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Abstract

In this paper, we propose a novel approach to model route choice behaviour in a

tolled road network with a bi-objective approach, assuming that all users have two

objectives: (1) minimise travel time; and (2) minimise toll cost. We assume fur-

ther that users have different preferences in the sense that for any given path with

a specific toll, there is a limit on the time that an individual would be willing to

spend. Different users can have different preferences represented by this indiffer-

ence curve between toll and time. Time surplus is defined as the maximum time

minus the actual time. Given a set of paths, the one with the highest (or least neg-

ative) time surplus will be the preferred path for the individual. This will result

in a bi-objective equilibrium solution satisfying the time surplus maximisation bi-

objective user equilibrium (TSmaxBUE) condition. That is, for each O-D pair, all

individuals are travelling on the path with the highest time surplus value among all

the efficient paths between this O-D pair.
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We show that the TSmaxBUE condition is a proper generalisation of user equi-

librium with generalised cost function, and that it is equivalent to bi-objective user

equilibrium. We also present a multi-user class version of the TSmaxBUE condi-

tion and demonstrate our concepts with illustrative examples.

Keywords: Traffic assignment, route choice, equilibrium problem,

multi-objective optimisation

1. Introduction1

The last stage of a conventional four-stage transport planning model, traffic2

assignment, is essentially modelling the route choice behaviour of travellers and3

their interactions. Whether a traffic assignment model can realistically represent4

travel behaviour is, therefore, dependent on the behavioural assumptions behind5

the route choice model. In tolling analysis, there are basically two approaches6

in practice as described in Florian (2006): (1) models based on generalised cost7

path choice; and (2) models based on explicit choice of tolled facilities. These8

two approaches follow the principles of the two classic traffic assignment models9

in the literature, namely, the user equilibrium (UE) model and the stochastic user10

equilibrium (SUE) model.11

Wardrop (1952) defined user equilibrium as:12

“No user can improve his travel time by unilaterally changing routes.”13

This is known as Wardrop’s first principle which has two key assumptions:14

(1) all users have the same objective, i.e. to minimise travel time or generalised15

cost; and (2) users have perfect knowledge of the network, i.e. they know the travel16

times that would be encountered on all available routes between their origin and17

destination. The second assumption is considered to be a strong assumption. Dial18
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(1971) was the first to introduce a probabilistic assignment concept to address this19

problem. He proposed a probabilistic multipath traffic assignment model based on20

the following functional principles:21

1. The model gives all efficient paths between a given origin and destination a22

non-zero probability of use, while all inefficient paths have a probability of23

zero.24

2. All efficient paths of equal length have an equal probability of use.25

3. When there are two or more efficient paths of unequal length, the shorter has26

the higher probability of use.27

The meaning of ‘efficient’ paths in Dial’s model is defined as a path that does28

not backtrack, i.e. as it progresses from node to node, it always gets further from29

the origin and closer to the destination. Every link in an efficient path has its30

initial node closer to the origin than its final node and its final node closer to the31

destination than its initial node. In this manner, the set of ‘efficient’ paths can be32

considered as the reasonable choices. By introducing diversion curves, Dial (1971)33

incorporated the logit function into his model which enables the solution to be34

expressed in explicit form. However, congestion effects have not been considered35

in this model as link travel time is assumed to be constant.36

SUE was developed by Daganzo and Sheffi (1977) based on variation of the37

first assumption of Wardrop’s first principle by considering the objective as min-38

imising the perceived cost which is modelled as a stochastic function rather than39

the static generalised cost function. Daganzo and Sheffi (1977) defined stochastic40

user equilibrium as:41

“No user can improve his perceived travel time by unilaterally changing routes”42
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In order to translate this SUE equilibrium condition into its mathematical def-43

inition, Daganzo and Sheffi introduced a user’s perceived travel time function on44

route k, T̃k, which has two components as follows:45

T̃k = Tk + ǫk, (1)

where Tk is the systematic component which is the measured travel time on route46

k; and ǫk is an error term representing the random component which varies from47

user to user.48

Here ǫ is randomly distributed with a mean value of zero. Thus,49

E
(

T̃k

)

= Tk. (2)

Every user then evaluates the travel time on all routes and selects the route kmin50

with the minimum perceived travel time, i.e.51

T̃kmin
≤ T̃k for all k 6= kmin. (3)

The mathematical conditions for SUE within this modelling framework are52

formally defined in Daganzo and Sheffi (1977). The assumption on the distribution53

of the error term, ǫk, varies. The most commonly used distributions are Gumbell54

and normal distributions, known as the logit and probit models, respectively. The55

assumption of the error term following Gumbell/normal distributions is the key56

linkage of Dial (1971)’s probabilistic model to Discrete Choice Models, which led57

to further development of SUE traffic assignment models that appeared later in the58

literature such as Fisk (1980)’s logit-based model and Sheffi and Powell (1982)’s59

probit model. It is important to note that in order to take congestion effects into60

consideration, travel time should be flow-dependent. Fisk (1980) was the first to61

consider the effect of congestion in a stochastic manner, as travel time is considered62

to be independent of traffic flow in the previous models (Daganzo and Sheffi, 1977;63

Dial, 1971).64
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A disadvantage of the probit model is well known as the intensive computa-65

tional effort requiring Monte Carlo or other numerical techniques (Maher, 1992;66

Rosa and Maher, 2002). Logit models have their weaknesses but a very impor-67

tant advantage of having a closed form solution. Thus, the most commonly used68

stochastic traffic assignment model for toll analysis is a logit-based model as de-69

scribed in Florian (2006). The key weakness of the most commonly used logit-70

based model is the validity of the property of independence of irrelevant alterna-71

tives (IIA), which can be stated as:72

“Where any two alternatives have a non-zero probability of being chosen, the ratio73

of one probability over the other is unaffected by the presence or absence of any74

additional alternative in the choice set (Luce and Suppes, 1965).”75

When it comes to modelling path choice, the IIA property can be easily vi-76

olated because of extensive overlapping of possible paths in a choice set for the77

same origin-destination (OD) pair. Over the last two decades, there were extensive78

developments in stochastic route choice models trying to address this weakness.79

Prashker and Bekhor (2004) provide a comprehensive review of the developments.80

Since the perceived cost function has two components as shown in Equation (1),81

this problem can be addressed by tackling either the systematic or the error com-82

ponent. In principle, the technique being used is to make adjustments to these two83

components such that the resulting solution reflects reality better. Prashker and84

Bekhor (2004) classified the techniques into three categories: (1) modifications85

of the basic multinomial logit (MNL) model, such as C-logit and path-size logit86

(PSL); (2) generalised extreme value (GEV) models, such as paired combinatorial87

logit (PCL) and cross-nested logit (CNL); and (3) logit kernel (LK) or mixed logit88

models. The first category adjusts the systematic component while the second and89

the third adjust the error component.90
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In this paper, we propose a novel approach to model route choice behaviour91

in a tolled network. We extend our work in Wang et al. (2010) on bi-objective92

traffic assignment to incorporate the capability to model the differences between93

individuals in terms of their willingness to pay. First of all, we assume that all94

users have two objectives: (1) to minimise travel time; and (2) to minimise toll95

cost. Users are all rational in the sense that given a choice set, they will only choose96

one of the efficient paths. Efficient paths are defined as the set of paths for each O-97

D pair for which neither time nor travel time can be improved without worsening98

the other (Wang et al., 2010). According to this definition, at equilibrium, all the99

used paths between a given O-D pair are efficient. We define bi-objective user100

equilibrium (BUE) as follows:101

“Under bi-objective user equilibrium conditions traffic arranges itself in such a102

way that no individual trip maker can improve either his/her toll or travel time or103

both without worsening the other objective by unilaterally switching routes.”104

Dial (1979) is one of the first to introduce multiple objectives in traffic assign-105

ment. According to BUE, when we consider time and toll cost separately, there is106

no need to add them up as generalised cost. However, in Dial’s model (Dial, 1979,107

1996, 1997), a simplification was made by adding time and toll cost in a linear108

choice function, which is essentially the same as the generalised cost function, but109

with a probabilistic component by assuming that the value-of-time (VOT) follows110

a certain probability density function. As discussed in Wang et al. (2010), Dial’s111

approach might miss out some efficient paths. In Wang et al. (2010); Raith et al.112

(2013), we developed heuristics to find BUE solutions without missing efficient113

paths. It is clear that according to the BUE definition, there would be many possible114

equilibrium solutions rather than one as in conventional static UE. Given there are115

so many possible equilibrium solutions satisfying the BUE condition, we must fur-116

6



ther develop this model to incorporate the consideration of individual preferences117

in order to be able to replicate their route choice behaviour more realistically.118

There is no doubt that route choice behaviour in a tolled road network is119

stochastic in nature since individuals might not choose the shortest path for all120

sorts of reasons and the willingness to pay would vary among individuals. As dis-121

cussed above, probabilistic models such as Dial (1979)’s or the logit-based SUE122

traffic assignment models such as Fisk (1980)’s all possess some deficiencies. The123

philosophy behind the proposed model is to overcome these difficulties, including124

the possibility of missing efficient paths in Dial (1979)’s model and the limitations125

induced by the IIA property of the logit-based SUE traffic assignment model, by126

introducing an indifference function which can vary between individuals with no127

restrictions. As with any models, there are, however, some key assumptions to be128

made:129

1. Users are all rational in the sense that they will only choose one of the effi-130

cient paths.131

2. Users have different preferences which can be represented by an indifference132

function between toll and time. Users’ behaviour as represented by this in-133

difference function is rational, i.e. the maximum time that a user is willing134

to spend will always be shorter for higher toll.135

3. Preferences among users vary in the sense that their preferred paths can be136

different, even though they are considering the same choice set.137

4. Users have perfect knowledge of the network, as in standard user equilibrium138

models.139

With this new approach, each individual will only choose from a reasonable140

choice set and choose according to his/her own preference.141
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This paper is organised as follows. In Section 2, we review standard user equi-142

librium for traffic assignment. In Section 3, we introduce bi- and multi-objective143

user equilibrium and investigate their relationship with single objective user equi-144

librium. Section 4 is devoted to the description of our new concept of time surplus145

maximisation bi-objective user equilibrium. We show that this generalises user146

equilibrium based on generalised cost functions and prove its equivalence to bi-147

objective user equilibrium. Section 5 provides an illustrative example of the idea,148

whereas Section 6 extends the idea to multiple user classes, which is then illus-149

trated in Section 7. Finally, Section 8 discusses the importance of the findings in150

this paper and Section 9 concludes with an outlook for future research.151

2. User Equilibrium152

In this section we introduce equilibrium models of traffic assignment. Let G =

(N,A) denote a (transportation) network, where N is a set of |N | nodes and A ⊂

N ×N is a set of |A| arcs or links. Moreover, let Z ⊂ N ×N be a set of origin-

destination pairs (O-D pairs) and for all p ∈ Z, let Dp denote the demand for travel

between the origin and destination of O-D pair p. Equilibrium models attempt to

determine the amount of traffic fa on all links a ∈ A under some assumptions on

the behaviour of road users. One of these assumptions is that road users choose the

path k∗ between their origin and destination that minimises a cost function Ck:

k∗ = argmin{Ck : k ∈ Kp},

where Kp is the set of all simple paths from the origin of O-D pair p to its destina-153

tion.154

To formalise the idea of user equilibrium, let δka be an indicator with δka = 1 if155

and only if link a is contained in path k and 0 otherwise. Then fa =
∑

p∈Z

∑

k∈Kp
156

δkaFk, where Fk is the flow on path k ∈ Kp. The cost Ck(F) of path k may depend157
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on the entire vector F = (F1, . . . , F|K|) of flows on all paths k ∈ K := ∪p∈ZKp.158

The user equilibrium condition of Wardrop’s first principle states that the cost of all159

used paths is equal and less than that which would be experienced by a single user160

on any unused route. It is well known that this principle assumes that all users are161

the same in that they want to minimise the cost Ck and that all users have perfect162

information about the cost function, see e.g. Sheffi (1985).163

Let Up := mink∈Kp
Ck(F) denote the minimum cost of any path for O-D164

pair p ∈ Z. Then, following e.g. Florian and Hearn (1995), the user equilibrium165

condition can be written mathematically as follows: Path flow vector F
∗ is an166

equilibrium flow if F∗ satisfies conditions (4) – (8):167

F ∗
k (Ck(F

∗)− Up) = 0 for all k ∈ Kp and all p ∈ Z, (4)

Ck(F
∗)− Up ≥ 0 for all k ∈ Kp and all p ∈ Z, (5)

∑

k∈Kp

F ∗
k −Dp = 0 for all p ∈ Z, (6)

F ∗
k ≥ 0 for all k ∈ K, (7)

Up ≥ 0 for all p ∈ Z. (8)

Equation (4) states that if flow on path k is positive then the cost Ck(F
∗) has to168

be minimal, whereas if Ck(F
∗) > Up then the flow on path k must be 0. Equation169

(5) says that all path costs are greater than or equal to the minimum. Equation170

(6) guarantees that demand is satisfied, whereas equations (7) and (8) postulate171

non-negativity of flow and cost. For future use, let us introduce172

Ω := {F : F satisfies (6)− (7)} (9)

to denote the set of all feasible path flow vectors F.173

Existence of a solution of the network equilibrium model (4) – (8) is guaranteed174

if the path cost functions Ck(F) are all positive and continuous. In addition, for175
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uniqueness of the solution, Ck(F) must be strictly monotone (Florian and Hearn,176

1995).177

The most important cost function is travel time. In this paper we use the com-178

mon Bureau of Public Roads (1964) function to model the relation between travel179

time and traffic flow on any link a ∈ A, i.e.180

ta (fa) = t0a

[

1 + α

(

fa
Ca

)β
]

, (10)

where t0a is the free-flow travel time on link a, Ca is the practical capacity of link a181

in vehicles per time unit, and α, β are function parameters. If the cost function Ck182

considered in (4) – (8) is path travel time, then183

Ck(F) = Tk(F) :=
∑

a∈k

ta(fa) (11)

for all k ∈ K.184

Conventional traffic assignment assumes that path cost functions Ck(F) are185

additive and separable. Additivity means that Ck(F) =
∑

a∈k ca(f) can be written186

as the sum of link cost functions ca(f), where f := (f1, . . . , f|A|) is the link flow187

vector. Separability means that the link cost functions ca(f) depend only on the188

flow fa on link a, i.e. ca(f) = ca(fa).189

Under these assumptions it is well known (Beckmann et al., 1956) that the190

network equilibrium model (4) – (8) can be reformulated as a mathematical pro-191

gramme192

min
∑

a∈A

∫ fa

0
ca(x)dx, (12)

subject to
∑

k∈Kp

Fk = Dp for all p ∈ Z, (13)

Fk ≥ 0 for all k ∈ K, (14)

fa −
∑

p∈Z

∑

k∈Kp

δkaFk = 0 for all a ∈ A. (15)
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Conventional traffic assignment based on travel time can, therefore, be solved193

by algorithms for optimising a convex function over a polyhedron. The first algo-194

rithm used for traffic assignment is the Frank-Wolfe algorithm (Frank and Wolfe,195

1956) but many others such as path equilibration (Dafermos and Sparrow, 1969),196

gradient projection (Jayakrishnan et al., 1994) and projected gradient (Florian et al.,197

2009) methods have been proposed.198

Many researchers have suggested more general cost functions than travel time,199

see e.g. Chen et al. (2010); Larsson et al. (2002). Most often Ca(F) takes the200

form of a generalised cost function that incorporates a linear combination of travel201

time and a monetary component (Dial, 1996; Leurent, 1993). A generalised cost202

function is of the form203

Ck(F) = Mk(F) + αTk(F), (16)

where Mk(F) is the monetary cost associated with path k. This may be composed204

of different factors such as toll cost and vehicle operating costs. In addition, α205

is a value of time, i.e. it converts the travel time Tk(F) into a monetary value.206

To solve traffic assignment problems with generalised cost function (16), one can207

apply the same algorithms as for conventional traffic assignment, depending on the208

properties of function Mk(F). We note, however, that if Ck(F) is not additive, it209

is necessary to calculate shortest paths based on non-additive costs (Gabriel and210

Bernstein, 1997), a research topic in its own right.211

3. Bi-Objective User Equilibrium212

The generalised cost function (16) combines a monetary component and travel213

time into a single function via value of time α. It is reasonable to assume that not214

all users will have the same value of time, so that a user will choose the route that215

minimises the generalised cost (16) with a user specific value of time. Dial (1979)216
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realised this and interpreted the problem as bi-objective problem: Users would217

be wanting to minimise both travel time and monetary cost. He observed that at218

equilibrium, all used path will be efficient.219

Definition 1. Let F ∈ Ω be a feasible flow and Mk(F) and Tk(F) be the monetary220

and time components of the cost of path k for all k ∈ Kp.221

1. Path k is efficient, if there is no path k′ ∈ Kp such that Mk′(F) ≤ Mk(F)222

and Tk′(F) ≤ Tk(F) with at least one inequality being strict.223

2. If Mk′(F) ≤ Mk(F) and Tk′(F) ≤ Tk(F) with at least one strict inequality224

then path k′ dominates path k and cost vector (Tk′(F),Mk′(F)) dominates225

(Tk(F,Mk(F)).226

Dial (1979) describes this idea and an algorithm to find the efficient paths227

which makes use of the generalised cost function (16) with flow independent ob-228

jectives. Leurent (1993) applies the idea in traffic assignment and designs an algo-229

rithm to compute the equilibrium in a tolled road network with toll cost and time230

as the objectives, where only time is flow dependent. As in Dial (1979), Leurent231

(1993) assumes that users make their route choice decisions based on a generalised232

cost function and a continuous value of time distribution is considered. Dial (1996,233

1997) further develops his idea of 1979 into more efficient algorithms to find the234

efficient paths and to solve the bi-objective equilibrium problem in which both235

criteria can be flow dependent.236

As we have demonstrated in Wang et al. (2010), and as the example in Section237

5 shows, the procedures of Dial (1997) and Leurent (1993) will only compute238

equilibrium flows that allow positive flows on a subset of all efficient paths, namely239

those that are shortest path with respect to the generalised cost function (16) for240

some positive value of α. Since all efficient paths can be rational route choices,241

the work of Leurent and Dial appears to be limited by the use of the functional242
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form (16) and its underlying assumption of an additive utility function. Removing243

this form and allowing for more than two objectives one arrives at the definition of244

multi-objective user equilibrium.245

Definition 2. Let G = (N,A) be a network, Z ⊂ N×N be a set of O-D pairs and246

for all p ∈ Z, let Dp be the demand of O-D pair p. Let C
(i)
k (F), i = 1, . . . , r be r247

cost functions of path k and let Ck(F) denote the cost vector of path k. Feasible248

flow F
∗ ∈ Ω is a multi-objective equilibrium flow, if whenever Ck(F

∗) dominates249

Ck′(F
∗) for k, k′ ∈ Kp for any p ∈ Z then Fk′ = 0.250

Definition 2 is the multi-objective generalisation of the equilibrium conditions251

(4) – (8). Only efficient paths can carry positive flow, whereas dominated paths252

have zero flow. If r = 2, we talk about bi-objective equilibrium flow. In the case of253

r = 1, Definition 2 reduces to the standard equilibrium condition. In Wang et al.254

(2010) we have shown that even for the case r = 2 and even if both objectives255

are separable and additive, and one of the objectives does not depend on flow, the256

multi-objective user equilibrium condition is not equivalent to a multi-objective257

version of Beckmann’s formulation (12) – (15). A discussion of the similarities258

and differences of multi-objective equilibrium, optimisation, and vector inequality259

problems is provided in Raith and Ehrgott (2011).260

Moreover, there are usually infinitely many flow vectors F ∈ Ω that satisfy the261

condition of Definition 2.262

The concept of multi-objective user equilibrium therefore provides a general263

framework for investigating equilibrium flows in the presence of multiple objec-264

tives. Under the assumption that the objectives considered are those relevant for265

users’ route choice, one of these multi-objective equilibrium solutions will be re-266

alised in practice. Which one that is will depend on user preferences and trade-offs267

between the objectives. The simplest model of user preferences is the additive form268

13



as shown in (16). In this paper, we develop a more general model. But before we269

proceed to this model, we formally show that the multi-objective user equilibrium270

is a proper generalisation of the single objective model with generalised cost (16).271

Proposition 1. Let G = (N,A) be a network, Z ⊂ N ×N be a set of O-D pairs272

and for all p ∈ Z, let Dp be the demand of O-D pair p. Let r = 2. Let F∗ be273

an equilibrium flow with respect to generalised cost function C(F) := C(1)(F) +274

αC(2)(F) for some positive number α. Then F
∗ is also a bi-objective equilibrium275

flow for objective functions C(1)(F) and C
(2)(F).276

PROOF. Assume the contrary. Then there exists a p ∈ Z and two paths k, k′ ∈ Kp

with Fk, Fk′ > 0 such that Ck′(F) dominates Ck(F). Then, because α > 0, it

holds that

C
(1)
k′ (F) + αC

(2)
k′ (F) < C

(1)
k (F) + αC

(2)
k (F),

contradicting the equilibrium condition for the generalised cost function.277

In fact, with the same argument, it is possible to show a more general result.278

Theorem 1. Let G = (N,A) be a network, Z ⊂ N ×N be a set of O-D pairs and279

for all p ∈ Z, let Dp be the demand of O-D pair p. Let g : Rr → R be a strictly280

increasing function in all r arguments. Let F∗ be an equilibrium flow with respect281

to generalised cost function C(F) := g(C(F)). Then F
∗ is also a multi-objective282

equilibrium flow for objective functions C(1)(F), . . . , C(r)(F).283

In Section 4, we will address the case of equilibrium problems with r = 2284

objectives, where C
(1)
k (F) = Tk(F) and C

(2)
k (F) = Mk(F) and the monetary285

objective consists of exogenously defined tolls. We investigate bi-objective user286

equilibrium for these functions and a specific nonlinear function to combine them.287
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4. The Time Surplus Maximisation Model288

In this section, we develop the time surplus maximisation equilibrium model289

as a new model for route choice behaviour in tolled road networks. From now on,290

we will consider two objective functions, namely, travel time C
(1)
k (F) = Tk(f) =291

∑

a∈k ta(xa), where ta(xa) is the travel time function (10) and toll C
(2)
k (F) =292

Mk(f) = τk =
∑

a∈k τa, with exogenously defined link tolls τa. Hence, both293

path objectives (travel time and toll) are additive, link travel time and link toll are294

separable, and link toll does not depend on flow.295

4.1. The Indifference Function296

To start with, we assume that given an O-D pair p, each user has an indifference297

function between toll and time. For any given path k with a specific toll, there is a298

limit on the time that a user would be willing to spend. We model this indifference299

function as a function Tmax
p : R → R that is strictly decreasing, i.e. Tmax

p (τ1k ) <300

Tmax
p (τ2k ) if τ1k > τ2k . This takes into account that users would expect to spend301

less time in traffic if they need to pay a higher toll. An example of an indifference302

curve is shown in Figure 1.303

Time surplus is defined as the time that the user would be willing to spend304

minus the actual travel time. The time surplus for a path can be positive or nega-305

tive. Given a choice set of paths, the one with the highest time surplus will be the306

preferred path for the individual.307

A positive time surplus value can be viewed as virtually the pleasure for an308

individual obtained from choosing this path, whereas a negative time surplus value309

can represent an unfavourable choice and the magnitude of this path being disliked.310

One would expect that given a set of efficient paths with both positive and negative311

time surplus values, only the one with positive time surplus values will be consid-312

ered. For example, an individual with an indifference curve as shown in Figure 1313
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Figure 1: An indifference curve between time and toll.

will only consider the two paths that have positive time surplus, i.e the ones with314

τk = 20 and the one with τk = 0. Among these two, the one with τk = 20 is315

considered more attractive as the time surplus value is higher.316

There is, however, the possibility that all the efficient paths have negative time317

surplus values for a user who is both unwilling to pay and to spend time. In that318

case, we will have to assume either this user would not travel at all or will have to319

make a choice based on the negative values. In this paper, we assume that the total320

demand is inelastic and hence the user will choose the path with the least negative321

time surplus value.322
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4.2. The Time Surplus Maximisation BUE Condition323

Given the indifference curves Tmax
p for all p ∈ Z, we define time surplus for324

path k ∈ Kp as325

TSk(F) := Tmax
p (τk)− Tk(f) = Tmax

p

(

∑

a∈k

τa

)

−
∑

a∈k

ta(fa). (17)

.326

We note that function TSk(F) is not additive because Tmax
p (τ) is only defined327

for OD pair p but neither for paths nor for links and, therefore, cannot be written as328

the sum of link indifference functions. Moreover, Tmax
P may be non-linear. Hence,329

all equilibrium models using this function will be path based. Assuming that users330

choose the path k∗ with maximum time surplus, i.e.331

k∗ = argmin{TSk(F) : k ∈ Kp}, (18)

we can now formulate the Time Surplus Maximisation Bi-objective User Equilib-332

rium (TSmaxBUE) condition.333

Definition 3. Path flow vector F∗ is called a time surplus maximisation bi-objecti-334

ve user equilibrium flow if Fk > 0 ⇒ TSmax
k (F∗) ≥ TSmax

k′ (F∗) for all k, k′ ∈335

Kp, or equivalently, if Tmax
k (F) > TSmax

k′ (F) ⇒ Fk′ = 0.336

In words, the TSmaxBUE condition states that337

“Under the Time Surplus Maximisation equilibrium condition traffic arranges338

itself in such a way that no individual trip maker can improve his/her time surplus339

by unilaterally switching routes,”340

or alternatively341

“Under the Time Surplus Maximisation equilibrium condition all individuals are342

travelling on the path with the highest time surplus value among all the efficient343

paths between each O-D pair.”344
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Next, we show that the TSmaxBUE model is a special case of the general multi-345

objective user equilibrium model of Definition 2, but that it is more general than346

the single objective user equilibrium with generalised cost function (16) based on347

value of time.348

Theorem 2. Let G = (N,A) be a network, Z ⊂ N × N be a set of O-D pairs349

with demand Dp > 0 for all p ∈ Z. Let τa denote the toll of link a and ta(fa) be350

the travel time function of link a. Assume that F∗ is a TSmaxBUE flow. Then F
∗ is351

also a bi-objective equilibrium flow with respect to the objectives C(1)(F) = Tk(f)352

and C(2)(F) = τk.353

PROOF. We have to show that all paths k with F
∗
k > 0 are efficient paths with354

respect to C(1) and C(2). So assume that F∗ is such that there is some p ∈ Z and355

k, k′ ∈ Kp such that C(Fk) dominates C(F )∗k′ . That is, Tk(F
∗
k ) ≤ Tk′(F

∗
k′) and356

τk ≤ τk′ with one strict inequality.357

Then we have358

TSk(F
∗
k ) = Tmax

p (τk)− Tk(F
∗
k ) > Tmax

k′ (τk′)− Tk′(F
∗
k′) = TSk′(Fk′) (19)

because of the dominance and because TSmax is a strictly decreasing function.359

Clearly (19) contradicts the assumption that F∗ is a TSmaxBUE flow.360

It is even possible to prove the converse of Theorem 2.361

Theorem 3. Let G = (N,A) be a network, Z ⊂ N×N be a set of O-D pairs with362

demand Dp > 0 for all p ∈ Z. Let τa denote the toll of link a and ta(fa) be the363

travel time function of link a. Assume that F∗ is a bi-objective equilibrium flow,364

with respect to objectives C(1)(F) and C(2)(F) as in Theorem 2. Then there exists365

an indifference function Tmax such that F∗ is also a TSmaxBUE flow.366
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PROOF. Let F∗ be a bi-objective equilibrium flow. According to Definition 2,367

all paths with positive flow are efficient. Let K∗
p be the set of all efficient paths368

for O-D pair p ∈ Z. Then for paths k, k′ ∈ K∗
p we have that τk > τk′ implies369

Tk(Fk) < Tk′(Fk′) and can therefore order the paths in K∗
p = {1, . . . |K∗

p |} in370

such a way that τk > τk′ and Tk < Tk′ if and only if k > k′.371

In case there is no efficient path with τk = 0 or τk = max{τk : k ∈ K}372

we add (one of) the points (τ0 = 0, T0 = max{Tk(Dp) : k ∈ K, p ∈ Z})373

and (τ|K∗
p |+1 = max{τk : k ∈ K}, T|K∗

p |+1 = 0) to the sequence (τk, Tk). We374

define Tmax(τ) as the uniquely determined piecewise linear function through the375

points (τk, Tk), k = 0, . . . |K∗
p | + 1. Clearly Tmax(τ) is strictly decreasing and376

non-negative.377

Now observe that for F
∗ we have that TSk(F

∗) = 0 for all efficient paths378

k ∈ K∗
p . It remains to show that there does not exist a path with positive time379

surplus. To see this, assume that l ∈ Kp is such a path. TSl(F
∗) > 0 implies380

that Tl(F
∗
l ) < TSmax(τl). Then either (τl, Tl(F

∗
l )) < (τk, Tk(F

∗
k )) for some381

k ∈ K∗
p , contradicting the definition of K∗

p or there are k1, k2 ∈ K∗
p such that382

τk1 < τl < τk2 and Tk1(F
∗
k1
) > Tl(F

∗
l ) > Tk2(F

∗
k2
). In this case, path l does not383

dominate nor is it dominated by any path k in K∗
p . Hence path l is itself efficient,384

therefore used in the definition of Tmax, which implies TSl = 0.385

Theorems 2 and 3 imply that the time surplus maximisation equilibrium con-386

cept is equivalent to the bi-objective user equilibrium, although, of course, the387

function TSmax is in general not known beforehand. We notice that this function388

is piecewise linear, non-negative and continuous, but in general neither convex nor389

concave. Concavitiy/convexity of the indifference curve TSmax indicates willing-390

ness/reluctance to pay, so that TSmaxBUE equilibrium flows with concave/convex391

indifference curves will form a subset of all bi-objective equilibrium flows that is392
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more realistic than arbitrary decreasing indifference curves.393

The next result shows that every equilibrium flow with respect to generalised394

cost function C(F) = τk + αTk(Fk), where α > 0 is a positive constant, is also a395

TSmaxBUE flow.396

Theorem 4. Let G = (N,A) be a network, Z ⊂ N × N be a set of O-D pairs397

with demand Dp > 0 for all p ∈ Z. Let τa denote the toll of link a and ta(fa)398

be the travel time function of link a. Assume that F∗ is an equilibrium flow with399

respect to the generalised cost objective C(F) = τk + αTk(f). Then there exists400

an indifference curve Tmax such that F∗ is also a TSmaxBUE flow.401

PROOF. Let F∗ be an equilibrium flow with respect to C and for all p ∈ Z define402

Tmax
p (τ) := a0 − 1

α
τ for some a0 > 0, e.g a0 = max{Tk(Dp) : k ∈ Kp}.403

We need to show that for any pair of paths k and k′, with time surplus TSk(F)404

defined using the just defined functions Tmax
p (τ), TSk(Fk) > TSk′(Fk′), implies405

that Fk′ = 0.406

TSk(Fk) > TSk′(Fk′) ⇔

a0 −
1

α
τk − Tk(Fk) > a0 −

1

α
τk′ − Tk′(Fk′) ⇔

1

α
τk′ + Tk′(Fk′) >

1

α
τk + Tk(Fk) ⇔

τk′ + αTk′(Fk′) > τk + αTk(Fk) ⇔

C(Fk′) > C(Fk)

Hence, the equilibrium condition for generalised cost function C implies that Fk′ =407

0.408

The proof of Theorem 4 reveals that any generalised cost equilibrium flow is409

a special case of a TSmaxBUE flow, with the choice of a linear indifference curve410

Tmax. Notice that only the slope 1/α of this curve is important, but not its axis411
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intercept a0. In the example of Section 5, we will see that the converse of Theorem412

4 does not hold. We can therefore summarise the relationships between generalised413

cost equilibrium, time surplus maximisation equilibrium and bi-objective equilib-414

rium in Figure 2.415

TSmaxBUE BUE
Generalised 

Cost UE

Theorem 2 

Theorem 3 

Theorem 4 

Figure 2: The relationship between equilibrium concepts discussed in this paper.

The proof of Theorem 2 shows that the time surplus of a dominated path is416

never better than that of any efficient path dominating it, we only include efficient417

paths in the choice set which gives us a reasonable choice set. We also note that the418

time surplus maximisation BUE model basically follows similar functional princi-419

ples as outlined in Dial (1971).420

1. Traffic will only be assigned to efficient paths. Note that we define efficient421

paths differently but basically the meaning of our definition also identifies422

the set of reasonable choices.423

2. All dominated (inefficient) paths will have zero probability of use.424

3. If there are two or more efficient paths, the one with the highest time surplus425

will be chosen.426

We believe that single objective equilibrium models based on generalised cost427

functions of the form (16) are restrictive, because they essentially imply, as Theo-428

rem 4 shows, a linear indifference curve between toll and time. Moreover, (Dial,429

1997) and (Leurent, 1993) in fact violate the first functional principle above, be-430

cause some efficient paths in the sense of Definition 1 will always have zero flow.431
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It is more realistic to assume that there will be users who are willing to pay to en-432

sure short travel times, whereas others may be reluctant to pay any tolls, and would433

accept high travel times in order to avoid tolls. The latter would have convex indif-434

ference curves, while the former users’ indifference curves will be concave. Hence,435

the variability between individuals in terms of willingness to pay is modelled by436

the indifference function which leads to their differences in behaviour. We can now437

classify the various types of equilibrium flow as in Figure 3. Generalised user equi-438

librium flows with cost function (16) are TSmaxBUE equilibrium flows with linear439

indifference curves. More general TSmaxBUE equilibrium flows are generated by440

convex or concave indifference curves, whereas all bi-objective user equilibrium441

flows are TSmaxBUE equilibrium flows with arbitrary strictly decreasing indif-442

ference curves. The proof of Theorem 4 shows that such a curve may be neither443

convex nor concave.444

ΩBUE

TSmaxBUE

with convex

or concave

indifference curves

UE

Figure 3: Several classes of equilibrium flows.

We introduce the TSmaxBUE concept with multiple user classes in Section 6,445

but first, we briefly address solving the TSmaxBUE traffic assignment problem and446
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present a small illustrative example.447

In order to be able to solve the TSmaxBUE problem, we use the framework of448

a generalised time function as introduced in Larsson et al. (2002). Larsson et al.449

(2002) consider time based traffic equilibrium, where users minimise travel time450

Tk and monetary cost τk via a a generalised time function451

θk = Tk + g(τk), (20)

where g : R → R is a nonlinear function, called the time equivalent of money.452

Larsson et al. (2002) showed that the equilibrium problem with generalised time453

(20) is equivalent to an optimisation problem.454

We introduce the following function g : R → R:455

g(x) = h(0)− h(x), (21)

where h : R → R is a strictly decreasing function on R
+
0 . Clearly, g is a strictly456

increasing function of x on R
+
0 . We substitute Tmax for h and define the path cost457

function458

Ck(F) :=
∑

a∈k

ta(fa) + g(τk) =
∑

a∈k

ta(fa) + Tmax(0)− Tmax(τk). (22)

We observe that because Tmax is a strictly decreasing function of τk, max-459

imising time surplus is equivalent to minimising Ck. Moreover, Ck(F) is positive460

because Tmax(τ) > 0 for any τ ≥ 0 and because travel times are positive. Path461

cost function Ck(Fk) in equation (22) is therefore a generalised time function of462

form (20), and we can apply the results of Larsson et al. (2002) and formulate463

the time surplus maximisation equilibrium problem as a single objective equilib-464

rium problem with generalised time function (22). Applying the results of Larsson465

et al. (2002), it follows that this equilibrium problem is equivalent to the optimisa-466

tion problem (23) – (26), which under our assumptions satisfies the conditions for467
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unique link flow solutions in Larsson et al. (2002).468

min
∑

a∈A

fa
∫

0

ta(x)dx+
∑

p∈Z

∑

k∈Kp

Fkg(τk) (23)

∑

k∈Kp

Fk = Dp for all p ∈ Z, (24)

Fk ≥ 0 for all k ∈ K, (25)

fa −
∑

p∈Z

∑

k∈Kp

δkaFk = 0 for all a ∈ A. (26)

In Section 5, we provide an example illustrating the time surplus maximisation469

BUE concept.470

5. A Four Node Example471

5.1. Network Specification472

Now we consider a four node network as shown in Figure 4 with link charac-473

teristics as shown in Table 1.

r

a

b

s

1

2

3

4

5 6

7

8

Tolled links

Toll-free links

Figure 4: A four node network.
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Table 1: Link characteristics of the four node network.

Link Type Distance Free-flow travel time Toll Capacity

(km) (mins) ($) (veh/hr)

1 Expressway 30 18.0 20 3600

2 Highway 30 22.5 15 3600

3 Arterial 10 12.0 1 1800

4 Arterial 20 24.0 0 1800

5 Arterial 2 2.4 0 1800

6 Arterial 5 6.0 0 1800

7 Arterial 20 24.0 0 1800

8 Arterial 10 12.0 1 1800

The single O-D pair is (r, s) and there are only six feasible routes in this net-475

work. The routes and their characteristics are listed in Table 2. Note that Route 1476

and Route 2 are the direct routes, with Route 1 being the fastest with the highest toll477

while Route 6 is the only toll-free route and the slowest. The total demand from r to478

s is fixed at 10,000 vehicles per hour which is just a little bit lower than the network479

corridor capacity of 10,800 vehicles per hour. In order to define the indifference480

curve, we only need to specify the values of TSmax(τk) for τk = 0, 1, 2, 15, 20.481

These values are shown in the last column of Table 2.482

The solution F
∗ shown in Table 3 is a TSmaxBUE solution. The values of483

travel time and toll for the four routes with nonzero flow are illustrated in Figure 5.484

As Theorem 2 states, all routes with positive flow are efficient. Toll-free Route 6485

is also efficient, but has zero flow because its time surplus, even at free-flow travel486

time is negative and less than the equilibrium value. Note that Routes 3 and 4 have487
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Table 2: Route characteristics of the four node network.

Route Path Length Free-flow Travel Time Toll Max Time

1 1 30 18.0 20 25

2 2 30 22.5 15 40

3 3− 7 30 36.0 1 50

4 4− 8 30 36.0 1 50

5 3− 5− 8 22 26.4 2 49

6 4− 6− 7 45 54.0 0 51

identical toll, travel time, and flow and, therefore, show as a single dot in Figure 5.488

Table 3: Time surplus maximisation BUE solution.

Route Flow Travel time Time Surplus

1 2384.6 18.52 6.48

2 4839.2 33.52 6.48

3 202.9 43.52 6.48

4 202.9 43.52 6.48

5 2370.4 42.52 6.48

6 0.0 54.00 -3.00

We also notice that two of the efficient routes are not optimal for generalised489

cost (16) for any positive value of time. Hence, this example demonstrates that490

there are TSmaxBUE flows that are not equilibrium flows for generalised cost func-491

tions (16), even if a continuous distribution of value of time such as suggested in492

Dial (1997) is considered. Together with Theorem 4, this means that the time493
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surplus maximisation bi-objective user equilibrium is indeed more general than494

generalised cost user equilibrium.495

Figure 6 shows in addition to time and toll values the time surplus for each496

route. This is of course equal for each used route and larger than the (negative)497

time surplus of unused Route 6.498
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Non−supported efficient paths with positive flow
Efficient path with zero flow

Figure 5: Efficient paths do not all optimise generalised cost.

6. Time Surplus Maximisation User Equilibrium with Multiple User Classes499

In Section 4.2, we indicated that the concept of indifference curve that underlies500

the time surplus maximisation bi-objective user equilibrium lends itself to multi-501

user class traffic assignment. The shape of the indifference curve models users’502

attitude towards tolls in terms of willingness to pay. Users who are unwilling to503
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Figure 6: Time surplus at equilibrium.
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pay tolls would accept higher maximum travel times at zero tolls to avoid the tolls.504

The shape of their indifference curve would be convex, as in Figure 7, whereas505

users with a strong preference for short travel time would accept any toll in order506

to ensure short travel times. Their indifference curve would be concave as in Figure507

8.508
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Figure 7: A convex indifference curve.

The limiting case for users who are reluctant to pay (whose indifference curve509

is convex) is a quasi-convex function defined as in Equation (27)510

Tmax
p (τ) :=







0 if 0 < τ ≤ max{τk : k ∈ Kp}

max{Tk(Dp) : k ∈ Kp} if τ = 0,

(27)

whereas the limiting case for a user insensitive to paying tolls (with a concave511
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indifference curve) would be the quasi-concave function as in Equation (28)512

Tmax
p (τ) :=







max{Tk(Dp) : k ∈ Kp} if 0 ≤ τ < max{τk : k ∈ Kp}

0 if τ = max{τk : k ∈ Kp}.

(28)

Notice that neither Tmax
p nor Tmax

p are strictly decreasing and are, therefore,513

excluded from being used in the definition of indifference curves in Section 4.1 and514

the time surplus function (17).515

To extend Definition 3 to the case of multiple user classes, we let M be the516

finite set of user classes and denote by Dpm the demand for travel for O-D pair517

p ∈ Z and user class m, for all m ∈ M and p ∈ Z. Tmax
pm (τ) and TSkm(F) are,518

respectively, the indifference curve for user class m on origin-destination pair p519

and the time surplus function of user class m on path k ∈ Kp. Moreover, we index520

path flows by user class, i.e. Fkm denotes the flow on path k for user class m. The521

set of feasible flows for traffic assignment with multiple user classes is defined as522

ΩM :=







F ∈ R
|K|·|M | :

∑

k∈Kp

Fkm = Dpm for all p ∈ Z and m ∈ M







. (29)

Definition 4. Path flow vector F∗ ∈ ΩM is called a TSmaxBUE flow with multiple523

user classes if for all m ∈ M it holds that Fkm > 0 ⇒ TSkm(F∗) ≥ TSk′m(F∗)524

for all k, k′ ∈ Kp, or equivalently, if Tkm(F∗) > TSk′m(F∗) ⇒ Fk′m = 0.525

To find a solution of the time surplus maximisation bi-objective user equilib-526

rium model with multiple user classes, we do not extend the method proposed527

in Larsson et al. (2002) as shown in Section 4.2, Equations (23) – (26). Instead,528

because the functions Ckm defined analogously to Equation (22) are positive and529

demand is fixed and positive, we can formulate the problem as a nonlinear com-530

plementarity problem (Aashtiani, 1979; Chen et al., 2010) as shown in (30) – (35).531
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Let Upm be a variable that denotes the minimal value of Ckm for O-D pair p and532

user class m533

(Ckm(F)− Upm)Fkm = 0 for all k ∈ Kp, p ∈ Z and m ∈ M (30)

∑

k∈Kp

Fkm −Dpm = 0 for all p ∈ Z and m ∈ M (31)

Ckm(F)− Upm ≥ 0 for all k ∈ K and m ∈ M (32)

∑

k∈Kp

Fkm −Dpm ≥ 0 for all p ∈ Z and m ∈ M (33)

Fkm ≥ 0 for all k ∈ K and m ∈ M (34)

Upm ≥ 0 for all p ∈ Z and m ∈ M (35)

Following (Lo and Chen, 2000) this problem can be solved by optimising the534

gap function535

φ(a, b) =
1

2

(

√

a2 + b2 − (a+ b)
)2

(36)

applied to the NCP (30) – (35). This leads to the optmisation problem536

min
∑

m∈M

∑

p∈Z

∑

k∈Kp

1

2

[

√

F 2

km + (Ckm(Fkm)− Upm)2 − (Fkm + Ckm(Fkm)− Upm)

]

2

+
∑

m∈M

∑

p∈Z

1

2







√

√

√

√

√U2
pm +





∑

k∈Kp

Fkm −Dpm





2

−



Upm +
∑

k∈Kp

Fkm −Dpm











2

.(37)

537

We notice that, as is common with traffic assignment problems with multiple538

user classes, there is no uniqueness of link or path flows by user class. In Section 7,539

we provide an example to illustrate the time surplus maximisation user equilibrium540

with multiple user classes. We compare this to both user equilibrium based on541

linear generalised cost (16) and stochastic user equilibrium, both with multiple542

user classes defined by different values of time.543
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7. A Three Link Example544

7.1. Network Specification545

Now we consider a three link example as shown in Figure 9 with route charac-546

teristics as shown in Table 4. Note that Route 1 is the fastest with the highest toll547

while Route 3 is toll free and the slowest. The total demand from r to s is fixed at548

15,000 vehicles per hour. The link travel time is assumed to be a function of traffic549

flow following the Bureau of Public Roads (1964) function as shown in Equation550

(10). There are three user classes with different levels of willingness to pay. Their551

respective indifference curves to the toll values are shown in Table 5. Since there552

is only one O-D pair, we omit the index p hereafter.553

r s

1

2

3

Figure 9: A three link example network.

Table 4: Route characteristics of the three link network.

Route Type Distance Free flow travel time Toll Capacity

(km) (mins) ($) (veh/hr)

1 Expressway 20 12 40 4000

2 Highway 50 30 20 5400

3 Arterial 40 40 0 4800
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Table 5: Maximum time willing to spend.

Route Class 1 Class 2 Class 3

k Tmax
1 Tmax

2 Tmax
3

1 12.5 17.5 22.5

2 32.5 37.5 42.5

3 65.0 75.0 85.0

7.2. The Conventional Solutions (UE, SUE and Social Optimum) with a Single554

User Class555

Assuming demand is inelastic, i.e. all users must travel, the solution space for556

this three link network can be represented two-dimensionally as shown in Figure557

10, with contours of the total travel time. We first identified the following solutions,558

as shown in Figure 10, in the conventional way:559

1. the UE solution without tolls;560

2. the UE solution with tolls, assuming VOT being $1 per minute;561

3. the SUE solution based on a multinomial logit formulation as shown in Equa-562

tion (38)563

Pk =
eθUk

∑

a∈A

eθUa

, (38)

where Pk is the probability of path k to be chosen; Uk is the utility of564

choosing path k; Uk is a function of the travel time tk and toll τk, i.e.565

Uk = −ta (xa) × V OT − τk; and θ is the model parameter for calibration566

(assuming θ = 0.05); and567

4. the Social Optimum (SO) solution, by minimising total travel time, i.e. re-568

placing Equation (12) in the optimisation problem of Equations (12) – (15)569
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with Equation (39)570

minZ(f) =
∑

a∈A

fata. (39)

7.3. The BUE Solution Space571

In order to illustrate the BUE solution space in this three link example, we first572

identify the BUE solution space where the BUE equilibrium condition applies.573

Because tolls are independent of flow and τ1 > τ2 > τ3, the BUE condition is574

satisfied whenever575

t1(f1) < t2(f2) < t3(f3). (40)

It is, therefore, enough to draw the curves defined by t1(f1) = t2(f2) and576

t2(f2) = t3(15, 000 − f1 − f2). The BUE solution space is illustrated three-577

dimensionally with total travel time as the third dimension in Figure 11 and two-578

dimensionally in Figure 12. We then examine the distribution of link flow and link579

travel time in this discretised BUE solution space. The boxplots of the link flow and580

link travel time are illustrated in Figures 13 and 14, respectively. The link travel581

time on the toll-free route has a range of 40 minutes to 612 minutes corresponding582

to a flow range of 1,000 to 15,000 vehicles per hour. The latter case corresponds583

to the case of putting all the demand on Route 3; the resulting solution will have584

a link travel time of 612 minutes on Route 3 while the link travel times on Route585

1 and 2 are free-flow at 12 minutes and 30 minutes. This solution satisfies the586

BUE definition but obviously we would expect that someone would want to pay if587

the travel time is 612 minutes on the toll-free route. Observations made from this588

three link example strongly support the urgent need for further specification of the589

equilibrium conditions to represent route choice behaviour more realistically.590
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Figure 10: Total travel time contours in the solution space of the three link example.
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Figure 11: Three-dimensional plot of the BUE solution space.
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7.4. Time Surplus Maximisation BUE Solution versus UE and SUE Solutions with591

Multiple User Classes592

Now we examine the case of multiple user classes for the TSmaxBUE model593

and the conventional UE and SUE models. The three user classes for the TS-594

maxBUE are as defined in Table 5, while those for UE and SUE are defined in595

Table 6. Note that the VOT values are assigned such that Class 1 has the highest596

VOT value representing the group that is most willing to pay while Class 3 has the597

lowest representing those most unwilling to pay. The θ−value for the SUE cases598

is fixed at 0.1 representing a relatively low sensitivity case for illustration purpose.599

Table 6: Multiple user class test parameters for UE & SUE.

Parameter Class 1 Class 2 Class 3

VOT in UE & SUE $3 $2 $1

θ in SUE 0.1 0.1 0.1

Demand 5000 veh/h 5000 veh/h 5000 veh/h

We solved the TSmaxBUE case with the NCP formulation as shown in equa-600

tions (30) – (35), the UE multiple user class case with the mathematical formulation601

in Yang and Huang (2004), Equations (3)–(7), and the SUE multiple user class case602

with the heuristics in Florian (2006). The solutions are as shown in Figure 15. The603

following observations are made:604

1. The behaviour as modelled by the UE model is the most extreme. All users605

in Class 1 will choose the most expensive tolled Route 1 while all users in606

Class 3 will choose the toll-free Route 3. Class 2 will choose only Routes 1607

and 2 with a higher proportion on Route 2.608
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2. In the TSmaxBUE solution shown in the middle of Figure 15, the users in609

each class choose their routes based on their respective indifference curves.610

Class 1 users will choose Routes 1 and 2; Class 2 users will use all three611

routes; and Class 3 users, who are most unwilling to pay, will all choose612

Route 3. Note, however, that this is only one possible TSmaxBUE solution,613

due to the solution with multiple user classes not being unique.614

3. To illustrate the other extreme to the UE model, we chose a low θ−value of615

0.1 for the SUE case, the users are relatively less sensitive to the differences616

in utility values on each route. As a result, all classes will use all three routes617

with the proportions influenced by their VOT values. That is, more users618

from Class 1 will use Route 1 while more users from Class 3 will use Route619

3.620
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8. Discussion621

Modelling route choice behaviour is not an easy task, as clearly there are many622

factors influencing the decision. In fact, it is well known from empirical studies that623

the three most important factors influencing route choice behaviour are travel time,624

travel time reliability and monetary cost (e.g. Abdel-Aty et al., 1995; Brownstone625

and Small, 2005; Lam and Small, 2001; Liu et al., 2004). In this paper, we consider626

two of the three most important factors, i.e. time and toll. In a tolled network,627

this task is even more challenging as one would expect that users might have a628

strong opinion on whether they want to pay at all or not; and for those who are629

willing to pay, the time they are willing spend might vary a lot for the same toll630

value. The conventional modelling approaches, namely, UE and SUE, have relied631

on the specification of a value of time by an individual, which is assumed to be a632

constant. Such model structure is very restrictive as it implies that individuals will633

trade off time and money in the same way for any duration of the trip. It is natural634

to think that the longer the duration, the more stressful the trip would be and one635

would be more willing to pay. The indifference curve between toll and time is very636

likely to be non-linear, which is also supported by empirical evidence (Hensher637

and Truong, 1985). Although Hensher and Truong (1985) recommend that value638

of travel time savings should be specified as constant for planning purposes, the639

results from their experiments have indicated the presence of non-linear effects of640

time on travel behaviour. In other words, modelling route choice behaviour with a641

constant value of time might not be adequate. By considering the trade off between642

toll and time in a two-dimensional space, we can model variability among users643

with no restrictions.644

By modelling the equilibrium with a bi-objective approach, only efficient paths645

will be included in the choice set, which creates a reasonable choice set for each646
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individual naturally.647

In terms of modelling the sensitivity of individuals to the differences in toll and648

time between alternatives, the use of indifference curves is also more flexible than649

the use of sensitivity parameters in the logit model, since the indifference curves650

can be of any form, convex or concave, as long as they are strictly decreasing.651

9. Conclusion and Outlook652

In this paper we have introduced a new model for route choice in tolled road653

networks. The model is based on the idea of bi-objective user equilibrium, which654

refers to the condition that traffic will arrange itself in such a way that no user can655

decrease travel time, or toll, or both without worsening the other. Since bi-objective656

user equilibrium allows many possible solutions, not all of which are meaningful657

in practice, we have augmented the concept with the idea of time surplus maximi-658

sation. This idea assumes that a user has an indifference function defining for any659

value of toll the maximum time he/she is willing to spend for travel between an660

origin and a destination. The preference of a user can be determined by the time661

surplus defined as maximum time willing to spend minus actual travel time. Users662

are rational and will choose a route with maximum time surplus among all effi-663

cient paths. We demonstrated that this model overcomes drawbacks of earlier UE664

models based on generalised cost. We have demonstrated that our model is more665

general than traditional models using a (linear) generalised cost function, and is666

therefore more versatile in modelling route choice behaviour. We also discussed667

the time surplus maximisation concept for the case of multiple user classes which668

have different indifference curves, i.e. the indifference function can model variabil-669

ity among users. To construct the indifference curves, we can conduct surveys to670

determine the maximum time one would be willing to spend for a given toll for671
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each O-D pair. User classes can then be formed by grouping users with similar672

indifference curves as one user class.673

Our research opens up many avenues for future work. It will be interesting to674

compare the routes identified as efficient in our model to empirical approaches for675

choice set generation, which are based on behavioural principles, see e.g. Bekhor676

et al. (2006) and Bovy and Fiorenzo-Catalano (2007). Further investigation on677

uniqueness of path and link flows based on network topology, as discussed in678

Milchtaich (2005) and Richman and Shimkin (2007) also deserves attention.679

In this paper we have only considered the case of inelastic demand, i.e. even680

users with only routes with negative time surplus in their choice sets will have to681

choose a route (the one with least negative time surplus) and travel. It is natural682

to extend the model to the elastic case, where users may not travel if their time683

surplus is negative on all efficient paths. In this case, we would look at replacing684

the function of Equation (17) with TSk(F) =
[

Tmax
p (τk)− Tk(F)

]

+
, i.e. either685

positive time surplus or zero if time surplus is negative, as the route choice function.686

This complicates analysis considerably and is a topic of current research.687

In the future, we will also investigate other combinations of two objectives688

that are relevant for route chice. We will also look at the inclusion of travel time689

reliability in a multi-objective extension of our model. Travel time reliability has690

empirically been shown to be one of the three main factors influencing route choice691

along with travel time and monetary cost.692

Finally, we note that we have only considered two objectives in user equlibrium693

models. Naturally, it is also of interest to consider bi-objective system optimum694

models. Guo and Yang (2009) and Chen and Yang (2012) propose such models.695

We have proposed a first idea for integrating bi-objective user equilibrium with696

bi-objective system optimum models in Wang and Ehrgott (2013).697
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