image data is
that there is a rapid early phase of increased post stimulus deoxygenation followed by a later
increase in blood volume and flow (Grinvald, Licke et al. 1986: Frostig, Licke et al. 1990:
Malonck, 1996 #157: Grinvald. Frostig et al. 1991; Mayhew, Askew et al. 1996). However,
there is a discrepancy. Malonck (1996) reported finding no decrease in the volume of
oxygenated blood though there was an increase in the volume of deoxygenated blood in the
period immediately following the stimulation. They suggested that fast capillary recruitment
might account for this difference from expectations. Our analysis does not resolve the data
into volume proportions of the different forms of hemoglobin as Malonck (1996)  did,
however we find a clear disassociation with the parameters P1 and P2 under the different
illumination conditions which raiscs a challenge to Malonck’s (1996) cxplanation. Using
‘naive oximerry', the Pl activily detected under red illumination corresponds o the
deoxygenation and the later P2 activity (under green illumination) to an increase in volume.
One possihility is that their analysis did not contain sufficient parameters, nor an accurate
model of the tissuc scattering spectrum. Furthermore there is no mention in their paper ol how
they compensated for the spectral response of the camera CCD array. They reported using a
slow scan CCD camera (which often have compensatory coatings to produce flat spectral
sensitivity) and a commercial system. Between the wavelengths 500-700 which they used, the
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spectral response of CCD cameras is generally an increasing near lincar ramp. This is very
similar to cstimales of the tissue scatlering spectra (MacVicar and Hochman 1991: Kreisman,
LaManna ct al. 1995). Malonck (1996) used a flat spectrum for this parameter.

The added value of the study we report is that it shows very clearly that the stimulation
induced spatial temporal dynamics are dilferent in the various types ol vasculature. On the
other hand. we lound little evidence that the V-signal (~0.1Hz ) was systematically ditferent in
the different kinds ol vessel and parenchyma. However, the V-signal in the [irst experiment
was uncharacteristically weak. particularly under red illumination and we found in the residual
maps (Figure 9) a very low Irequency component (~(0.05 Hz) largely constrained to regions in
the veins and capillaries. Dala from the second experiment showed large amplitude V-signal
oscillation with diffcrent spatial distributions and evidence for a difference in phase under the
two illumination conditions. The increase in V-signal amplitude induced by reduced MABP
differed under the two illumination conditions but these changes were not confined 10 a
particular type of vascularity. After the sccond withdrawal of blood at a level of MABP where
autorcgulation begins to fail (Morita, Bouskela et al. 1992), the V-signal under different
illumination became desynchronised and the oscillations under green illumination disappeared.
This phenomenon has now occurred in three replications ol this preparation, and we currently
do not have an explanation for it.

Both the above cxperiments were in cortex. The third, in the periphery (rat testes) showed
very clear phase differences between the V-signal under the two conditions of illumination
confirming the analysis of Experiment 2. We know of no other study that has reported similar
findings. This is further support by the fact that the V-signal obtained under the two
illumination conditions can be disassociated. Previously we had thought that the V-signal was
the modulation of intensity ‘reflecting” the change in absorption produced by changes in the
density of hematocrit produced by luctuations in flow velocity (Fagrell. Fronek ct al. 1977;
Fagrell, Intaglictta ct al. 1980), i.c., modulation of blood volume. This could not produce a
phase ditference. It the proportions of different hemoglobin derivatives remain constant over
the data collection period, then though the absorption (amplitude ol the V-signal) will be
different under the two illumination conditions the phasc and [rcquency would be similar.
Fargrell (1980) found. albeit in the nail fold capillary bed, a phase difference between the
modulation of blood flow velocity and the modulation of relative hematocrit density. The
changes in flow differed from changes in hematocrit sometimes by as much as 4.5 seconds.
Damber(1986) found evidence for similar relationship between flow and hematocrit in the
testicular microcirculation of the rat. The hypothesis to explain this is that flow velocity is
modulated by changes in the diameter of up stream arterioles and opening of pre-capillary
sphincters. The question then becomes how to associate a change in flow with one illumination
wavelength and a change in density with another.

4.3 Conjecture

The modulation of flow corresponds to local changes in Nitric Oxide (NO) production and
that the changes under the different illumination conditions are due to the interaction of :

1. spectral changes derived from changes in the volume proportion of oxvgenated and
deoxvgenated hemoglobin and their interaction with NO to form methemoglobin, and
nitrosvlthemoglobin.

2. absorbance changes derived from modulation of the volume of hematocrir.

Numerous papers atlest to the fact that NO is a potent vasodilator, it can act like a transmitter,
it is expressed by neurons, glia and endothelium, and is known to be involved both in the
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_ maintenance of resting cerebral blood [low and in the cercbro-vasodilation associated with
- increased neural activity (Bredt and Snyder 1992; ladecola 1993; Murphy, Simmons ¢t al.
1993: Garthwaile and Boulton 1995). It is also well known that hemoglobin is a scavenger of
NO and that NO interacts with oxyhemoglobin (HbQ) to produce methemoglobin (metHb),
and with deoxy-hemoglobin (Hh) and methemoglobin to produce nitrosylhemoglobin (HhNO)
(Assendellt 1970: Kelm and Schrader 1990; Archer 1993). The spectral changes of
. oxyhemoglobin to methemoglobin were used by Kelm (1990), albeit in isolated guinca pig
hearts, 1o monitor NO in tissue using difference spectrophotometry. and Jia (1996) proposed a
role for S-nitroso-hemoglobin in moderating  the scavenging of NO by the heme iron. This
study also used spectroscopy Lo monitor interactions of NO and the different forms of
hemoglobin. Jia (1996) proposcd a regulatory role for S-nitrosothiols (SNO) which are a
form of NO which can be carried by the blood S-nitroso-hemoglobin (SNO-Hb), in contra
distinction to NO which is rapidly scavenged by blood. They found that the rate at which
SNO-Hb releases SNO groups is influenced by the amount of- NO scavenged and also by
oxygen tension: They suggested that SNO-Hb provides a mechanism for the delivery and
maintenance of the usctul biological clfects of NO (e.g. regulation of capillary blood llow and
mitochondrial respiration) in a form that is sate [rom inactivation by blood.

Recently Magistretti (1996) suggested that the ecarly decrease in intensity immediately
following stimulation detected in intrinsic imagery (Frostig, Licke et al. 1990: Malonek, 1996

= #157) (e.g.. the parameter Pl in our analysis) could be due. not as supposed Lo increased
metabolic uptake of oxygen. i.c.. the spectral changes ol oxygenated to deoxygenated
hemoglobin, but to spectral changes produced by the oxidation of oxygenated hemoglobin Lo
met-hemoglobin by NO, or a combination of both.

While this - suggestion is extwremely interesting and potentially of great importance it is
uncertain whether the quantitics involved are appropriate, for example, what is the scale of the
competition between NO and tissue [or the available oxygen carried by blood? We have found
in simulation of the intrinsic image signal sources (Mayhew and Zheng 1996) that the intrinsic
images were quite sensitive o changes in the paramelter for the increase in cercbral metabolic
rate for oxygen (CMRO). Although an activity induced increase in deoxygenated hemoglobin
closer to 10% rather than the 5% reported by Fox (1986) was needed to produce intrinsic
image mapping data similar to that reported in the literature (Frostig, Licke et al. 1990). This
suggests, given the spectral characteristics of HbO and metHb, that the quantitics involved
may be of similar order, and deoxygenation by both routes is plausible. It is also uncertain
whether the methods for estimating CMRO would be sensitive to the deoxygenation produced
by the reaction of NO and HbO (the resulting metabolites nitrate and nitrite remain in the
blood stream). This is to ask whether the 5% increase in CMRO reported by Fox (1986)
results purcly from tissue usage distinct from NO scavenging. AL the risk of over
simplilication, the emission scans lor measurement of CMRO are derived relatively directly
from the quantity of oxygen that has dilTused out of the blood stream into the tissue where it is
metabolised to water which exchanges back into the intravascular compartment. Corrections
for blood [Tow, arterial saturation and vascular compartment volume are then applied. It is not
. known whether the labelled products of the NO and Hb interactions affect these
measurements. On the other hand, intrinsic imaging mapping studies monitor the spectral
changes in the underlying capillarics beds which reflect changes in the different forms of
deoxygenated hemoglobin derivatives remaining in the blood supply. The oxygen utilised to
maintain neural metabolic activity, and the deoxygenation as the result ol the conversion of
NO may be largely in different ‘compartments” but intrinsic imagery is sensitive Lo the effective
deoxygenation by both routes.




In the light of the above, we proposc the hypothesis that the V-signal is produced by the
interaction of both the modulation of' blood volume; i.c., hematocrit density. and the spectral
changes produced by the NO interaction with hemoglobin in its different forms. Under green
illumination, the interactions are complicated. The peak wavelength of the green illumination
(565nm) is approximately at an isobestic point for oxy and deoxygenated hemoglobin (changes
from HbO to Hb would have little effect), but changes cither to metHb or HBNO could be
detected. The change to metHb (rom HbO would act to decrease absorbance and the change
to HBNO Irom Hb and from metHb acts to increase absorbance above the level for Hb and
HbO.

On the other hand, at longer wavelengths (>600nm) the changes from HbO to metHB (and to
Hb) act to increase absorbance. The change from metHb to HbNO decreases absorbance back
Lo near the same level as the change from HbO (o Hb. Any change from Hb to HBNO would
have little effect on abhsorbance. Under both wavelengths ol illumination, increases in volume
would be expected to increase absorbance (if the proportions remain constant).

The matter is further complicated hy the lact that the proportion of HhNO and metHb formed
depends on the oxygenation state ol the blood. Using clectro paramagnetic spin resonance
(EPR) spectroscopy Wennmalm(1992) tound (in human) that in arterial blood NO is
converted almost completely to metHb with little HbNO, in contrast to venous blood where
more HbNO is produced. Furthermore the transition from metHB to HbNO is very slow
(Henry, Lepoivre et al. 1993), and to simplify we may ignore the spectral changes from metHb
to HbNO.

For arterial blood we would expect the transition {from HbO to metHb to produce a decrease
in absorbance under green illumination. but under red illumination it would cause an increase
in absorbance. Little HBNO would be produced.

For venous (and capillary beds) we would expect both the transitions of HbO to metHB and
Hb to HbNO to occur. Under green illumination the first would decrease absorbance and the
change to HBNO would increase it (possibly by less) and eftects would tend to cancel cach
other. Under red illumination only the transition from HbO to metHb would alfect the
absorbance (increasing it).

In the context of neural activity induced changes to rCBF there would be spectral changes
produced by deoxygenation, and by increases in volume and flow. These would be coupled
with the above spectral effects. The potential interactions in the dynamics of such a system are
far too complicated to solve without recourse to a mathemaltical modelling and our current
model of the intrinsic signal (Mayhew and Zheng 1996) is being modified in the light of the
above discussion. In the context of the data from the studies of the V-signal, we suggest that it
is plausible that the ctfects of any NO involved interactions are diffcrent under the two
illumination conditions and that these ctlects interacting with the spectral results of delayed
changes in blood volume could introduce the phase shifts we detect. The test ol this
hypothesis is a topic awaiting further investigation.
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Figure 1. Mean images under (a) green illumination; (b) red illumination. The image
subtends a 2x2 mm area (100x100 pixels: 1 pixel = 20 microns). Mean time series under (c)
green illumination and (d) red illumination. The bar shows the stimulation duration (2 sec)
starting at the 513th frame (20.5 second)
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Figure 2. Smoothed mean time series under green illumination (solid line) and under red
illumination (dashed line) in (a) venule (area 1), (b) arteriole (area 2) and (c) parenchyma
(area3).
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Figure 3. Eigenvalues for (a) green and (b) red illumination. The first four eigenvectors
under green illumination are shown in (c) and the first four corresponding eigenimages are
shown in (d). The first four eigenvectors under red illumination are shown in () and the first
four corresponding eigenimages are shown in (f).
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Figure 4. Correlation maps of the ‘lags of the maximum correlation’ (right) and the values
of the correlation (left) under red illumination (al, bl and a3, b3) and under green
illumination (a2,b2) with the time series of the haemodynamic models (P1, P2, P3).
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Figure 5. Three gamma functions used in the design matrix to model the undershoot under
the red (P1, dotted line) and the green (P2, dashed line) illumination, and the overshoot under
the red (P3, solid line) illumination.

° 3

Figure 6. The parameter maps obtained using generalised linear models for (a) the three
gamma functions P1, P2 and P3; (b) the amplitude (in percentage of grey levels) of the 0.1
Hz oscillation under green (left) and red (right) illumination; and (c) the phase (in radians) of
the 0.1Hz oscillation under green (left) and red (right) illumination.
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Figure 7. Top row: The SPMs for the neuro-hemodynamic parameters. Bottom row: SPMs
thresholded and binarised at the 95% level of confidence (abs(z score) >4.0). The green
areas are not significant. (a) the undershoot P1 under red illumination; (b) the undershoot P2
under green illumination; and (c) the overshoot P3 under the red illumination. In (c) every
pixel reached significance.

=11 0 fl =27 9 27 =21 o 21

Figure 8. SPMs using the corrected lags in the design matrix for (a) the undershoot P1 under
red illumination; (b) the undershoot P2 under green illumination; and (c) the overshoot P3
under the red illumination. The maps are almost the same as those shown in Figure 7.
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Figure 10 (a) Time series of mean arterial blood pressure (MABP). Dotted markers show
periods of blood withdrawal (30-62, 120-144, 210-229). (b) Mean time series of image data
under red (solid line) and green (dashed line) illumination. Note desynchronisation following
the second period of blood withdrawal.
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Figure 11 (a) SPMs of the amplitude of the V-signal before (al) and after (a2) blood
withdrawal under green illumination. (b) SPMs of the amplitude of the V-signal before (b1)
and after (b2) blood withdrawal under red illumination. (¢ and d) Corresponding angle maps
showing phase of the V-signal. The arrows indicate the phase with respect to the horizontal
axis. (€) SPMs of the before and afier differences in amplitude of the V-signal for the green
(left) and red (right) illumination conditions. The °z’ scores for the 95% confidence level is
4.75. in maps (a) and (b) and comtours have been superimposed to show the significant
areas. The 95% confidence level for the difference test is 4.0 in (¢) Almost no pixels
achieved significance so the contouring was ommitted.
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Figure 12. (a) Image of surface microvasculature of rat testes under green illumination. (b)
Mean time series under green (dotted line) and red (solid line) illumination. The apparent
single large vessel on the right is actually an overlapping artery and vein.

Figure 13 (a) SPMs of amplitude of the V-signal under green (left) and red (right)
illumination. The colour scale shows the ‘z’ score (95% confidence level 4.75). (b) maps of
the phase of the V-signal under green (left) and red (right) illumination. The scale shows the
phase angle in radians. The phase under green illumination has been shifted by 1.1 radians
relative to that under red illumination to facilitate comparison. {(¢) Angle maps of phase

. superimposed on the images of the vascularity. The arrows indicate the phase of V-signal
with respect to the horizontal axis. Under green illumination, the estimates of phase in the

i Tegion corresponding to the vessels on the right should be regarded as unreliable as V-signal
amplitude in this region is not significant.
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Figure 14. Maps of the frequencies under green (left) and red (right) illumination using
iterated complex demodulation. The slight right bottom to left top trend in frequency under
red illumination may be responsible for the trend in the same direction that can be seen in the

phase maps of Figure 13(b).
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Appendix I: Statistical Parametric Maps (SPMs)
Statistical parametric maps (SPMs) arc images whose pixel values arce distributed. under the
null hypothesis, according to some known probability density function.

Consider the linear model :

X=GB+e (1)

where X is the temporal data vector of a pixel after removal of mean under null stimulus, G is
the design matrix, B is the parameter vector corresponding Lo each component of G, and e is
the noise vector of normally distributed with mean zero and covariance matrix o sl

X is smoothed by multiplying by a matrix K, then the design matrix becomes G~ = KG .
The least square estimate of the parameter vector in this case is:
B=G"GH)'G KX 2)
It the design matrix G, is independent of the noise e, then the above estimate is unbiased. The
covariance matrix of f is
covif)=62(G G )G TKKTG (GTG")”! (3)
The unbiased estimate of the variance of the noise 1s given by
G* =(RKX)" (RKX)/ trace(RKK") (4)
where R is the residual-forming matrix given by
R=1-G(G"G)'G” (5)
Statistic Test

Null Hypothesis: The action of an interested biological eftect (including intrinsic signals and
stimuli ) is absent in the brain activity, i.e., the contribution of a selected ith column in the
design matrix to the observation data vector X is zero. This is equivalent to saying that the ith

element B. in B corresponding to the interested biological effect is zero.

In order to select the ith element [Tom a vector, a contrast vector c¢ is introduced such that the
ith element in ¢ is unity while all the other elements are zero.

Now let
Z=cB/1c62(GTG ) GTKKTG (GG " (6)
It can be shown that Z satisfies a t-distribution with degrees of freedom v given by:
v = trace(RKK ") / trace(RKK"RKK™) (7)

When the degrees of freedom is large enough, typically when v > 45, the above t- distribution
is approximated by a normal distribution. A pixel is said to be significantly activated by the ith
effect if its Z score is bigger than certain level of significance.
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The above significance test is applicable to individual pixels assuming they are independent of

cach other. In reality, images arc often spatially smoothed to reduce noise and enhance spatial
coherence. Friston and Worsley er «l. have studied the probability ol (inding the significant
areas in the Gaussian random fields. Their results are summarised as follows.

(1) The probability of getting at least one pixel with a Z score greater than u, in a D
dimensional SPM{Z} of volume V is the same as the probability ol having the largest Z score
in the entire volume ( Z_ ) greater than u, i.e.,

max

P(Z  >u)<E{m)=V-Q2r)" PP wP, " exp(—u 12) (8)

max
where E{m]} is the expected number of maxima. W is a measure of spatial smoothness and is
related to the full width at half maximum (FWHM) of the SPM (Friston er al., 1995).

In practice W can be determined directly when Gaussian blur is used to process the image
sequence in spatial domain, W =20, , where o, is the standard deviation of Gaussian
smoothing function.

In the situation of two dimensional image, i.e., D=2, the volume V is the area of the image,
denoted as S, and Eq. (7) becomes:

P(Z, >u<Em)=S-2r) "2 uexp(-u" /2)- )
the approximation holds if « is sufliciently high.
In our image analysis. S=/00*100. Il ¢, =3 in Gaussian smoothing, then the 5% level of
significance for u is obtained by cquating

P(Z, . >u)=005 (1)

[IPHES
yielding,

i = 3985
(2) The probability of getting one or more regions ol size k or more in a given SPM{Z)} of
volume V, thresholded at «. is the same as the probability that the largest region (n, ) consists
of k or more pixels where

P(n,, =k)=1-exp|—E{(m}-exp(—pk™'")] (1)

and
p=[T(D/2+1)-E{m}! V-d(—=u)]*'" (12)

where ¢(—u) is the integral of the unit Gaussian distribution evaluated at the threshold chosen
(-u), T'(-) is the gamma function (Friston er al., 1995).

In the situation of two dimensional images, i.e., D=2, , the volume V is the area of the image §
AP Pn,,, 2 k)= o, where o is suitable small, say (.05, then we have:

k,=(1/p)-log[-E{m}/log(l-a)] (13)

For instance, it S=/00*100 and the point spread function is Gaussian with standard deviation
o, =3, and il the threshold is taken as u=3, then:

P(n__=220)=0.05 (14)

max
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However if the activation arcas are highly inter-connected, Eq. (11) is difficult to use.

(3) Let X, ({#)o X, ()t e R"”. be independent, identically distributed, homogeneous, real-
valued Gaussian random ficlds cach with zero mean and unit variance. Then Adler (1981,
pl169) defines the ° field U(r) as

U(=Y X} (r).reR". _ (15)
i=1
The distribution of U(r) atecach ris x° with n degrees of freedom.

Let U __ =sup{U(z):r € C} wheve Cis a fixed set. Then

A(C)de(A)" ut"™" exp(-ul2) .
- (Zn)Dflzm-Z'}fEr(n/z) u : as U — oo, (16)

PU i 2 u)
where A(C) is the Lebesgue measure of C, A is the covariance matrix of the blur function
(Worsley, 1994).

Let X, (2), X.(t)hte R* be the statistical parametric maps (SPMs) ol the amplitudes of sine
and cosine components of vasomotor oscillation signals. Then with n=D=2, we have

U= X[ (n)+ X3 (1), te R (17
and
P(Umux 2'“‘) :SGL—_L-;H'Z)H ds i — oo, (18)
29T

where § is the area of the image, ¢, is the standard variance of Gaussian blur function. If
S=100*100, o, = 3, then the 5% level of significance for u is obtained by letting

PWU__2u)=005 (19)

yielding,
u=2255

The general procedure for obtaining SPM in our image analysis is summarised as lollows.

I. Remove mean from each pixel. Then smooth and subsample cach pixel in time.

2. Smooth each image using a Gaussian mask. Then subsample each image in space if
necessary.

3. Form the design matrix G which includes all the etfects of interest (e.g., sine, cosine,
gamma functions etc.). Each eflfect forms a column in G.

4. Estimate 6 and &7 using Eq.s (2) and (4) respectively.

5. For a particular effect ol interest, obtain SPM(Z) and SPM( xz) from Eq.s (6) and (17)
respectively.

6. Find thresholds for SPM(Z) and SPM( xj) using Eq.s (9) and (18) respectively, hence
obtain the signilicance map of the particular effect of interest over the whole image. -
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Appendix II: Principal Component Analysis (PCA)

Let A(m,n, N) represent a stack ol N images of size (mxn). Thus there are (mxn) pixels
cach of which is a time series of length N. Let p(i, j) represent the grey level of the pixel
(oj)i=1-,m, j=1,---,n. The principal component analysis (PCA) can be carried out by
treating cach image as a variable and cach pixel as an observation as follows.

I. Remove the mean from cach image A(m.nk), k = L---,N. Denote x(k) = A(m.n k)  so
that x(1), x(2),--+, x(N) represent N variables.

2. Form the (N x N) covariance matrix of the variables as

covlx(l).x()]  covlx(D),x(2)] ... cov[x(l),x(N)]

covx(2),x(1)] cov[.r(Z)_,x(Z)] e Cov[x(2),x(N)]

C= (1)

cov[x(N).x(D)] cov[x(N),x(2)] ... cov[x(N).x(N)]
3. Find the eigenvectors v ,---,v, and the corresponding eigenvalues A, .-+, A, of the above
covariance matrix such that A, >.---.> A .
4. The first eigenvector gives the principal time course of the image stack.

5. Back-projecting all pixels onto the /th eigenvector yields the /th principal eigenimage, given
by

N

B(i.j)= Y, pli.jk)v (k). i = Leeeom; j=Len, 2)

k=]




Appendix III: Complex Demoduiation (CDM)
If a time series contains significant energy within a specific frequency band a suitable analysis
technique is complex demodulation. )

For a time series x(#) complex demodulation estimates the amplitude and phase by forming
the complex demodulate

YOy =0 *{x(0)-e™ b= 3 h())- x(1 - J)- e 1)

J=0

where the phasor e™*™ shifts the components of x(¢) at frequency f to the origin of the
complex plane. The operator * represents convolution, and A(f) is the impulse response of a
selected low pass filter.

From the complex demodulate the amplitude is estimated by

A1) =2]y(0) )
and the phase is estimated by
6(¢) = arctan —-—————Ezgggi (3)

If the assumed centre frequency f is incorrect, the phase 8(¢) will show a linear trend in time.

The gradient of this trend is equal to the difference between f and the true frequency.
Regression on phase is a standard method for making accurate unbiased frequency estimates.

The process is iterated with improved estimates of the frequency f until the phase 8(¢) has no
linear trend. The estimated phase of the signal is the mean of 0(¢).
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