
This is a repository copy of The complexity of weighted boolean #CSP*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/7981/

Article:

Dyer, M., Goldberg, L.A. and Jerrum, M. (2009) The complexity of weighted boolean
#CSP*. Siam Journal on Computing, 38 (5). pp. 1970-1986. ISSN 0097-5397

https://doi.org/10.1137/070690201

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

See Attached

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

SIAM J. COMPUT. c© 2009 Society for Industrial and Applied Mathematics
Vol. 38, No. 5, pp. 1970–1986

THE COMPLEXITY OF WEIGHTED BOOLEAN #CSP∗

MARTIN DYER† , LESLIE ANN GOLDBERG‡ , AND MARK JERRUM§

Abstract. This paper gives a dichotomy theorem for the complexity of computing the parti-
tion function of an instance of a weighted Boolean constraint satisfaction problem. The problem
is parameterized by a finite set F of nonnegative functions that may be used to assign weights to
the configurations (feasible solutions) of a problem instance. Classical constraint satisfaction prob-
lems correspond to the special case of 0,1-valued functions. We show that computing the partition
function, i.e., the sum of the weights of all configurations, is FP#P-complete unless either (1) every
function in F is of “product type,” or (2) every function in F is “pure affine.” In the remaining cases,
computing the partition function is in P.

Key words. complexity theory, counting, #P, constraint satisfaction

AMS subject classifications. Primary, 68Q25; Secondary, 05C15, 68T27

DOI. 10.1137/070690201

1. Introduction. This paper gives a dichotomy theorem for the complexity of
the partition function of weighted Boolean constraint satisfaction problems. Such
problems are parameterized by a set F of nonnegative functions that may be used to
assign weights to configurations (solutions) of the instance. These functions take the
place of the allowed constraint relations in classical constraint satisfaction problems
(CSPs). Indeed, the classical setting may be recovered by restricting F to functions
with range {0, 1}. The key problem associated with an instance of a weighted CSP
is to compute its partition function, i.e., the sum of weights of all its configurations.
Computing the partition function of a weighted CSP may be viewed as a generaliza-
tion of counting the number of satisfying solutions of a classical CSP. Many partition
functions from statistical physics may be expressed as weighted CSPs. For example,
the Potts model [22] is naturally expressible as a weighted CSP, whereas in the classical
framework only the “hard-core” versions may be directly expressed. (The hard-core
version of the antiferromagnetic Potts model corresponds to graph coloring, and the
hard-core version of the ferromagnetic Potts model is trivial—acceptable configura-
tions color the entire graph with a single color.) A corresponding weighted version of
the decision CSP was investigated by Cohen et al. [3]. This results in optimization
problems.

We use #CSP(F) to denote the problem of computing the partition function
of weighted CSP instances that can be expressed using only functions from F . We
show in Theorem 4 below that if every function f ∈ F is “of product type,” then
computing the partition function Z(I) of an instance I can be done in polynomial time.
Formal definitions are given later, but the condition of being of product type is easily
checked—it essentially means that the partition function factors. We show further in

∗Received by the editors May 1, 2007; accepted for publication (in revised form) August 25, 2008;
published electronically January 14, 2009. This work was partly funded by the EPSRC grant “The
complexity of counting in constraint satisfaction problems.”

http://www.siam.org/journals/sicomp/38-5/69020.html
†School of Computing, University of Leeds, Leeds LS2 9JT, UK (dyer@comp.leeds.ac.uk).
‡Department of Computer Science, University of Liverpool, Liverpool L69 3BX, UK (l.a.goldberg@

liverpool.ac.uk).
§School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London

E1 4NS, UK (m.jerrum@qmul.ac.uk).

1970

THE COMPLEXITY OF WEIGHTED BOOLEAN #CSP 1971

Theorem 4 that if every function f ∈ F is “pure affine,” then the partition function of
Z(I) can be computed in polynomial time. Once again, there is an algorithm to check
whether F is pure affine. For each other set F , we show in Theorem 4 that computing
the partition function of a #CSP(F) instance is complete for the class FP#P. The
existence of algorithms for testing the properties of being purely affine or of product
type means that the dichotomy is effectively decidable.

1.1. Constraint satisfaction. Constraint satisfaction, which originated in ar-
tificial intelligence, provides a general framework for modeling decision problems and
has many practical applications. (See, for example, [17].) Decisions are modelled by
variables, which are subject to constraints, modelling logical and resource restric-
tions. The paradigm is sufficiently broad that many interesting problems can be mod-
elled, from satisfiability problems to scheduling problems and graph-theory problems.
Understanding the complexity of CSPs has become a major and active area within
computational complexity [7, 13].

A CSP typically has a finite domain, which we will denote by [q] = {0, 1, . . . , q − 1}
for a positive integer q.1 A constraint language Γ with domain [q] is a set of relations
on [q]. For example, take q = 2. The relation R = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}
is a 3-ary relation on the domain {0, 1}, with four tuples.

Once we have fixed a constraint language Γ, an instance of the CSP is a set of
variables V = {v1, . . . , vn} and a set of constraints. Each constraint has a scope, which
is a tuple of variables (for example, (v4, v5, v1)) and a relation from Γ of the same arity,
which constrains the variables in the scope. A configuration σ is a function from V
to [q]. The configuration σ is satisfying if the scope of every constraint is mapped to
a tuple that is in the corresponding relation. In our example above, a configuration
σ satisfies the constraint with scope (v4, v5, v1) and relation R if and only if it maps
an odd number of the variables in {v1, v4, v5} to the value 1. Given an instance of a
CSP with constraint language Γ, the decision problem CSP(Γ) asks us to determine
whether any configuration is satisfying. The counting problem #CSP(Γ) asks us to
determine the number of (distinct) satisfying configurations.

Varying the constraint language Γ defines the classes CSP and #CSP of deci-
sion and counting problems. These contain problems of different computational com-
plexities. For example, if Γ = {R1, R2, R3}, where R1, R2, and R3 are the three
binary relations defined by R1 = {(0, 1), (1, 0), (1, 1)}, R2 = {(0, 0), (0, 1), (1, 1)}, and
R3 = {(0, 0), (0, 1), (1, 0)}, then CSP(Γ) is the classical 2-satisfiability problem, which
is in P. On the other hand, there is a similar constraint language Γ′ with four rela-
tions of arity 3 such that 3-satisfiability (which is NP-complete) can be represented in
CSP(Γ′). It may happen that the counting problem is harder than the decision prob-
lem. If Γ is the constraint language of 2-satisfiability above, then #CSP(Γ) contains
the problem of counting independent sets in graph, and is #P-complete [21] even if
restricted to 3-regular graphs [12].

Any decision problem CSP(Γ) is in NP, but not every problem in NP can be repre-
sented as a CSP. For example, the question “Is G Hamiltonian?” cannot naturally be
expressed as a CSP, because the property of being Hamiltonian cannot be captured by
relations of bounded size. This limitation of the class CSP has an important advantage.
If P �= NP, then there are problems which are neither in P nor NP-complete [15]. But,
for well-behaved smaller classes of decision problems, the situation can be simpler.
We may have a dichotomy theorem, partitioning all problems in the class into those

1Usually [q] is defined to be {1, 2, . . . , q}, but it is more convenient here to start the enumeration
of domain elements at 0 rather than 1.

1972 M. DYER, L. A. GOLDBERG, AND M. JERRUM

which are in P and those which are NP-complete. There are no “leftover” problems of
intermediate complexity. It has been conjectured that there is a dichotomy theorem
for CSP. The conjecture is that CSP(Γ) is in P for some constraint languages Γ, and
CSP(Γ) is NP-complete for all other constraint languages Γ. This conjecture appeared
in a seminal paper of Feder and Vardi [10] but has not yet been proved.

A similar dichotomy, between FP- and #P-complete, is conjectured for #CSP [2].
The complexity classes FP and #P are the analogues of P and NP for counting prob-
lems. FP is simply the class of functions computable in deterministic polynomial time.
#P is the class of integer functions that can be expressed as the number of accepting
computations of a polynomial-time nondeterministic Turing machine. Completeness
in #P is defined with respect to polynomial-time Turing reducibility [16, Chap. 18].
Bulatov and Dalmau [2] have shown in one direction that, if #CSP(Γ) is solvable in
polynomial time, then the constraints in Γ must have certain algebraic properties (as-
suming #P �⊆ FP). In particular, they must have a so-called Mal’tsev polymorphism.
The converse is known to be false, though it remains possible that the dichotomy
(if it exists) does have an algebraic characterization.

The conjectured dichotomies for CSP and #CSP are major open problems for
computational complexity theory. There have been many important results for sub-
classes of CSP and #CSP. We mention the most relevant to our paper here. The first
decision dichotomy was that of Schaefer [18], for the Boolean domain {0, 1}. Schaefer’s
result is as follows.

Theorem 1 (Schaefer [18]). Let Γ be a constraint language with domain {0, 1}.
The problem CSP(Γ) is in P if Γ satisfies one of the conditions below. Otherwise,

CSP(Γ) is NP-complete.

1. Γ is 0-valid or 1-valid.
2. Γ is weakly positive or weakly negative.

3. Γ is affine.

4. Γ is bijunctive.

We will not give detailed definitions of the conditions in Theorem 1, but the in-
terested reader is referred to the paper [18] or to Theorem 6.2 of the textbook [7]. An
interesting feature is that the conditions in [7, Thm. 6.2] are all checkable. That is,
there is an algorithm to determine whether CSP(Γ) is in P or NP-complete, given a
constraint language Γ with domain {0, 1}. Creignou and Hermann [6] adapted Schae-
fer’s decision dichotomy to obtain a counting dichotomy for the Boolean domain.
Their result is as follows.

Theorem 2 (Creignou and Hermann [6]). Let Γ be a constraint language with

domain {0, 1}. The problem #CSP(Γ) is in FP if Γ is affine. Otherwise, #CSP(Γ) is

#P-complete.

A constraint language Γ with domain {0, 1} is affine if every relation R ∈ Γ is
affine. A relation R is affine if the set of tuples x ∈ R is the set of solutions to a system
of linear equations over GF(2). These equations are of the form v1 ⊕ · · · ⊕ vn = 0 and
v1 ⊕ · · · ⊕ vn = 1, where ⊕ is the exclusive or operator. It is well known (see, for
example, Lemma 4.10 of [7]) that a relation R is affine if and only if a, b, c ∈ R implies
d = a ⊕ b ⊕ c ∈ R. (We will use this characterization below.) There is an algorithm
for determining whether a Boolean constraint language Γ is affine, so there is an
algorithm for determining whether #CSP(Γ) is in FP or #P-complete.

1.2. Weighted #CSP. The weighted graph homomorphism framework of [4]
extends naturally to CSPs. Fix the domain [q]. Instead of constraining a length-k scope
with an arity-k relation on [q], we give a weight to the configuration on this scope by

THE COMPLEXITY OF WEIGHTED BOOLEAN #CSP 1973

applying a function f from [q]k to the nonnegative rationals. Let Fq = {f : [q]k →
Q+ | k ∈ N} be the set of all such functions (of all arities).2 Given a function f ∈ Fq

of arity k, the underlying relation of f is given by Rf = {x ∈ [q]k | f(x) �= 0}. It is
often helpful to think of Rf as a table, with k columns corresponding to the positions
of a k-tuple. Each row corresponds to a tuple x = (x1, . . . , xk) ∈ Rf . The entry in
row x and column j is xj , which is a value in [q].

A weighted #CSP problem is parameterized by a finite subset F of Fq and will
be denoted by #CSP(F). An instance I of #CSP(F) consists of a set V of variables

and a set C of constraints. Each constraint C ∈ C consists of a function fC ∈ F
(say of arity kC) and a scope, which is a sequence sC = (vC,1, . . . , vC,kC

) of variables
from V . The variables vC,1, . . . , vC,kC

need not be distinct. As in the unweighted case,
a configuration σ for the instance I is a function from V to [q]. The weight of the
configuration σ is given by

w(σ) =
∏

C∈C

fC(σ(vC,1), . . . , σ(vC,kC
)).

Finally, the partition function Z(I) is given, for instance I, by

(1) Z(I) =
∑

σ:V →[q]

w(σ).

In the computational problem #CSP(F), the goal is to compute Z(I), given an in-
stance I.

Note that an (unweighted) CSP counting problem #CSP(Γ) can be represented
naturally as a weighted CSP counting problem. For each relation R ∈ Γ, let fR be the
indicator function for membership in R. That is, if x ∈ R, we set fR(x) = 1. Otherwise
we set fR(x) = 0. Let F = {fR | R ∈ Γ}. Then for any instance I of #CSP(Γ) the
number of satisfying configurations for I is given by the (weighted) partition function
Z(I) from (1).

This framework has been employed previously in connection with graph homo-

morphisms [1]. Suppose H = (Hij) is any symmetric q × q matrix H of rational
numbers. We view H as being an edge-weighting of an undirected graph H, where
a zero weight in H means that the corresponding edge is absent from H. Given a
(simple) graph G = (V, E), we consider computing the partition function

ZH(G) =
∑

σ:V →[q]

w(σ), where w(σ) =
∏

{u,v}∈E

Hσ(u)σ(v).

Within our framework above, we view H as the binary function h : [q]2 → R, and the
problem is then computing the partition function of #CSP ({h}).

Bulatov and Grohe [4] call H connected if H is connected and bipartite if H is
bipartite. They give the following dichotomy theorem for nonnegative H .3

Theorem 3 (Bulatov and Grohe [4]). Let H be a symmetric matrix with non-

negative rational entries. Then we have the following:

2We assume 0 ∈ N, so we allow nonnegative constants.
3This is not quite the original statement of the theorem. We have chosen here to restrict all

inputs to be rational, in order to avoid issues of how to represent, and compute with, arbitrary real
numbers.

1974 M. DYER, L. A. GOLDBERG, AND M. JERRUM

1. If H is connected and not bipartite, then computing ZH is in FP if the rank

of H is at most 1; otherwise computing ZH is #P-hard.

2. If H is connected and bipartite, then computing ZH is in FP if the rank of H
is at most 2; otherwise computing ZH is #P-hard.

3. If H is not connected, then computing ZH is in FP if each of its connected

components satisfies the corresponding conditions stated in 1 or 2; otherwise

computing ZH is #P-hard.

Many partition functions arising in statistical physics may be viewed as weighted
#CSP problems. An example is the q-state Potts model (which is, in fact, a weighted
graph homomorphism problem). In general, weighted #CSP is very closely related to
the problem of computing the partition function of a Gibbs measure in the framework
of Dobrushin, Lanford, and Ruelle (see [1]). See also the framework of Scott and
Sorkin [19].

1.3. Some notation. We will call the class of (rational) weighted #CSP prob-
lems weighted #CSP. The subclass having domain size q = 2 will be called weighted
Boolean #CSP and will be the main focus of this paper. We will give a dichotomy
theorem for weighted Boolean #CSP.

Since weights can be arbitrary nonnegative rational numbers, the solution to these
problems is not an integer in general. Therefore #CSP(F) is not necessarily in the
class #P. However, Goldberg and Jerrum [11] have observed that Z(I) = Z̃(I)/K(I),
where Z̃ is a function in #P and K(I) is a positive integer computable in FP. This
follows because, for all f ∈ F , we can ensure that f(·) = f̃(·)/K(I), where f̃(·) ∈ N,
by “clearing denominators.” The denominator K(I) can obviously be computed in
polynomial time, and it is straightforward to show that computing Z̃(I) is in #P,
so the characterization of [11] follows. The resulting complexity class, comprising
functions which are a function in #P divided by a function in FP, is named #PQ

in [11], where it is used in the context of approximate counting. Clearly we have

weighted#CSP ⊆ #PQ ⊆ FP#P.

On the other hand, if Z(I) ∈ weighted#CSP is #P-hard, then, using an oracle for
computing Z(I), we can construct a #P oracle Z̃(I) as outlined above. (Note that
Z(I) /∈ #P in general.) Using this oracle, we can compute any function in FP#P with
a polynomial time-bounded oracle Turing machine. Thus any #P-hard function in
weighted#CSP is complete for FP#P. We will use this observation to state our main
result in terms of completeness for the class FP#P.

We make the following definition, which relates to the discussion above. We will
say that F ⊆ Fq simulates f ∈ Fq if, for each instance I of #CSP(F ∪{f}), there is a
polynomial time computable instance I ′ of #CSP(F) such that Z(I) = ϕ(I)Z(I ′) for
some ϕ(I) ∈ Q which is FP-computable. This generalizes the notion of parsimonious

reduction [16] among problems in #P. We will use ≤T to denote the relation “is
polynomial-time Turing-reducible to” between computational problems. Clearly, if F
simulates f , we have #CSP(F ∪ {f}) ≤T #CSP(F). Note also that, if f̃ = Kf , for
some constant K > 0, then {f} simulates f̃ . Thus there is no need to distinguish
between “proportional” functions.

We use the following terminology for certain functions. Let χ= be the binary
equality function defined on [q] as follows. For any element c ∈ [q], χ=(c, c) = 1,
and for any pair (c, d) of distinct elements of [q], χ=(c, d) = 0. Let χ �= be the binary

THE COMPLEXITY OF WEIGHTED BOOLEAN #CSP 1975

disequality function given by χ �=(c, d) = 1 − χ=(c, d) for all c, d ∈ [q].4 We say that
a function f is of product type if f can be expressed as a product of unary functions
and binary functions of the form χ= and χ �=.

We focus attention in this paper on the Boolean case, q = 2. In this case, we say
that a function f ∈ F2 has affine support if its underlying relation Rf , defined earlier,
is affine. We say that f is pure affine if it has affine support and range {0, w} for
some w > 0. Thus a function is pure affine if and only if it is a positive real multiple
of some (0,1-valued) function which is affine over GF(2).

1.4. Our result. Our main result is the following.
Theorem 4. Suppose F ⊆ F2 = {f : {0, 1}

k
→ Q+ | k ∈ N}. If every function in

F is of product type, then #CSP(F) is in FP. If every function in F is pure affine,

then #CSP(F) is in FP. Otherwise, #CSP(F) is FP#P-complete.

Proof. Suppose first that F is of product type. In this case the partition function
Z(I) of an instance I with variable set V is easy to evaluate because it can be fac-
tored into easy-to-evaluate pieces: Partition the variables in V into equivalence classes
according to whether or not they are related by an equality or disequality function.
(The equivalence relation on variables here is “depends linearly on.”) An equivalence
class consists of two (possibly empty) sets of variables U1 and U2. All of the variables
in U1 must be assigned the same value by a configuration σ of nonzero weight, and
all variables in U2 must be assigned the other value. Variables in U1 ∪ U2 are not
related by equality or disequality to variables in V \ (U1 ∪U2). The equivalence class
contributes one weight, say α, to the partition function if variables in U1 are given
value “0” by σ, and it contributes another weight, say β, to the partition function
if variables in U1 are given value “1” by σ. Thus, Z(I) = (α + β)Z(I ′), where I ′ is
the instance formed from I by removing this equivalence class. Therefore, suppose we
choose any equivalence class and remove its variables. Since F contains only unary,
equality, or binary disequality constraints, we can also remove all functions involving
variables in U1 ∪U2 to give F ′. Then I ′ is of product type with fewer variables, so we
may compute Z(I ′) recursively.

Suppose second that F if pure affine. Then Z(I) =
∏

f∈F w
kf

f Z(I ′), where {0, wf}
is the range of f , kf is the number of constraints involving f in I, and I ′ is the instance
obtained from I by replacing every function f by its underlying relation Rf (viewed
as a function with range {0, 1}). Z(I ′) is easy to evaluate, because this is just counting
solutions to a linear system over GF(2), as Creignou and Hermann have observed [6].

Finally, the #P-hardness in Theorem 4 follows from Lemma 5 below.
Lemma 5. If f ∈ F2 is not of product type and g ∈ F2 is not pure affine, then

#CSP({f, g}) is #P-hard.

Note that the functions f and g in Lemma 5 may be one and the same function.
So #CSP({f}) is #P-hard when f is not of product type nor pure affine. The rest of
this article gives the proof of Lemma 5.

2. Useful tools for proving hardness of #CSP.

2.1. Notation. For any sequence u1, . . . , uk of variables of I and any sequence
c1, . . . , ck of elements of the domain [q], we will let Z(I | σ(u1) = c1, . . . , σ(uk) = ck)
denote the contribution to Z(I) from assignments σ with σ(u1) = c1, . . . , σ(uk) = ck.

2.2. Projection. The first tool that we study is projection, which is referred to
as “integrating out” in the statistical physics literature.

4A more general disequality function is defined in the appendix.

1976 M. DYER, L. A. GOLDBERG, AND M. JERRUM

Let f be a function of arity k, and let J = {j1, . . . , jr} be a size-r subset of
{1, . . . , k}, where j1 < · · · < jr.

5 We say that a k-tuple x′ ∈ [q]k extends an r-tuple
x ∈ [q]r on J (written x′ ⊒J x) if x′ agrees with x on indices in J ; that is to say,
x′

ji
= xi for all 1 ≤ i ≤ r. The projection g of f onto J is defined as follows. For every

x ∈ [q]r, g(x) =
∑

x′⊒Jx f(x′).

The following lemma may be viewed as a weighted version of Proposition 2 of [2],
where it is proved for the unweighted case. It is expressed somewhat differently in [2],
in terms of counting the number of solutions to an existential formula.

Lemma 6. Suppose F ⊆ Fq. Let g be a projection of a function f ∈ F onto a

subset of its indices. Then #CSP(F ∪ {g}) ≤T #CSP(F).

Proof. Let k be the arity of f , and let g be the projection of f onto the subset J of
its indices. Let I be an instance of #CSP(F ∪{g}). We will construct an instance I ′ of
#CSP(F) such that Z(I) = Z(I ′). The instance I ′ is identical to I except that every
constraint C of I involving g is replaced with a new constraint C′ of I ′ involving f .
The corresponding scope (vC′,1, . . . , vC′,k) is constructed as follows. If jℓ is the ℓth
element of J , then v′C′,jℓ

= vC,ℓ. The other variables, vC′,j (j /∈ J), are distinct new
variables. We have shown that F simulates g with φ(I) = 1.

2.3. Pinning. For c ∈ [q], δc denotes the unary function with δc(c) = 1 and
δc(d) = 0 for d �= c. The following lemma, which allows “pinning” CSP variables
to specific values in hardness proofs, generalizes Theorem 8 of [2], which does the
unweighted case. Again [2] employs different terminology, and its theorem is a state-
ment about the full idempotent reduct of a finite algebra. The idea of pinning was
used previously by Bulatov and Grohe of [4] in the context of counting weighted graph
homomorphisms (see Lemma 32 of [4]). A similar idea was used by Dyer and Green-
hill in the context of counting unweighted graph homomorphisms—in that context,
Theorem 4.1 of [8] allows pinning all variables to a particular component of the target
graph H .

Lemma 7. For every F ⊆ Fq, #CSP(F ∪
⋃

c∈[q] δc) ≤T #CSP(F).

The proof of Lemma 7 is deferred to the appendix. Since we use only the case
q = 2 in this paper, we provide the (simpler) proof for the Boolean case here.

Lemma 8. For every F ⊆ F2, #CSP(F ∪ {δ0, δ1}) ≤T #CSP(F).

Proof. For x ∈ [2]k, let x be the k-tuple whose ith component, xi, is xi ⊕ 1 for
all i. Say that F is symmetric if it is the case that for every arity-k function f ∈ F
and every x ∈ [2]k, f(x) = f(x).

Given an instance I of #CSP(F ∪ {δ0, δ1}) with variable set V , we consider two
instances I ′ and I ′′ of #CSP(F). Let V0 be the set of variables v of I to which the
constraint δ0(v) is applied. Let V1 be the set of variables v of I to which the constraint
δ1(v) is applied. We can assume without loss of generality that V0 and V1 do not
intersect. (Otherwise, Z(I) = 0 and we can determine this without using an oracle for
#CSP(F).) Let V2 = V \(V0∪V1). The instance I ′ has variables V2∪{t0, t1}, where t0
and t1 are distinct new variables that are not in V . Every constraint C of I involving
a function f ∈ F corresponds to a constraint C′ of I ′. C′ is the same as C except that
variables in V0 are replaced with t0 and variables in V1 are replaced with t1. Similarly,
the instance I ′′ has variables V2 ∪ {t}, where t is a new variable that is not in V .
Every constraint C of I involving a function f ∈ F corresponds to a constraint C′′

of I ′′. The constraint C′′ is the same as C except that variables in V0∪V1 are replaced
with t.

5It is not necessary to choose this particular ordering for J , but it is convenient to do so.

THE COMPLEXITY OF WEIGHTED BOOLEAN #CSP 1977

Case 1. F is symmetric: By construction,

Z(I ′) − Z(I ′′) = Z(I ′ | σ(t0) = 0, σ(t1) = 1) + Z(I ′ | σ(t0) = 1, σ(t1) = 0).

By symmetry, the summands are the same, so

Z(I ′) − Z(I ′′) = 2Z(I ′ | σ(t0) = 0, σ(t1) = 1) = 2Z(I).

Case 2. F is not symmetric: Let f be an arity-k function in F , and let x ∈ [2]k

so that f(x) > f(x) ≥ 0. Let s = (tx1
, . . . , txk

), and let I ′x be the instance derived
from I ′ by adding a new constraint with function f and scope s. Similarly, let I ′′x be
the instance derived from I ′′ by adding a new constraint with function f and scope
(t, . . . , t). Now

Z(I ′x) = Z(I ′ | σ(t0) = 0, σ(t1) = 1)f(x) + Z(I ′ | σ(t0) = 1, σ(t1) = 0)f(x)

+ Z(I ′ | σ(t0) = 0, σ(t1) = 0)f(0, . . . , 0) + Z(I ′ | σ(t0) = 1, σ(t1) = 1)f(1, . . . , 1)

= Z(I ′ | σ(t0) = 0, σ(t1) = 1)f(x) + Z(I ′ | σ(t0) = 1, σ(t1) = 0)f(x) + Z(I ′′x).

Thus we have two independent equations,

Z(I ′x) − Z(I ′′x) = Z(I ′ | σ(t0) = 0, σ(t1) = 1)f(x) + Z(I ′ | σ(t0) = 1, σ(t1) = 0)f(x),

Z(I ′) − Z(I ′′) = Z(I ′ | σ(t0) = 0, σ(t1) = 1) + Z(I ′ | σ(t0) = 1, σ(t1) = 0) ,

in the unknowns Z(I ′ | σ(t0) = 0, σ(t1) = 1) and Z(I ′ | σ(t0) = 1, σ(t1) = 0). Solving
these, we obtain the value of Z(I ′ | σ(t0) = 0, σ(t1) = 1) = Z(I).

2.4. #P-hard problems. To prove Lemma 5, we will give reductions from
some known #P-hard problems. The first of these is the problem of counting homo-
morphisms from simple graphs to 2-vertex multigraphs. We use the following special
case of Bulatov and Grohe’s Theorem 3.

Corollary 9 (Bulatov and Grohe [4]). Let H be a symmetric 2 × 2 matrix

with nonnegative real entries. If H has rank 2 and at most one entry of H is 0, then

Eval(H) is #P-hard.

We will also use the problem of computing the weight enumerator of a linear code.
Given a generating matrix A ∈ {0, 1}r×C of rank r, a code word c is any vector in
the linear subspace Υ generated by the rows of A over GF(2). For any real number λ,
the weight enumerator of the code is given by WA(λ) =

∑

c∈Υ λ‖c‖, where ‖c‖ is the
number of 1’s in c. The problem of computing the weight enumerator of a linear code
is in FP for λ ∈ {−1, 0, 1} and is known to be #P-hard for every other fixed λ ∈ Q

(see [22]). We could not find a proof, so we provide one here. We restrict our attention
to positive λ, since that is adequate for our purposes.

Lemma 10. Computing the weight enumerator of a linear code is #P-hard for

any fixed positive rational number λ �= 1.
Proof. We will prove hardness by reduction from a problem Eval(H), for some

appropriate H , using Corollary 9. Let the input to Eval(H) be a connected graph
G = (V, E) with V = {v1, . . . , vn} and E = {e1, . . . , em}. Let B be the n×m incidence
matrix of G, with bij = 1 if vi ∈ ej and bij = 0 otherwise. Let A be the (n − 1) × m
matrix which is B with the row for vn deleted. A will be the generating matrix of the
weight enumerator instance, with r = n − 1 and C = m. It has rank (n − 1) since
G contains a spanning tree. A code word c has cj =

⊕

i∈U bij , where U ⊆ V \ {vn}.

Thus cj = 1 if and only if ej has exactly one endpoint in U , and the weight of c is λk,
where k is the number of edges in the cut U, V \ U . Thus WA(λ) = 1

2ZH(G), where

1978 M. DYER, L. A. GOLDBERG, AND M. JERRUM

H is the symmetric weight matrix with H11 = H22 = 1 and H12 = H21 = λ. The 1
2

arises because we fixed which side of the cut contains vn. Now H has rank 2 unless
λ = 1, so this problem is #P-hard by Corollary 9. Note, by the way, that ZH(G) is
the partition function of the Ising model in statistical physics [5].

3. The proof of Lemma 5. Throughout this section, we assume q = 2. The
following lemma is a generalization of a result of Creignou and Hermann [6], which
deals with the case in which f is a relation (or, in our setting, a function with range
{0, 1}). The inductive technique used in the proof of Lemma 11 (combined with the
follow-up in Lemma 12) is good for showing that #CSP(F) is #P-hard when F
contains a single function. A very different situation arises when #CSP({f}) and
#CSP({g}) are in FP but #CSP({f, g}) is #P-hard due to interactions between f
and g—we deal with that problem later.

Lemma 11. Suppose that f ∈ F2 does not have affine support. Then #CSP({f})
is #P-hard.

Proof. Let k be the arity of f , and let us denote the ith component of k-tuple
a ∈ Rf by ai. The proof is by induction on k. The lemma is trivially true for k = 1,
since all functions of arity 1 have affine support.

For k = 2, we note that since Rf is not affine, it is of the form Rf = {(α, β), (ᾱ, β),
(ᾱ, β̄)} for some α ∈ {0, 1} and β ∈ {0, 1}. We can show that #CSP({f}) is #P-hard
by reduction from Eval(H) using

H =

(

f(0, 0) f(0, 1)
f(1, 0) f(1, 1)

)

,

which has rank 2 and exactly one entry that is 0. Given an instance G = (V, E) of
Eval(H), we construct an instance I of #CSP({f}) as follows. The variables of I are
the vertices of G. For each edge e = (u, v) of G, add a constraint with function f
and variable sequence u, v. Corollary 9 now tells us that Eval(H) is #P-hard, so
#CSP({f}) is #P-hard.

Suppose k > 2. We start with some general arguments and notation. For any
i ∈ {1, . . . , k} and any α ∈ {0, 1} let f i=α be the function of arity k−1 derived from f
by pinning the ith position to α. That is, f i=α(x1, . . . , xk−1) = f(x1, . . . , xi−1, α,
xi+1, . . . , xk). Also, let f i=∗ be the projection of f onto all positions apart from posi-
tion i (see section 2.2). Note that #CSP({f i=α}) ≤T #CSP({f, δ0, δ1}), since f i=α can
obviously be simulated by {f, δ0, δ1}. Furthermore, by Lemma 8, #CSP({f, δ0, δ1}) ≤T

#CSP({f}). Thus, we can assume that f i=α has affine support—otherwise, we are
finished by induction. Similarly, by Lemma 6, #CSP(

{

f i=∗
}

) ≤T #CSP({f}). Thus
we can assume that f i=∗ has affine support—otherwise, we are finished by induction.

Now, recall that Rf is not affine. Consider any a, b, c ∈ Rf such that d = a⊕b⊕c /∈
Rf . We have four cases.

Case 1. There are indices 1 ≤ i < j ≤ k such that (ai, bi, ci) = (aj , bj , cj). Without
loss of generality, suppose i = 1 and j = 2. Define the function f ′ of arity (k − 1)
by f ′(r2, . . . , rk) = f(r2, r2, . . . , rk). Note that Rf ′ is not affine since the condition
a ⊕ b ⊕ c /∈ Rf is inherited by Rf ′ . So, by induction, #CSP({f ′}) is #P-hard. Now
note that #CSP({f ′}) ≤T #CSP({f}). To see this, note that any instance I1 of
#CSP({f ′}) can be turned into an instance I of #CSP({f}) by repeating the first
variable in the sequence of variables for each constraint.

THE COMPLEXITY OF WEIGHTED BOOLEAN #CSP 1979

Case 2. There is an index 1 ≤ i ≤ k such that ai = bi = ci. Since d is not in
Rf and di = ai, we find that f i=ai does not have affine support, contrary to earlier
assumptions.

Having finished Cases 1 and 2, we may assume without loss of generality that
we are in Case 3 or 4 below, where {α, β} ∈ {0, 1}, ᾱ = 1 − α, β̄ = 1 − β, and

a′, b′, c′ ∈ {0, 1}
k−2

.

Case 3. a = (ᾱ, β̄, a′), b = (ᾱ, β, b′), c = (α, β̄, c′). Since Rf1=∗ is affine and a, b,
and c are in Rf , we must have either d = (α, β, d′) ∈ Rf or e = (ᾱ, β, d′) ∈ Rf , where
d′ = a′ ⊕ b′ ⊕ c′. In the first case, we are done (we have contradicted the assumption
that d �∈ Rf), so assume that e ∈ Rf but d �∈ Rf . Similarly, since Rf2=∗ is affine, we
may assume that g = (α, β̄, d′) ∈ Rf . Since Rf1=ᾱ is affine and a, b, and e are in Rf ,
we find that h = a ⊕ b ⊕ e = (ᾱ, β̄, c′) ∈ Rf . Since Rf2=β̄ is affine and a, c, and g are

in Rf , we find that i = (ᾱ, β̄, b′) ∈ Rf . Also, since Rf2=β̄ is affine and a, h, and i are

in Rf , we find that j = (ᾱ, β̄, d′) ∈ Rf . Let f ′(r1, r2) = f(r1, r2, d3, . . . , dk). Since e,
g, and j are in Rf but d is not, we have (ᾱ, β), (α, β̄), (ᾱ, β̄) ∈ Rf ′ , but (α, β) /∈ Rf ′ .
Thus, f ′ does not have affine support and #CSP({f ′}) is #P-hard by induction. Also,
#CSP({f ′}) ≤T #CSP({f}) by Lemma 8.

Case 4. a = (ᾱ, α, a′), b = (ᾱ, α, b′), c = (α, ᾱ, c′). Since Rf1=∗ is affine and a, b,
and c are in Rf but d is not, we have e = (ᾱ, ᾱ, d′) ∈ Rf . Similarly, since Rf2=∗ is
affine and a, b, and c are in Rf but d is not, we have g = (α, α, d′) ∈ Rf . Now since
Rf1=ᾱ is affine and a, b, and e are in Rf , we have h = (ᾱ, ᾱ, c′) ∈ Rf . Also, since
Rf2=α is affine and a, b, and g are in Rf , we have i = (α, α, c′) ∈ Rf .

Let f ′(r1, r2) = f(r1, r2, c3, . . . , ck). If j = (ᾱ, α, c′) �∈ Rf , then f ′ does not
have affine support (since c, h, and i are in Rf), so we finish by induction as in
Case 3. Suppose j ∈ Rf . Since Rf1=ᾱ is affine and a, b, and j are in Rf , we have
ℓ = (ᾱ, α, d′) ∈ Rf . Let f ′′(r1, r2) = f(r1, r2, d3, . . . , dk). Then f ′′ does not have affine
support (since e, g, and ℓ are in Rf but d is not), so we finish by induction as in
Case 3.

Lemma 11 showed that #CSP({f}) is #P-hard when f does not have affine
support. The following lemma gives another (rather technical, but useful) condition
which implies that #CSP({f}) is #P-hard. We start with some notation. Let f be
an arity-k function. For a value b ∈ {0, 1}, an index i ∈ {1, . . . , k}, and a tuple
y ∈ {0, 1}k−1, let yi=b denote the tuple x ∈ {0, 1}k formed by setting xi = b and
xj = yj (j ∈ {1, . . . , k} \ {i}).

We say that index i of f is useful, if there is a tuple y such that f(yi=0) > 0
and f(yi=1) > 0. We say that f is product-like if, for every useful index i, there is a
rational number λi such that, for all y ∈ {0, 1}k−1,

(2) f(yi=0) = λif(yi=1).

If every position i of f is useful, then being product-like is the same as being of product
type. However, being product-like is less demanding because it does not restrict indices
that are not useful.

Lemma 12. If f ∈ F2 is not product-like, then #CSP({f}) is #P-hard.

Proof. We will use Corollary 9 to prove hardness, following an argument from [9].
Choose a useful index i so that there is no λi satisfying (2).

Suppose f has arity k. Let A be the 2× 2k−1 matrix such that for b ∈ {0, 1} and
y ∈ {0, 1}k−1, Ab,y = f(yi=b). Let A′ = AAT .

1980 M. DYER, L. A. GOLDBERG, AND M. JERRUM

First, we show that Eval(A′) is #P-hard. Note that A′ is the following symmetric
2 × 2 matrix with nonnegative rational entries:

(∑

y A2
0,y

∑

y A0,yA1,y
∑

y A0,yA1,y

∑

y A2
1,y

)

=

(

∑

y f(yi=0)
2 ∑

y f(yi=0)f(yi=1)
∑

y f(yi=0)f(yi=1)
∑

y f(yi=1)2

)

.

Since index i is useful, all four entries of A′ are positive. To show that Eval(A′) is
#P-hard by Corollary 9, we just need to show that its determinant is nonzero. By
the Cauchy–Schwarz equation, the determinant is nonnegative and is zero only if λi

exists, which we have assumed not to be the case. Thus Eval(A′) is #P-hard by
Corollary 9.

Now we reduce Eval(A′) to #CSP({f}). To do this, take an undirected graph
G which is an instance of Eval(A′). Construct an instance Y of #CSP({f}). For
every vertex v of G we introduce a variable xv of Y . Also, for every edge e of G
we introduce k − 1 variables xe,1, . . . , xe,k−1 of Y . We introduce constraints in Y as
follows. For each edge e = (v, v′) of G we introduce constraints f(xv, xe,1, . . . , xe,k−1)
and f(xv′ , xe,1, . . . , xe,k−1) into Y , where we have assumed, without loss of generality,
that the first index is useful.

It is clear that Eval(A′) is exactly equal to the partition function of the #CSP({f})
instance Y .

For w ∈ Q+, let Uw denote the unary function mapping 0 to 1 and 1 to w. Note
that U0 = δ0, and U1 gives the constant (0-ary function) 1, occurrences of which leave
the partition function unchanged. So, by Lemma 8, we can discard these constraints
since they do not add to the complexity of the problem. Note, by the observation
above about proportional functions, that the functions Uw include all unary functions
except for δ1 and the constant 0. We can discard δ1 by Lemma 8, and if the constant
0 function is in F , any instance I where it appears as a constraint has Z(I) = 0. So
again we can discard these constraints since they do not add to the complexity of the
problem.

Thus Uw will be called nontrivial if w /∈ {0, 1}. Let ⊕k : {0, 1}k → {0, 1} be the
arity-k parity function that is 1 if and only if its argument has an odd number of
1’s. Let ¬⊕k : {0, 1}k → {0, 1} be the function 1 − ⊕k. The following lemma shows
that even a simple function like ⊕3 can lead to intractable #CSP instances when it
is combined with a nontrivial weight function Uλ.

Lemma 13. #CSP(⊕3, Uλ, δ0, δ1) and #CSP(¬⊕3, Uλ, δ0, δ1) are both #P-hard,

for any positive λ �= 1.
Proof. We give a reduction from computing the weight enumerator of a linear

code, which was shown to be #P-hard in Lemma 10. In what follows, it is sometimes
convenient to view ⊕k, δ0, etc., as relations as well as functions to {0, 1}.

We first argue that, for any k, the relation ⊕k can be simulated by {⊕3, δ0, δ1}.
For example, to simulate x1 ⊕ · · · ⊕ xk for k > 3, take new variables y, z, and w and
let m = ⌈k/2⌉ and use x1 ⊕ · · · ⊕ xm ⊕ y and xm+1 ⊕ · · · ⊕ xk ⊕ z and y ⊕ z ⊕ w and
δ0(w).

Since {⊕3, δ0, δ1} can be used to simulate any relation ⊕k, we can use {⊕3, δ0, δ1}
to simulate an arbitrary system of linear equations over GF(2). In particular, we can
use them to simulate the subspace Υ of code words for a given generating matrix A.

Finally, we can use Uλ to simulate the function which evaluates the weight enu-
merator on Υ. Then, since λ �= 0, 1, we can apply Lemma 10 to complete the argument.
The same proof, with minor modifications, applies to ¬⊕3.

THE COMPLEXITY OF WEIGHTED BOOLEAN #CSP 1981

Lemma 14. Suppose that f ∈ F2 is not of product type. Then, for any positive

λ �= 1, there exists a constant c, depending on f , such that #CSP({f, δ0, δ1, Uλ, Uc})
is #P-hard.

Proof. If f does not have affine support, the result follows by Lemma 11. So
suppose f has affine support. Consider the underlying relation Rf , viewed as a table.
The rows of the table represent the tuples of the relation. Let J be the set of columns
on which the relation is not constant. That is, if i ∈ J , then there is a row x with
xi = 0 and a row y with yi = 1. Group the columns in J into equivalence classes: two
columns are equivalent if and only if they are equal or complementary. Let k be the
number of equivalence classes. Take one column from each of the k equivalence classes
as a representative, and focus on the arity-k relation R induced by those columns.

Case 1. Suppose that R is the complete relation of arity k. Let f∗ be the projection
of f onto the k columns of R. By Lemma 6,

#CSP({f∗}) ≤T #CSP({f}) ≤T #CSP({f, δ0, δ1, Uλ, Uc}).

We will argue that #CSP({f∗}) is #P-hard. To see this, note that every column of f∗

is useful. Thus, if f∗ were product-like, we could conclude that f∗ was of product type.
But this would imply that f is of product type, which is not the case by assumption.
So f∗ is not product-like, and hardness follows from Lemma 12.

Case 2. Suppose that R is not the complete relation of arity k. We had assumed
that Rf is affine. This means that, given three vectors, x, y, and z in Rf , x ⊕ y ⊕ z
is in Rf as well. The arity-k relation R inherits this property, so is also affine.

Choose a minimal set of columns of R that do not induce the complete relation.
This exists by assumption. Suppose that there are j columns in this minimal set.
Observe that j �= 1 because there are no constant columns in J . Also j �= 2, since
otherwise the two columns would be related by equality or disequality, contradicting
the preprocessing step. The argument here is that on two columns, R cannot have
exactly three tuples because it is affine, and having tuples x, y, and z in would
require the fourth tuple x⊕ y⊕ z. But if it has two tuples, then, because there are no
constant columns, the only possibilities are either (0, 0) and (1, 1) or (0, 1) and (1, 0).
Both contradict the preprocessing step, so j ≥ 3.

Let R′ be the restriction of R to the j columns. Now R′ of course has fewer than
2j rows, and at least 2j−1 by minimality. It is affine, and hence must be ⊕j or ¬⊕j . To
see this, first note that the size of R′ has to be a power of 2 since R′ is the solution to
a system of linear equations. Hence the size of R′ must be 2j−1. Then, since there are
j variables, there can only be one defining equation. And, since every subset of j − 1
variables induces a complete relation, this single equation must involve all variables.
Therefore, the equation is ⊕j or ¬⊕j .

Let f ′ be the projection of f onto the j columns just identified. Let f ′′ be further
obtained by pinning all but three of the j variables to 0. Pinning j − 3 variables to 0
leaves a single equation involving all three remaining variables. Thus Rf ′′ must be ⊕3

or ¬⊕3.
Now define the symmetric function f ′′′ by

f ′′′(a, b, c) = f ′′(a, b, c)f ′′(a, c, b)f ′′(b, a, c)f ′′(b, c, a)f ′′(c, a, b)f ′′(c, b, a).

Note that Rf ′′′ is ⊕3 or ¬⊕3, since Rf ′′ is symmetric and hence Rf ′′′ = Rf ′′ .
To summarize: using f and the constant functions δ0 and δ1, we have simulated a

function f ′′′ such that its underlying relation Rf ′′′ is either ⊕3 or ¬⊕3. Furthermore,
if triples x and y have the same number of 1’s, then f ′′′(x) = f ′′′(y).

We can now simulate an unweighted version of ⊕3 or ¬⊕3 using f ′′′ and a unary
function Uc, with c set to a conveniently chosen value. There are two cases. Suppose

1982 M. DYER, L. A. GOLDBERG, AND M. JERRUM

first that the affine support of f ′′′ is ¬⊕3. Then let w0 denote the value of f ′′′ when ap-
plied to the 3-tuple (0, 0, 0), and let w2 denote f ′′′(0, 1, 1) = f ′′′(1, 0, 1) = f ′′′(1, 1, 0).

Recall that f ′′′(x) = 0 for any other 3-tuple x. Now let c = (w0/w2)
1/2

. Note from the
definition of f ′′′ that w0 and w2 are squares of rational numbers, so c is also rational.
Define a function g of arity 3 by g(α, β, γ) = Uc(α)Uc(β)Uc(γ)f ′′′(α, β, γ). Note that
g(0, 0, 0) = w0 and g(0, 1, 1) = g(1, 0, 1) = g(1, 1, 0) = c2w2 = w0. Thus, g is a pure
affine function with affine support ¬⊕3 and range {0, w0}. The other case, in which
the affine support of f ′′′ is ⊕3, is similar.

We have established a reduction from either #CSP(⊕3, Uλ, δ0, δ1) or #CSP(¬⊕3,
Uλ, δ0, δ1), which are both #P-hard by Lemma 13.

Lemma 15. If f ∈ F2 is not of product type, then #CSP({f, δ0, δ1, Uλ}) is #P-

hard for any positive λ �= 1.
Proof. Take an instance I of #CSP({f, δ0, δ1, Uλ, Uc}), from Lemma 14, with n

variables x1, x2, . . . , xn. We want to compute the partition function Z(I) using only
instances of #CSP({f, δ0, δ1, Uλ}), that is, instances which avoid using constraints Uc.
For each i, let mi denote the number of copies of Uc that are applied to xi, and let
m =

∑n
i=1 mi. Then we can write the partition function as Z(I) = Z(I; c), where

Z(I; w) =
∑

σ∈{0,1}n

Ẑ(σ)
∏

i:σi=1

wmi =
∑

σ∈{0,1}n

Ẑ(σ)w
∑ n

i=1
miσi ,

where Ẑ(σ) denotes the value corresponding to the assignment σ(xi) = σi, ignoring
constraints applying Uc, and w is a variable. So Ẑ(σ) is the weight of σ, taken over
all constraints other than those applying Uc. Note also that Z(I; w) is a polynomial
of degree m in w. We can evaluate Z(I; w) at the point w = λj by replacing each
Uc constraint with j copies of a Uλ constraint. This evaluation is an instance of
#CSP({f, δ0, δ1, Uλ}). So, using m different values of j and interpolating, we learn the
coefficients of the polynomial Z(I; w). Then we can set w = c to evaluate Z(I).

Lemma 16. Suppose that f ∈ F2 is not of product type and g ∈ F2 is not pure

affine. Then #CSP({f, g, δ0, δ1}) is #P-hard.

Proof. If g does not have affine support, we are done by Lemma 11. So suppose
that g has affine support. Since g is not pure affine, the range of g contains at least
two nonzero values.

The high-level idea will be to use pinning and bisection to extract a nontrivial
unary weight function Uλ from g. Then we can reduce from #CSP({f, δ0, δ1, Uλ}),
which we proved #P-hard in Lemma 15.

Look at the relation Rg, viewed as a table. If every column were constant, then g
would be pure affine, so this is not the case. Select a nonconstant column with index
h. If there are two nonzero values in the range of g amongst the rows of Rg that are 0
in column h, then we derive a new function g′ by pinning column h to 0. The new
function g′ is not pure affine, since the two nonzero values prevent this. So we will
show inductively that #CSP({f, g′, δ0, δ1}) is #P-hard. This will give the result since
#CSP({f, g′, δ0, δ1}) trivially reduces to #CSP({f, g, δ0, δ1}).

If we don’t finish this way, or symmetrically by pinning column h to 1, then we
know that there are distinct positive values w0 and w1 such that, for every row x
of Rg with 0 in column h, g(x) = w0 and, for every row x of Rg with 1 in column h,
g(x) = w1. Now note that, because the underlying relation Rg is affine, it has the
same number of 0’s in column h as 1’s. This is because Rg is the solution of a set
of linear equations. Adding the equation xh = 0 or xh = 1 exactly halves the set
of solutions in either case. We now project onto the index set {h}. We obtain the

THE COMPLEXITY OF WEIGHTED BOOLEAN #CSP 1983

unary weight function Uλ, with λ = w1/w0, on using the earlier observation about
proportional functions. This was our goal and completes the proof.

Lemma 5 now follows from Lemmas 8 and 16, completing the proof of
Theorem 4.

Appendix. The purpose of this appendix is to prove Lemma 7 for an arbitrary
fixed domain [q]. We used only the special case q = 2, which we stated and proved
as Lemma 8. However, pinning appears to be a useful technique for studying the
complexity of #CSP, so we give a proof of the general Lemma 7, which we believe
will be applicable elsewhere.

In order to prove the lemma, we introduce a useful, but less natural, variant of
#CSP. Suppose F ⊆ Fq. An instance I of #CSP�=(F) consists of a set V of variables
and a set C of constraints, just like an instance of #CSP(F). In addition, the instance
may contain a single extra constraint C applying the arity-q disequality relation χ�=

with scope (vC,1, . . . , vC,q).
The disequality relation χ �= is defined by χ �=(x1, . . . , xq) = 1 if x1, . . . , xq ∈ [q]

are pairwise distinct, that is, if they are a permutation of the domain [q]. Otherwise,
χ �=(x1, . . . , xq) = 0.

Lemma 7 follows immediately from Lemmas 17 and 18 below.
Lemma 17. For every F ⊆ Fq, #CSP(F ∪

⋃

c∈[q] δc) ≤T #CSP �=(F).
Proof. We follow the proof lines of Lemma 8, but instead of subtracting the

contribution corresponding to configurations in which some ti’s get the same value,
we use the disequality relation to restrict the partition function to configurations in
which they get distinct values.

Say that F is symmetric if it is the case that for every arity-k function f ∈
F , every tuple x ∈ [q]k, and every permutation π : [q] → [q], f(x1, . . . , xk) =
f(π(x1), . . . , π(xk)).

Let I be an instance of #CSP(F ∪
⋃

c∈[q] δc) with variable set V . Let Vc be the

set of variables v ∈ V to which the constraint δc(v) is applied. Assume without loss of
generality that the sets Vc are pairwise disjoint. Let Vq = V \

⋃

c∈[q] Vc. We construct

an instance I ′ of #CSP�=(F). The instance has variables Vq ∪ {t0, . . . , tq−1}. Every
constraint C of I involving a function f ∈ F corresponds to a constraint C′ of I ′.
Here C′ is the same as C except that variables in Vc are replaced with tc, for each
c ∈ [q]. Also, we add a new disequality constraint to the new variables t0, . . . , tq−1.

Case 1. F is symmetric. By construction, Z(I ′) =
∑

y0,...,yq−1
Z(I ′ | σ(t0) =

y0, . . . , σ(tq−1) = yq−1), where the sum is over all permutations y0, . . . , yq−1 of [q]. By
symmetry, the summands are all the same, so Z(I ′) = q!Z(I ′ | σ(t0) = 0, . . . , σ(tq−1) =
q − 1) = q!Z(I).

Case 2. F is not symmetric. Say that two permutations π1 : [q] → [q] and
π2 : [q] → [q] are equivalent if, for every f ∈ F and every tuple x ∈ [q]k, f(π1(x1), . . . ,
π1(xk)) = f(π2(x1), . . . , π2(xk)). Partition the permutations π : [q] → [q] into equiva-
lence classes. Let h be the number of equivalence classes and ni be the size of the ith
equivalence class, so n1 + · · · + nh = q!.6 Let {π1, . . . , πh} be a set of representatives
of the equivalence classes with π1 being the identity. We know that n1 �= q! since F
is not symmetric.

For a positive integer ℓ we will now build an instance I ′ℓ by adding new constraints
to I ′. For each πi other than π1 we add constraints as follows. Choose a function fi ∈ F

6In fact, it can be shown that these equivalence classes are cosets of the symmetry group of f ,
and hence are of equal size, though we do not use this fact here.

1984 M. DYER, L. A. GOLDBERG, AND M. JERRUM

and a tuple y such that fi(y1, . . . , yk) �= fi(πi(y1), . . . , πi(yk)). If fi(y1, . . . , yk) >
fi(πi(y1), . . . , πi(yk)), then define the k-tuple xi by (xi

1, . . . , x
i
k) = (y1, . . . , yk). Other-

wise, let n be the order of the permutation πi and let gr denote fi(π
r
i (y1), . . . , π

r
i (yk)).

Since g0 < g1 and gn = g0 there exists an ξ ∈ {1, . . . , n− 1} such that gξ > gξ+1. Let
(xi

1, . . . , x
i
k) = (πξ(y1), . . . , π

ξ(yk)) so fi(x
i
1, . . . , x

i
k) > fi(πi(x

i
1), . . . , πi(x

i
k)).

Let wij denote fi(πj(x
i
1), . . . , πj(x

i
k)) so, since π1 is the identity, we have just en-

sured that wi1 > wii. Let si = (txi
1
, . . . , txi

k
), and let 0 ≤ zi ≤ h (i = 2, . . . , h) be posi-

tive integers, which we will determine below. Add ℓzi new constraints to I ′ℓ with rela-

tion fi and scope si. Let λi =
∏h

γ=2 w
zγ

γi . Note that, given σ(t0) = πi(0), . . . , σ(tq−1) =
πi(q − 1), the contribution to Z(I ′ℓ) for the new constraints is

h
∏

γ=2

fγ(σ(txγ
1
), . . . , σ(txγ

k
))zγℓ =

h
∏

γ=2

fγ(πi(x
γ
1), . . . , πi(x

γ
k))zγℓ

=

h
∏

γ=2

w
zγℓ
γ,i =

(h
∏

γ=2

w
zγ

γ,i

)ℓ

= λi
ℓ.

So

Z(I ′ℓ) =

h
∑

i=1

ni Z(I ′ | σ(t0) = πi(0), . . . , σ(tq−1) = πi(q − 1))λℓ
i .

We have ensured that λ1 > 0, since wi1 > wii ≥ 0, so wi1 > 0 for all i = 2, . . . , h.
We now choose the zi’s so that λi �= λ1 for all i = 2, . . . , h. If wγi = 0 for any
γ = 2, . . . , h, we have λi = 0 and hence λi �= λ1. Thus we will assume, without loss of
generality, that wγi > 0 for all γ = 2, . . . , h and i = 2, . . . , h′, where h′ ≤ h. Then we
have

λi

λ1
=

h
∏

γ=2

(wγi

wγ1

)zγ

= e
∑h

γ=2
αγizγ (i = 2, . . . , h′),

where αγi = ln(wγi/wγ1). Note that αii < 0, since wii < wi1. We need to find an

integer vector z = (z2, . . . , zh) so that none of the linear forms Li(z) =
∑h

γ=2 αγizγ is
zero, for i = 2, . . . , h′. We do this using a proof method similar to the Schwartz–Zippel
lemma. (See, for example, [20].) None of the Li(z) is identically zero, since αii �= 0.
Consider the integer vectors z ∈ [h]h−1. At most hh−2 of these can make Li(z) zero for
any i, since the equation Li(z) = 0 makes zi a linear function of zγ (γ �= i). Therefore
there are at most (h′ − 1)hh−2 < hh−1 such z which make any Li(z) zero. Therefore
there must be a vector z ∈ [h]h−1 for which none of the Li(z) is zero, and this is the
vector we require.

Now, by combining terms with equal λi and ignoring terms with λi = 0, we can
view Z(I ′ℓ) as a sum Z(I ′ℓ) =

∑

i ciλ
ℓ
i , where the λi’s are positive and pairwise distinct

and

c1 = n1Z(I ′ | σ(t0) = 0, . . . , σ(tq−1) = q − 1).

Thus, by Lemma 3.2 of [8] we can interpolate to recover c1. Dividing by n1, we get

Z(I ′ | σ(t0) = 0, . . . , σ(tq−1) = q − 1) = Z(I).

THE COMPLEXITY OF WEIGHTED BOOLEAN #CSP 1985

Lemma 18. For every F ⊆ Fq, #CSP�=(F) ≤T #CSP(F).
Proof. We use Möbius inversion for posets, following the lines of the proof of [2,

Theorem 8].7 Consider the set of partitions of [q]. Let 0 denote the partition with
q singleton classes. Consider the partial order in which η ≤ θ if and only if every
class of η is a subset of some class of θ. Define µ(0) = 1, and for any θ �= 0 define
µ(θ) = −

∑

η≤θ,η �=θ µ(η). Consider the sum
∑

η≤θ µ(η). Clearly, this sum is 1 if θ = 0.
From the definition of µ, it is also easy to see that the sum is 0 otherwise, since

∑

η≤θ

µ(η) = µ(θ) +
∑

η≤θ,η �=θ

µ(η) = 0.

Now let I be an instance of #CSP �=(F) with a disequality constraint applied
to variables t0, . . . , tq−1. Let V be the set of variables of I. Given a configuration
σ : V → [q], let ϑ(σ) be the partition of [q] induced by of (σ(t0), . . . , σ(tq−1)). Thus i
and j in [q] are in the same class of ϑ(σ) if and only if σ(ti) = σ(tj). We say that a
partition η is consistent with σ (written η � σ) if η ≤ ϑ(σ). Note that η � σ means
that for any i and j in the same class of η, σ(ti) = σ(tj).

Let Ω be the set of configurations σ that satisfy all constraints in I except possibly
the disequality constraint. Then Z(I) =

∑

σ∈Ω w(σ)1σ , where 1σ = 1 if σ respects the
disequality constraint, meaning that ϑ(σ) = 0, and 1σ = 0 otherwise. By the Möbius
inversion formula derived above,

Z(I) =
∑

σ∈Ω

w(σ)
∑

η≤ϑ(σ)

µ(η).

Changing the order of summation, we get

Z(I) =
∑

η

µ(η)
∑

η≤θ

∑

σ∈Ω:ϑ(σ)=θ

w(σ) =
∑

η

µ(η)
∑

σ∈Ω:η�σ

w(σ).

Now note that
∑

σ:η�σ w(σ) is the partition function Z(Iη) of an instance Iη of
#CSP(F). The instance Iη is formed from I by ignoring the disequality constraint
and identifying variables in t0, . . . , tq−1 whose indices are in the same class of η. Thus
we can compute all the Z(Iη) in #CSP(F). Finally, Z(I) =

∑

η µ(η)Z(Iη), completing
the reduction.

REFERENCES

[1] G. Brightwell and P. Winkler, Graph homomorphisms and phase transitions, J. Combin.
Theory Ser. B, 77 (1999), pp. 221–262.

[2] A. Bulatov and V. Dalmau, Towards a dichotomy theorem for the counting constraint sat-

isfaction problem, in Proceedings of the 44th Annual IEEE Symposium on Foundations of
Computer Science, IEEE Press, Piscataway, NJ, 2003, pp. 562–573.

[3] D. Cohen, M. Cooper, P. Jeavons, and A. Krokhin, The complexity of soft constraint

satisfaction, Artificial Intelligence, 170 (2006), pp. 983–1016.
[4] A. Bulatov and M. Grohe, The complexity of partition functions, Theoret. Comput. Sci.,

348 (2005), pp. 148–186.
[5] B. Cipra, An introduction to the Ising model, Amer. Math. Monthly, 94 (1987), pp. 937–959.
[6] N. Creignou and M. Hermann, Complexity of generalized satisfiability counting problems,

Inform. and Comput., 125 (1996), pp. 1–12.
[7] N. Creignou, S. Khanna, and M. Sudan, Complexity Classifications of Boolean Constraint

Satisfaction Problems, SIAM Monogr. Discrete Math. Appl. 7, SIAM, Philadelphia, 2001.

7Lovász [14] had previously used Möbius inversion in a similar context.

1986 M. DYER, L. A. GOLDBERG, AND M. JERRUM

[8] M. Dyer and C. Greenhill, The complexity of counting graph homomorphisms, Random
Structures Algorithms, 17 (2000), pp. 260–289.

[9] M. Dyer, L. A. Goldberg, and M. Paterson, On counting homomorphisms to directed

acyclic graphs, in Proceedings of the 33rd International Colloquium on Automata, Lan-
guages and Programming, Lecture Notes in Comput. Sci. 4051, Springer, New York, 2006,
pp. 38–49.

[10] T. Feder and M. Y. Vardi, The computational structure of monotone monadic SNP and

constraint satisfaction: A study through Datalog and group theory, SIAM J. Comput., 28
(1998), pp. 57–104.

[11] L. A. Goldberg and M. Jerrum, Inapproximability of the Tutte polynomial, Inform. Comput.,
206 (2008), pp. 908–929.

[12] C. Greenhill, The complexity of counting colourings and independent sets in sparse graphs

and hypergraphs, Comput. Complexity, 9 (2000), pp. 52–72.
[13] P. Hell and J. Nešetřil, Graphs and Homomorphisms, Oxford University Press, London,

2004.
[14] L. Lovász, Operations with structures, Acta Math. Hungarica, 18 (1967), pp. 321–328.
[15] R. Ladner, On the structure of polynomial time reducibility, J. ACM, 22 (1975), pp. 155–171.
[16] C. Papadimitriou, Computational Complexity, Addison–Wesley, Reading, MA, 1994.
[17] F. Rossi, P. van Beek, and T. Walsh, eds., Handbook of Constraint Programming, Elsevier,

New York, 2006.
[18] T. Schaefer, The complexity of satisfiability problems, in Proceedings of the 10th Annual

ACM Symposium on Theory of Computing, ACM Press, New York, 1978, pp. 216–226.
[19] A. Scott and G. Sorkin, Polynomial Constraint Satisfaction: A Framework for Counting

and Sampling CSPs and Other Problems, online at http://arxiv.org/abs/cs/0604079.
[20] J. Schwartz, Fast probabilistic algorithms for verification of polynomial identities, J. ACM,

27 (1980), pp. 701–717.
[21] L. G. Valiant, The complexity of enumeration and reliability problems, SIAM J. Comput., 8

(1979), pp. 410–421.
[22] D. Welsh, Complexity: Knots, Colourings and Counting, LMS Lecture Note Ser. 186,

Cambridge University Press, Cambridge, UK, 1993.

