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Abstract

We explore an optimal partition problem on surfaces using a computational approach. The

problem is to minimise the sum of the first Dirichlet Laplace–Beltrami operator eigenvalues

over a given number of partitions of a surface. We consider a method based on eigenfunction

segregation and perform calculations using modern high performance computing techniques.

We first test the accuracy of the method in the case of three partitions on the sphere then explore

the problem for higher numbers of partitions and on other surfaces.
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1 Introduction

In this paper, we use the surface finite element method to tackle an eigenvalue optimal partition

problem for n-dimensional hypersurfaces in R
n+1. Our computations are restricted to n = 2. We

denote by Γ a closed, smooth, connected n-dimensional hypersurface embedded in R
n+1. For a

given positive integer m, we say that {Γi}m
i=1 is an m-partition of Γ if Γi ⊂ Γ for i = 1, . . . ,m,

Γi ∩ Γj = ∅ for i, j = 1, . . . ,m with i 6= j and
⋃

i=1,...,m Γi = Γ.

Problem 1.1. Given a positive integer m and a smooth surface Γ, divide Γ into an m-partition

{Γi}m
i=1 to minimise the energy:

E({Γi}m
i=1) =

m
∑

i=1

λ1(Γi), (1.1)

where λ1(Γi) is the first eigenvalue of the Dirichlet Laplace-Beltrami operator over Γi.

1
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This is a generalisation of a similar problem considered in various formulations over a Cartesian

domain Ω with appropriate boundary conditions. The flat problem was studied in the context of

shape optimisation in the 1990’s by Buttazzo and Dal Maso (1993); Sverak (1993); Bucur and

Zolesio (1995); Bucur, Buttazzo and Henrot (1998). A key challenge is how to define an appropriate

space of admissible partitions and how to equip this space with a topology so that one can define

an absolute minimiser. By restricting to quasi-open sets, Bucur et al. (1998) show existence of a

optimal partition as a consequence of a more general result. Quasi-open sets are sets which are close

to open sets in the sense that given a quasi-open set there is an open set such that their symmetric

difference has arbitrarily small capacity (Caffarelli and Lin 2007). Formally speaking, these are a

class of general sets which can be used to define a weak form of elliptic equations. For example, all

open sets are quasi-open. The set A(Ω) of quasi-open sets in a domain Ω can be equipped with a

notion of weak convergence by defining that a sequence of quasi-open sets {An} weakly converges

to A ∈ A(Ω) if ηAn
→ ηA weakly in H1(Ω) and A = {ηA > 0} where ηω ∈ H1(Ω) is the extension

to Ω by zero of the unique weak solution of

−∆ηω = 1 in ω and ηω = 0 on ∂ω.

Using these notions it is possible to establish that the spectral functional is lower semi-continuous

with respect to weak convergence in A(Ω) and existence of an m-partition into quasi-open sets

follows from the direct method of the calculus of variations (Caffarelli and Lin 2007).

An alternative method is based on using the eigenfunctions to partition the domain using a ap-

proach formulated by Caffarelli and Lin (2007). The energy (1.1) is transformed into a functional

form as a constrained Dirichlet energy:

Problem 1.2. Given a positive integer m and a smooth surface Γ, find u = (u1, . . . , um) ∈ H1(Γ, Ξ)

with ‖ui‖L2(Γ) = 1 for i = 1, . . . ,m, to minimise

E0
SEG(u) =

m
∑

i=1

∫

Γ

|∇Γui|2 dσ, (1.2)

where Ξ ⊂ R
m is the singular set

Ξ =

{

y = (y1, . . . , ym) ∈ R
m :

m
∑

i=1

∑

i6=j

y2
i y

2
j , yk ≥ 0 k = 1, 2, ...m

}

.

It was shown by Caffarelli and Lin (2007) that (1.2) is equivalent to (1.1) when we restrict to

m-partitions of Γ in which Γi are quasi-open sets. Let {Γi}m
i=1 be a minimiser of (1.1) consisting of

quasi-open sets, then if ui is the first eigenfunction of the Dirichlet Laplace–Beltrami operator over

Γi, for i = 1, . . . ,m, the vector quantity u = (u1, . . . , um) is a minimiser of (1.2). Conversely, let

the function u = (u1, . . . , um) ∈ H1(Γ, Ξ) be a minimiser of (1.2), then setting Γi = {ui > 0}, for
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Figure 1: Plots of the known cases when Γ is a sphere, m = 1 (left), m = 2 (center) and m = 3
(right) (Helffer et al. 2010).

i = 1, . . . ,m, the collection of quasi-open sets {Γi}m
i=1 is an m-partition of Γ which is a minimiser

of (1.1) and

λ1(Γi) =

∫

Γ

|∇Γui|2 dσ for i = 1, . . . ,m.

The authors Caffarelli and Lin (2007) use this formulation to show existence of minimisers and

regularity of the interface between partitions.

Other works by Conti, Terracini and Verzini (2002, 2003) and Caffarelli and Lin (2007, 2008)

have focused on regularity and more qualitative aspects of the problem for a Cartesian domain.

Conti, Terracini and Verzini derive optimality conditions, such as the gradient of eigenfunctions

should match at partition boundaries, and also that the partition consists of open sets. Caffarelli and

Lin obtain regularity results, such as C1,α-smoothness of the partition boundaries away from a set

of codimension two, and also an estimate of the behaviour in the limit of large m. In particular, they

prove that the optimal energy is bounded above and below by a constant times the mth eigenvalue

on Γ and conjecture that for large m the optimal partition will be asymptotically close to a hexago-

nal tiling in the case of a planar domain. The problem can be seen as a the strong competition limit

of segregating species either in Bose-Einstein condensate (Chang, Lin, Lin and Lin 2004), popula-

tion dynamics (Conti, Terracini and Verzini 2005a,b) and materials science (Chen 2002) in curved

geometries.

The curved hypersurface problem has been studied analytically in the case that Γ is a sphere in

recent work of Helffer, Hoffmann-Ostenhof and Terracini (2010). They show the optimal partition is

given by two hemispheres for the case m = 2 and the so-called Y-partition for m = 3; see Figure 1

and section 3.1. Furthermore, they show that for each m there is an optimal partition which satisfies

an equal angle condition which says that the boundary arcs that meet at a critical point do so with

equal angles.

Numerical studies of this type of problem have so far been limited to the planar case. We mention

in particular the studies of Chang et al. (2004) and Bonnaillie-Noël, Helffer and Vial (2010) and

some special algorithms in the case of small m given by Bozorgnia and Arakelyan (2013) and
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Bozorgnia (2009). Also Bourdin, Bucur and Oudet (2010) considered the problem for large values

of m using a fictitious domain approach. This problem has also been considered on graphs (Coifman

and Lafon 2006; Osting, White and Oudet 2014) with applications in big data segmentation. Finally,

we mention the study which will be the basis of our work in the paper: an eigenfunction segregation

approach (Du and Lin 2009). We will describe the algorithm in more detail in the following.

We derive computational approaches using the surface finite element method (Dziuk 1988; Dziuk

and Elliott 2007) to find solutions to these problems. A review of computational techniques for

partial differential equations on surfaces is given by Dziuk and Elliott (2013). Our methods will be

one of the algorithms given by Du and Lin (2009) applied with the surface finite element method in

order to explore Problem 1.1.

We believe some of the techniques used in this paper, such as operator splitting and parallel com-

puting, could be applied in a wide range of multiphase problems; for example Gräser, Kornhuber

and Sack (2014). In these problems, one typically has a large system of reaction diffusion systems

to solve with small parameter ε indicating an interfacial width. The small parameter ε acts with

nonlinear terms to separate different phases. Our methods are designed to be transferable to this

type of problem also. In contrast to many multiphase problems, the dynamic problem considered in

this paper are based on non-local interface motion.

1.1 Approximation approach

One could try to directly compute the gradient flow of the energy E0
SEG in (1.2); see Mayer (1998)

for analytic considerations of this approach. However, this would lead to equations which would be

hard to discretise. We instead relax the constraint that u takes values in Ξ by adding a penalty term

to the energy functional following Caffarelli and Lin (2008). In this way, we consider the extended

energy functional:

Eε
SEG(uε) =

m
∑

i=1

1

2

∫

Γ

|∇uε
i |2 dσ +

∫

Γ

Fε(u
ε) dσ, Fε(u

ε) =
1

ε2

m
∑

i=1

m
∑

j=1

j 6=i

(uε
i )

2(uε
j)

2.

Problem 1.3. Given a positive integer m, a smooth surface Γ and ε > 0, find uε = (uε
1, . . . , u

ε
m) ∈

H1(Γ, Rm) with ‖uε
i‖L2(Γ) = 1 for i = 1, . . . ,m, to minimise

Eε
SEG(uε) =

m
∑

i=1

1

2

∫

Γ

|∇uε
i |2 dσ +

∫

Γ

Fε(u
ε) dσ. (1.3)

We will now compute the gradient flow of this relaxed problem. We now seek a time dependent

function uε : Γ × R+ → R
m and λε : R+ → R

m satisfying

∂tu
ε
i = ∆Γuε

i + λiu
ε
i −

2

ε2

(

∑

j 6=i

(uε
j)

2

)

uε
i on Γ × R+, for i = 1, . . . ,m, (1.4a)

uε(·, 0) = u0 on Γ, (1.4b)
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subject to the constraint
∫

Γ

|uε
i |2 dσ = 1 for i = 1, . . . ,m. (1.5)

Here, we suppose that the initial condition partitions Γ and has unit norm:

u0 ∈ H1(Γ, Ξ),

∫

Γ

∣

∣u0
i

∣

∣

2
dσ = 1 for i = 1, . . . ,m.

We remark that u0
i ≥ 0 implies uε

i ≥ 0 for i = 1, . . . ,m.

This gradient flow problem was studied by Caffarelli and Lin (2009) for Cartesian geometries.

The proofs can be easily transferred onto surfaces. We recall their results stated on surfaces:

λε
i (t) =

∫

Γ

|∇uε
i |2 +

2

ε2

(

∑

j 6=i

(uε
j)

2

)

(uε
i )

2 dσ,

and

Eε
SEG(uε) ≤

m
∑

i=1

λε
i (t) = Eε

SEG(uε) + 2

∫

Γ

Fε(u
ε) dσ.

Furthermore, they show that Eε
SEG(uε) is a monotone decreasing function of time for uε the solution

of (1.4). This implies the existence of a unique global strong solution uε ∈ L∞(R+, H1(Γ, Rm) for

each ε > 0. Finally, they give estimates of interest when considering the sharp interface limit:

Denoting by ūε the minimiser of the ε-problem, for any 0 < t1 < t2, we have
∫ t2

t1

∫

Γ

Fε(ū
ε) dσ dt → 0 as ε → 0,

and that the limit of minimising functions as ε → 0, ūε converges strongly in H1(Γ × R+) to a

suitable weak solution of the constrained gradient flow of (1.2).

A key advantage of this approach is that we are trying to approximate smooth functions uε in

place of the domains Γi. The limiting function u∗ = (u∗
1, . . . , u

∗
m), is the limit of uε as ε → 0

partitions Γ so we can define Γi = {u∗
i > 0} and u∗

j = 0 in Γj , j 6= i. We note also that setting

v∗
i := u∗

i −
∑

j 6=i u
∗
j we have Γi = {v∗

i > 0}. A possible disadvantage of this method is that it is

not clear how to relate uε to a partition {Γi} when ε is fixed. Possibilities for defining Γε
i include

Γε
i = {uε

i > c(ε)} or Γε
i = {vε

i > 0} where vε
i := uε

i −
∑

j 6=i u
ε
j .

1.2 Outline

In the remainder of this paper, we will give a suitable discretisation of this approach using the

surface finite element method. We will propose an algorithm to solve the discretised optimisation

problem and give practical details of how we implement this method. Our experience is that the

eigenfunction segregation method performs very well. Our results section consists of three parts.

First, we will test our algorithm in the case of three partitions on the sphere for which we know the

absolute minimiser. We will then compute partitions of the sphere for larger values of m and make

some observations about the structure.Finally we consider other surfaces to see the different effects

of curvature and different genus surfaces. The computations lead to some natural conjectures.
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2 Computational method

2.1 Discretisation

We start the discretisation by taking a polyhedral approximation Γh of Γ. We assume that Γh consists

of a shape regular triangulation Th where h is the maximal diameter of a simplex (triangle for n = 2)

in Th. We will denote by Nh the vertices of Γh and call Γh a triangulated surface. We suppose that

Γh interpolates Γ in the sense that the vertices of triangles of Γh lie on Γ.

Over this triangulation, we define two continuous finite element spaces, a space of scalar valued

functions Sh and a space of vector valued functions Sh. These are given by

Sh = {χh ∈ C(Γh) : χh|T is affine linear, for all T ∈ Th}
Sh = {ηh = (ηh

1 , . . . , ηh
m) ∈ C(Γh; R

m) : ηh
i ∈ Sh for i = 1, . . . ,m}.

We can directly formulate the discrete version of Problem 1.3.

Problem 2.1. Given a positive integer m, a triangulated surface Γh and ε > 0, find uε,h =

(uε,h
1 , . . . , uε,h

m ) ∈ Sh to minimise

Eε,h
SEG(uε,h) =

m
∑

i=1

∫

Γh

∣

∣

∣
∇Γh

uε,h
i

∣

∣

∣

2

dσh +

∫

Γh

Fε(u
ε,h) dσh. (2.1)

Our optimisation strategy will be to directly solve a discretisation of the gradient flow equations.

Discretising in space first, we seek a time dependent finite element function uε,h ∈ C1(R+; Sh) and

λε,h : R+ → R
m satisfying ||uε,h

i ||2Γh
= 1 i = 1, 2, ....m,

∫

Γh

∂tu
ε,h
i χh + ∇Γh

uε,h
i · ∇Γh

χh dσh

=

∫

Γh

λε,h
i uε,h

i χh −
2

ε2

(

∑

j 6=i

(uε,h
j )2

)

uε,h
i χh dσh for all χh ∈ Sh

uε,h(·, 0) = uh,0.

(2.2)

Here, uh,0 = (uh,0
1 , . . . , uh,0

m ) is initial data in Sh such that (uh,0
i )2(uh,0

j )2 = 0 for all i, j = 1, . . . ,m

with i 6= j.

We discretise in time using a operator splitting strategy similar to a scheme proposed by Du

and Lin (2009). At each time step, we first solve one step of the heat equation, then solve an ordi-

nary differential equation for the nonlinear terms, and use a projection to deal with the Lagrange

multiplier.

2.2 Computational method

The operator splitting method is as follows.
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Algorithm 2.2. Given ε > 0, a positive integer m, a time step τ > 0 and an initial condition

uh
0 = ((uh

1)0, . . . , (u
h
m)0) ∈ Sh with (uh

i )0(z)2(uh
j )0(z)2 = 0 for all z ∈ Nh and i, j = 1, . . . ,m

with i 6= j, for k = 0, 1, 2, . . .,

1. Solve one time step of the heat equation for i = 1, . . . ,m using implicit Euler. We wish to

find ũε,h = (ũε,h
1 , . . . , ũε,h

m ) ∈ Sh
∫

Γh

1
τ

(

ũε,h
i − (uε,h

i )k

)

χh + ∇Γh
ũε,h

i · ∇Γh
χh dσh = 0 for all χh ∈ Sh, i = 1, . . . ,m.

2. Solve the nonlinear terms exactly as ordinary differential equation at each node. For all nodes

z ∈ Nh and i = 1, . . . ,m, find ûε,h
i (z) : [tk, tk+1] → R such that

d

dt

(

ûε,h
i (z)(t)

)

= −
(

1

ε2

∑

j 6=i

(ũε,h
j (z))2

)

ûε,h
i (z)(t), ûε,h

i (z)(tk) = ũε,h
i (z).

3. Find the new solution (uε,h)k+1 by normalising the final time solution (ûε,h
1 (·)(tk+1), . . . , ûε,h

m (·)(tk+1)):

(uε,h
i (z))k+1 =

ûε,h
i (z)(tk+1)

∥

∥

∥
ûε,h

i (·)(tk+1)
∥

∥

∥

L2(Γh)

for all z ∈ Nh, i = 1, . . . ,m.

Similarly to Bao and Du (2004), one can show an energy decreasing property for this scheme.

The method is the same as the scheme of Du and Lin (2009) except we exchange a Gauss-Seidel

iteration in step 2 for a Jacobi iteration. The ordinary differential equation from step 2 can be solved

exactly to give:

ûε,h
i (z)(tk+1) = ũε,h

i (z) exp

(

− τ

ε2

∑

j 6=i

(ũε,h
j (z)(t))2

)

.

Using this solution, we write a more practical version of step 2 as

2. For each node z ∈ Nh,

(a) For i = 1, . . . ,m, compute ũε,h
i (z)2;

(b) Find S =
∑m

i=1 ũε,h
i (z)2;

(c) For i = 1, . . . ,m, compute ûε,h
i (z)(tk+1) by

ûε,h
i (z)(tk+1) = ũε,h

i (z) exp
(

− τ

ε2
(S − ũε,h

i (z)2)
)

We stop the computation when the change in energy is less than 10−6. In order to reduce the

computational cost this is only calculated every Mτ iterations where 0.1 = Mττ .

Since, in general, we do not know the configuration of the optimal domains, we initialise the

computations with a random initial condition. We loop over the grid nodes z ∈ Nh and uniformly

at random choose one value i ∈ {1, . . . ,m} and set (uh
0)(z)i = 1 and (uh

0)(z)j = 0 for j 6= i then

normalise each component, (uh
0)i, for i = 1, . . . ,m, in L2(Γ). As a result the first linear solve for

the heat equation step will take more iterations, however the difference is not significant in this case.
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Remark. In practice, we find this operator splitting method to be stable and efficient. If we dis-

cretised (2.2) in time directly using the Lagrange multiplier, we would have the choice to take the

Lagrange multiplier implicitly or explicitly. An implicit discretisation would leave a fully coupled

system of equations to solve, which would not be so easily implemented using parallel high perfor-

mance computing techniques. An explicit discretisation would imply a time step restriction based

on the size of the maximum H1-semi norm of each component. We wish to start with a random

initial condition in order to avoid local minima, however this has a very large H1-semi norm which

would give an unfeasible time step restriction. All three methods are considered for the flat problem

in the time discrete-space continuous case by Du and Lin (2009).

2.3 Parallel computations

The algorithm has been formulated so that we can use high performance computing to implement

the optimisation. The key idea is to store the solution over m parallel processors and perform most of

the computations on a single processor. Communication between processors is kept to a minimum.

We distribute the solution uε,h over m processors so that processor i stores uε,h
i . At each time

step, each processor performs one linear solve (step 1), one loop over all nodes communicating

with all other nodes to perform the sum in step 2(b) (step 2), then one more loop over all nodes to

normalise the solution (step 3). In particular, computing sum in step 2(b) over all j is more efficient

then computing the sum over all other j 6= i.

A similar approach was also taken to parallelisation by Bourdin et al. (2010) who computed up

to 512 partitions. Our approach performs very well for m ≤ 32. At the moment we restricted to this

number of partitions because we wish to have a meaningful number of elements in each partition. It

is possible that one may gain efficiency by using an adaptive mesh refinement on the unstructured

grids enabling sufficiently accurate computations with a larger number of partitions. This is left for

future work.

All test cases were implemented using the Distributed and Unified Numerics Environment (DUNE)

(Bastian, Blatt, Dedner, Engwer, Klöfkorn, Ohlberger and Sander 2008b; Bastian, Blatt, Dedner,

Engwer, Klöfkorn, Kornhuber, Ohlberger and Sander 2008a). Matrices are assembled using the

DUNE-FEM (Dedner, Klöfkorn, Nolte and Ohlberger 2010) and solved using a conjugate gradient

method preconditioned with algebraic multigrid Jacobi preconditioner from DUNE-ISTL (Blatt and

Bastian 2007). Parallelisation is performed using MPI. All visualisation is performed in ParaView

(Henderson 2014). The code we have written for the simulations in this paper is available at

http://users.dune-project.org/projects/dune-partition

http://users.dune-project.org/projects/dune-partition
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3 Results

3.1 Convergence tests for three partitions of the sphere

From the work of Helffer et al. (2010), we know that the Y-partition is optimal in the case m = 3 on

the sphere. This corresponds (up to rotations of the sphere) to Γ1 = {0 < ϕ < 2π/3}, Γ2{−2π/3 <

ϕ < 0} and Γ3 = {|ϕ| > 2π/3}. We can compute that the first eigenfunctions are:

u1(θ, ϕ) = sin(3φ

2
)(sin θ)

3

2 on Γ1

u2(θ, ϕ) = − sin(3φ

2
)(sin θ)

3

2 on Γ2

u3(θ, ϕ) = sin(3|φ|
2

− π)(sin θ)
3

2 on Γ3.

Each of these eigenfunctions has eigenvalue 15/4.

We first test convergence with respect to the discretisation parameters. We perform our algorithm

at ε = 5 · 10−3 and τ = 10−4 over five levels of mesh refinement, reducing from h = 3.21614 · 10−2

to h = 2.01073 ·10−3. We compute until t = 2. We have plotted the energy along the time evolution

in Figure 2 and see good convergence. We have also included a dashed line at the exact energy 45/4

for ε = 0. We see that for a given ε the error in energy can be large.

0.0 0.5 1.0 1.5 2.0

time

10.0

10.5

11.0

11.5

12.0

E
n
er

g
y

h = 3.21614 · 10−2

h = 1.60846 · 10−2

h = 8.04275 · 10−3

h = 4.02144 · 10−3

h = 2.01073 · 10−3

Figure 2: Convergence with respect to discretisation parameters for ε = 5 · 10−3 to the Y-partition

on the sphere. The dashed grey line is the exact energy for ε = 0.

To test the convergence of the regularisation we compute the minimizer for a sequence for values

for ε. We start on a coarse mesh with τ = 8 · 10−4, once we have reached a minimizer, we refine
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ε Energy Energy error (eoc) Sε (eoc)

5.00000 · 10−1 1.9100 9.3400 — 1.9098 —

2.50000 · 10−1 4.8759 6.3741 0.5512 1.5350 0.3151
1.25000 · 10−1 6.6257 4.6243 0.4630 1.0548 0.5413
6.25000 · 10−2 7.8829 3.3671 0.4577 0.7751 0.4444
3.12500 · 10−2 8.8095 2.4405 0.4643 0.5714 0.4400
1.56250 · 10−2 9.4907 1.7593 0.4721 0.4188 0.4482
7.81250 · 10−3 9.9880 1.2620 0.4793 0.3050 0.4576
3.90625 · 10−3 10.3487 0.9013 0.4856 0.2209 0.4652
1.95312 · 10−3 10.6088 0.6412 0.4912 0.1605 0.4605
9.76562 · 10−4 10.7958 0.4542 0.4974 0.1168 0.4591

Table 1: Results of convergence test in ε for numerical tests for three partition case. Energy is Eε
SEG

at the best computed partition, energy error is the difference to 45/4 the exact energy for ε = 0, and

Sε is given by (3.1).

the mesh by bisecting elements once (two bisections reduces h roughly by half) and reduce τ by a

factor 1/
√

2. Instead of computing a new random initial condition after each refinement, we use the

previous minimiser as the new initial condition.

We define Sε to be part of the energy associated with regularisation:

Sε(u
ε,h) :=

∫

Γh

Fε(u
ε,h) dσh =

1

ε2

∫

Γh

m
∑

i=1

∑

j 6=i

(uε,h
i )2(uε,h

j )2 dσh. (3.1)

These values illustrate the convergence of the relaxation to the exact problem. We expect Sε → 0 as

we know that we recover the a minimiser of the partition problem as ε → 0.

We have computed the full and regularisation energy at each minimiser. The results are shown

in Table 1 and Figure 3. The tables also show the experimental order of convergence (eoc) which is

computed via the formula

(eoc)i =
log(errori/errori−1)

log(1/2)
.

where errori is the error in energy against the exact partition at refinement level i.

The eigenfunction segregation approach performs very well with respect to convergence in ε.

We observe order ε
1

2 convergence both for the full energy and also for Sε. The errors are still quite

large for reasonable sized values of ε so we must take very small values of ε to trust any predictions

of energy values using this method.

3.2 Computed partitions of the sphere for m ≥ 3

We proceed with the following refinement rules. We initialise the problem with a random initial

condition for ε0 = 1
2
, τ0 = 8 · 10−4 on a mesh Γh,0, then for l = 0, 1, 2, . . ., we find a minimiser

of the εl-problem on Γh,l, then refine the mesh globally by bisecting all elements, and find εl+1 and
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Figure 3: Convergence with respect to ε to the Y-partition on the sphere. The energy error is differ-

ence to 45/4 the exact energy for ε = 0, and Sε is given by (3.1).

τl+1 as

εl+1 =
√

2εl τl+1 =
√

2τl.

We use the optimal function for level l − 1 as the initial condition on level l. The final parameters

are given in Table 2.

Plots of the solutions for several values of m are given in Figures 4. Observe that the colour

coding of these figures indicates the partitions using the computed values of the eigenfunctions.

Eigenvalue estimates are computing by taking the mean H1-semi norm of the components. The

computed eigenvalues are plotted in Figure 5. Theorem 3 of the work by Caffarelli and Lin (2007)

proves that the energy scales like λm(Γ) up to a constant factor. Using Weyl’s asymptotics, we see

m l Degrees of freedom ε
3 9 579 830 6.25 · 10−4

4 9 786 440 6.25 · 10−4

5 9 983 050 6.25 · 10−4

6 9 1 179 660 6.25 · 10−4

7 9 1 376 270 6.25 · 10−4

8 7 196 624 1.25 · 10−3

16 7 393 248 1.25 · 10−3

32 7 786 496 1.25 · 10−3

Table 2: Final parameters for computations on the sphere.
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that in two space dimensions this means that the average eigenvalue is bounded above and below

by m times a constant. This is indicated by the blue line which is m times the first eigenvalue

corresponding to a hexagon H of area 4π (the surface area of the sphere) – this is the conjectured

average eigenvalue for large m in the plane (Caffarelli and Lin 2007). Our results indicate a similar

scaling property for the sphere.

Rather than just using the computed eigenfunction values, as mentioned earlier, we may define

an approximate partition by

Γε,h
i :=

{

x ∈ Γ : vε,h
i (x) := uε,h

i (x) −
∑

j 6=i

uε,h
j (x) > 0

}

for i = 1, . . . ,m. (3.2)

We motivate the use of this definition by noting that each uε,h
i is positive and the supports of {uε,h

i }
overlap, hence this function is zero only surrounding one partition where uε,h

i = uε,h
j for some j 6= i.

Note that these sets will not cover Γ and there will be a small void between regions. Furthermore

we may use vε,h
i in the following interesting way. Suppose that γ is a curve on Γ defined by as the

zero level set of a function φ, γ = {φ = 0}, then the geodesic curvature of γ, which we denote by

κg is given by

κg = ∇Γ ·
( ∇Γφ

|∇Γφ|

)

. (3.3)

We can use ParaView’s gradient reconstruction function to compute an approximation of κg over

the interface at the boundary of each partition Γi using φ = vε,h
i . An example of this is shown in

Figure 6. We see that this value is small away from junctions.

We observe that at junctions three partitions coincide with equal angles. See, for example, Fig-

ure 7. This is consistent with the results of Helffer et al. (2010) who prove that all partitions have

an equal angle property. From our results it is difficult to quantify this result since at any triple

point there is a void region because of our regularisation. Also in Figure 7, we have superimposed

an equal angle triple junction which shows good agreement to results we have. We can consider a

reduced problem of finding the first eigenvalue over partitions of the unit disk. We find with three

equal partitions (similar to the Y-partition) the total energy is approximately 60.6(= 3 · 20.2) and

for four partitions, one in each quadrant, the total energy is approximately 105.6(= 4 ·26.4). Taking

three partitions leads to a significant reduction in energy.

Table 3 shows one representative of each polygon similarity class and more details of the best

estimate of the energy and also the similarity classes of polygons. The energy calculation shows the

values of each eigenvalue (mean and standard deviation for each similarity class of polygons) and

also Sε for each of the final configurations.

There are several striking features:

• All partitions consist of curvi-linear polygons;

• The boundary of each partition consists of arcs with zero geodesic curvature (“straight lines”);
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(a) m = 3, 3 lens (pink) (b) m = 4, 4 triangles (red)

(c) m = 5, 2 triangles (red) and

3 quadrilaterals (orange)

(d) m = 6, 6 quadrilaterals (or-

ange)

(e) m = 7, 5 quadrilaterals (or-

ange) and 2 pentagons (yellow)

(f) m = 8, 4 quadrilaterals (or-

ange) and 4 pentagons (yellow)

(g) m = 16, 8 A and 4 B pen-

tagons (yellow) and 4 hexagons

(green)

(h) m = 32, 12 pentagons (yel-

low) and 20 hexagons (green)

Figure 4: Plots of the minimising configurations {Γε,h
i }m

i=1 with void regions in grey. Colours only

in the online version. Each partition is coloured according to the polygon type and shaded by the

eigenfunction from white for ui = 0 to black for ui at the maximum.
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Figure 5: Plot of the eigenvalues at different values of m. The blue line is mλ1(H) where H is the

planar hexagon with area 4π (equal to the surface area of the sphere).

Figure 6: Plots of one partition and κg for m = 8 (left) and m = 16 (right). The value of uε,h
i is

shown on a black to white scale and κg is plotted on the curve {vε,h
i = 0} on a black to orange scale.
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m Shape Energy information

3

3 lens

Lens eigenvalue: 3.605 (2.59 · 10−4)
Sε: 0.072

Total energy: 10.887

4

4 triangles

Triangle eigenvalue: 4.966 (2.46 · 10−4)
Sε: 0.121

Total energy: 19.987

5

2 triangles

and

3 quadrilaterals
Triangle eigenvalue: 7.118 (3.35 · 10−4)

Quadrilateral eigenvalue: 6.302
Sε: 0.187

Total energy: 33.330

6

6 quadrilaterals

Quadrilateral eigenvalue: 7.812 (7.22 · 10−4)
Sε: 0.248

Total energy: 47.122

7

5 quadrilaterals

and

2 pentagons
Quadrilateral eigenvalue: 9.988 (1.63 · 10−3)

Pentagon eigenvalue: 8.298 (7.50 · 10−5)
Sε: 0.322

Total energy: 66.859

8

4 quadrilaterals

and

4 pentagons Quadrilateral eigenvalue:

11.380 (5.31 · 10−3)
Pentagon eigenvalue: 10.230 (2.91 · 10−3)

Sε: 0.650
Total energy: 87.102

16

8 A and 4 B pentagons

and

4 hexagons

Pentagon (A) eigenvalue:

22.647 (1.05 · 10−2)
Pentagon (B) eigenvalue:

23.610 (2.43 · 10−2)
Hexagon eigenvalue: 20.496 (1.05 · 10−2)

Sε: 1.264
Total energy: 362.718

32

12 pentagons

and

20 hexagons
Pentagon eigenvalue: 48.436 (1.46 · 10−1)
Hexagon eigenvalue: 44.460 (1.24 · 10−1)

Sε: 2.496
Total energy: 1472.920

Table 3: More details of optimal partitions. In the small plots, we plot the corresponding uε,h
i with a

black contour at vε,h
i = 0.
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Figure 7: A zoom of a triple junction on the sphere. Three partitions {vε,h
i > 0} are coloured on

blue, green and orange according to the eigenfunction uε,h
i with red boundaries at {vε,h

i = 0}. The

void region is shown in yellow. Additionally in the right plot we have added black lines which would

correspond to an equal angle triple junction.

• Each junction is a triple junction with an equal angle condition satisfied;

• There are at most two types of polygon in the partition;

• In the case of two different polygons, the polygon with more sides has lower eigenvalue;

• As m increases the number of edges in each polygon increases;

• Each polygon has at most 6 edges.

We define the dual polygon to a partition by considering the edges and vertices as a graph and

taking the dual graph. In our case, since we always have triple junctions this defines a triangulation

of the sphere. Let V be the number of vertices, E the number of edges and F the number of faces in

the dual polygon to a partition {Γi}m
i=1. We know that this will satisfy Euler’s identity, V −E +F =

χ, where χ is the Euler characteristic (2 in the case of a sphere), and also that

2E =
∞
∑

k=0

knk, 3F =
∞
∑

k=0

knk, V =
∞
∑

k=0

nk,

where nk is the degree of a vertex in the dual polygon. The degree of a vertex is equal to the number

of edges of the corresponding partition. Using these equations in Euler’s identity gives

4n2 + 3n3 + 2n4 + n5 = 6χ +
∞
∑

k=7

(k − 6)nk. (3.4)

This result is a special case of the Gauss-Bonnet theorem. We can think of this result as saying

that polygons with less than six sides correspond to regions of positive Gauss curvature, hexagons
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m Surface (D) Torus

l Degrees of freedom ε l Degrees of freedom ε
3 12 311 982 3.125 · 10−4 12 393 216 3.125 · 10−4

4 12 415 976 3.125 · 10−4 12 524 288 3.125 · 10−4

5 10 256 365 6.25 · 10−4 10 326 680 6.25 · 10−4

6 9 150 900 8.883 · 10−4 10 393 216 6.25 · 10−4

7 9 176 050 8.883 · 10−4 10 458 752 6.25 · 10−4

8 9 201 200 8.883 · 10−4 10 524 288 6.25 · 10−4

16 9 402 400 8.883 · 10−4 10 1 048 576 6.25 · 10−4

32 9 804 800 8.883 · 10−4 8 1 045 696 8.883 · 10−4

Table 4: Final parameters for computations on the other surfaces (D) and the torus.

correspond to zero Gauss curvature and polygons with more than six sides correspond to negative

Gauss curvature.

This identity is consistent with the partitions in Table 3. Our computations suggest that the

polygonal structure of the optimal partition consists of polygons with six or less sides. This agrees

with the idea that the sphere has uniform positive Gauss curvature. We can deduce that if an m-

partition of the sphere consists of only pentagons and hexagons, then there will be 12 pentagons and

m − 12 hexagons. We expect this to be the optimal partition for large values of m.

3.3 Computed partitions of other surfaces

We consider two other surfaces to see if these conclusions persist on a large class of surfaces. The

first example, surface (D), is taken from the work of Dziuk (1988) where the surface is given by

Γ = {x ∈ R
3 : Φ(x) = 0} for Φ given by

Φ(x1, x2, x3) := (x1 − x2
3)

2 + x2
2 + x2

3 − 1.

This has the same genus as a sphere but has large changes in curvature. The second example is given

by a torus (T) with inner radius 0.6 and outer radius 1. This has different genus to the sphere. We

proceed with the same refinement strategy as on the sphere. Details of the parameters is given in

Table 4.

We plot for the eigenvalues corresponding to the optimal partition Figure 8. We compute the

eigenvalue as the H1(Γ) semi-norm of each component. We have also included the line at mλ1(HD)

and mλ1(HT ) in each plot, where HD and HT are the regular hexagons with area equal to the

surfaces of example 1 (D) and the torus (T). We do not have direct access to the eigenvalues on

either of these surfaces so do not add that to this plot.

For surface (D), we plot the optimal configurations in Figure 9 with more details given, including

eigenvalues and energy, in Table 5. For the torus, we plot the optimal configurations in Figure 10

with more details given, include eigenvalues and energy, in Table 6.
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Figure 8: Plot of the eigenvalues at different values of m. Left for surface 1 (D) and right for the

torus (T). The blue line indicates the scaled eigenvalue corresponding to a hexagon H of equal area

to each surface – this is the conjectured average eigenvalue for large m in the plane (Caffarelli and

Lin 2007).



A computational approach to an optimal partition problem on surfaces 19

(a) m = 3, 3 lens (pink) (b) m = 4, 4 triangles (red)

(c) m = 5, 2 triangles (red) and

3 quadrilaterals (orange)

(d) m = 6, 6 quadrilaterals (or-

ange)

(e) m = 7, 5 quadrilaterals (or-

ange) and 2 pentagons (yellow)

(f) m = 8, 4 quadrilaterals (or-

ange) and 4 pentagons (yellow)

(g) m = 16, 3 quadrilateral (or-

ange), 6 pentagons (yellow), 7

hexagons (green)

(h) m = 32, 12 pentagons (yel-

low) and 20 hexagons (green).

Figure 9: Plots of the minimising configurations on the example surface one. Same colouring as

Figure 4
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(a) m = 3, 3 cylinders (grey) (b) m = 4, 4 cylinders (grey)

(c) m = 5, 4 two-sided shapes

(pink) and 1 quadrilateral (or-

ange)

(d) m = 6, 6 hexagons (green)

(e) m = 7, 2 quadrilaterals

(orange), 2 pentagons (yellow),

1 hexagon (green), 1 octagon

(blue), 1 decagon (purple)

(f) m = 8, 4 pentagons (yellow),

1 hexagon (green), 2 heptagons

(cyan), 1 octagon (blue)

(g) m = 16, 2 quadrilater-

als (orange), 4 pentagons (yel-

low), 8 hexagons (green) and 2

decagons (purple)

(h) m = 32, 8 pentagons (yel-

low), 18 hexagons (green), 4

heptagons (cyan) and 2 octagons

(blue).

Figure 10: Plots of the minimising configurations on the torus. Same colouring as Figure 4
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m Partition

3

lens

2.664

crescent

2.664

crescent

2.372
Sε: 0.040

Total energy: 7.741

4

triangle

3.493

triangle

3.494

triangle

4.008

triangle

3.952
Sε: 0.103

Total energy: 15.051

5

triangle

5.843

triangle

5.125

quadrilateral

6.004

quadrilateral

5.944

quadrilateral

3.942
Sε: 0.312852

Total energy: 27.072

6

quadrilateral

7.808

quadrilateral

7.241

quadrilateral

7.093

quadrilateral

6.753

quadrilateral

6.730

quadrilateral

5.443
Sε: 0.753

Total energy: 41.821
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7

quadrilateral

9.569

quadrilateral

9.556

quadrilateral

9.275

quadrilateral

8.748

quadrilateral

7.780

pentagon

8.009

pentagon

6.058
Sε: 1.102

Total energy: 60.096

8

quadrilateral

10.1602

quadrilateral

9.83384

quadrilateral

8.09237

quadrilateral

7.978

pentagon

10.128

pentagon

10.034

pentagon

9.965

pentagon

9.539

Sε: 1.63602
Total energy: 77.367

Table 5: More details of optimal partitions. In the small plots, we plot the corresponding uε,h
i with a

black contour at vε,h
i = 0.
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m Partition

3

cylinder

1.725

cylinder

1.703

cylinder

1.717
Sε: 1.207

Total energy: 6.353

4

cylinder

2.758

cylinder

2.637

cylinder

2.595

cylinder

2.595
Sε: 0.106

Total energy: 10.890

5

two sided shape

3.772

two sided shape

3.940

two sided shape

3.683

two sided shape

3.914

quadrilateral

3.812

Sε: 0.595
Total energy: 19.717

6

hexagon

4.215

hexagon

4.481

hexagon

4.319

hexagon

4.319

hexagon

4.480

hexagon

4.215
Sε: 1.005

Total energy: 27.035
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7

quadrilateral

4.803

quadrilateral

5.064

pentagon

5.168

pentagon

4.94272

hexagon

5.465

octagon

5.459

decagon

5.908
Sε: 0.81257

Total energy: 37.623

8

pentagon

5.951

pentagon

5.841

pentagon

6.070

pentagon

6.105

hexagon

5.692

heptagon

6.186

heptagon

6.184

octagon

6.254
Sε: 1.257

Total energy: 49.540

Table 6: More details of optimal partitions. In the small plots, we plot the corresponding uε,h
i with a

black contour at vε,h
i = 0.



A computational approach to an optimal partition problem on surfaces 25

By using Γε,h
i and vε,h

i from (3.2), we can define the boundary of partition on these surfaces also.

This allows us to compute the geodesic curvature (3.3) of the boundary of Γε,h
i ; see Figure 11 for

computations. We again see that away from junctions the geodesic curvature is small. We also see

that boundaries all meet at triple junction with the equal angle condition satisfied. We conjecture

that on all surfaces optimal partitions have boundaries with zero geodesic curvature which meet at

triple junctions with equal angles between each boundary.

On surface (D), the partition has exactly the same structure as for the sphere for m ≤ 8 but the

eigenvalues do not group in the same way because of the variations in curvature. For large values

of m the structure changes. Now in regions with higher curvature we see partitions with few sides.

In fact, for m = 16, three partitions have four sides, which does not occur in the case of the sphere.

The familiar pattern of pentagons and hexagons reoccurs for m = 32 except now the pentagons are

clustered in regions of high curvature. The number of sides of each partition is still limited to six.

Because of (3.4), for larger values of m we expect to see 12 pentagons and m − 12 hexagons with

the pentagons clustered in the higher curvature regions.

On the torus, example (T), the situation is very different. For m ≤ 6, we have very structured

partitions which reflect the symmetry of the surface. For the case of m = 5, we see all triple

junctions occur in the center of the torus. For m > 6, we have partitions with more that 6 sides.

The formula (3.4) tells us that the numbers of partitions with more than six sides must balance the

number of partitions with less than six sides. For the cases we see, the partitions with more than six

sides cluster in the center and those with less than six sides cluster on the exterior. As we increase m

the see an increase in the number of hexagons, and it is not clear whether the number of partitions

with different to six sides will decrease. For smaller area partitions, for larger m, the curvature of

the surface is less important and the problem becomes more like the flat problem, so we expect that

for large values of m, we will see a preponderance of hexagons.

4 Discussion

We have explored an eigenvalue partition problem on three different surfaces and for many differ-

ent numbers of partitions. We have observed good convergence both with respect to discretisation

parameters and also with respect to our choice of regularisation. From our results we make the

following conjectures:

1. The optimal partition consists of curvilinear polygons whose edges have zero geodesic cur-

vature.

2. Partitions either meet along edges or at triple junctions where edges meet at equal angles.

3. For genus zero surfaces, for large values of m the optimal partition consists of 12 pentagons

and m − 12 hexagons. If the curvature of the surface varies, the pentagons will be located

where the curvature is highest.
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Figure 11: Plots of one partition and κg for m = 8 for Example 1 (left) and m = 6 for Example 2

(right). The value of uε,h
i is shown on a black to white scale and κg is plotted on the curve {vε,h

i = 0}
on a black to orange scale.

4. For genus one surfaces, for large values of m the optimal partition has a preponderance of

hexagons.
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