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Abstract

A first step is made towards a complete generalization of the classical linear frequency do-
main theory of feedback control. First, the theory of partial fraction expansions is extended
to multi-dimensional complex rational functions. As may be expected, the theory is now
much more complicated and requires the use of ideal theory and notions from algebraic
geometry. It turns out that, as in the linear case, the coefficients of the expansion (which
are now polynomials) are obtained by ‘removing the given singularity’ and evaluating on
the singular variety, i.e. evaluating the rational function modulo the singularity in the
coordinate ring of the singularity.

Multi-dimensional residue theory is based on the use of homology groups of the space (in
fact, the compactified version, S2") minus the singular variety T. We shall show that the
inversion of the n-dimensional Laplace transform can be performed by finding a homology
basis of H,(5?"\T), and a dual basis of Hy_1(TU{o0}), where r+¢ = n. This will reduce the
computation in many cases to a simple application of the n-dimensional version of Cauchy’s
theorem.

The use of the theory in feedback control design is given with a particular study of a
simple second-order bilinear system. We shall define an implicit closed-loop transfer function
(which is nonseparable) and then apply norm inequalities in the time domain to complete
the stability analysis.

Keywords : Nonlinear Control Design, Frequency Domain, Residues, Multi-Dimensional

Laplace Transform .




1 Introduction

The classical theory of feedback control in the frequency domain is still widely applied in
linear systems theory and although the development of Volterra series has led to generalized
transfer functions and hence frequency response theory for nonlinear systems, there has been
little use of these ideas in the control of such systems. One reason for this is that the classical
method is based on partial fraction expansions and the inverse Laplace transform and these
are difficult to apply in the multi-linear case. In this paper we shall give a generalization of
both these techniques, the former being based on ideal theory and the latter on algebraic
topology and n-dimensional residue theory. It turns out that if we attempt to write a
rational function R(s1,:--,5,) = P(s1,++,8)/Q(51,--,5,) of n complex variables in the

form

k
o
R SR By Y —
(51 ) ;Qi(sli"'>sn)

where ); are the irreducible components of @, then we are faced with a number of difficulties.
Firstly, this expansion is not always possible, even if a; is a polynomial. Moreover, if it is
possible then the polynomials a; € C[s1,--,sp] are not uniquely determined. Roughly
speaking, they are determined modulo the coordinate ring of the singularity defined by Q;.

For the inversion of the Laplace transform, we shall reduce the problem to integration
over the basic homology cycles of the homology group of the compactified complex space
minus the singular manifold. Using the Alexander-Poincare duality theorem can sometimes
lead to a simplification of the integrals.

In the final section we shall study the effect of putting a simple separable system in a
feedback system and it will be seen that nonanalytic operations naturally arise. (In the case

of a second order bilinear system, it is necessary to take the square root of the output, which



1s shown to be positive.) We shall show that we are naturally led to nonseparable transfer
functions, although in an implicit form. We shall combine the ideas of frequency domain

transfer functions with time-domain norm bounds in order to prove input-output stability.

2 Nonlinear Systems in the Frequency Domain

It is well known that a linear analytic system
¢ = f(z)+ug(z) , 2(0)=2z€R"
gives rise to a Volterra series of the form
1
z(t) = wol(t) + f w1 (1, 01, zo)u(oy)do,
0
1 ol
+ / f wal(t, o7, 09, zo)u(oy)u(os)dedos+ - - -
o Jo

(see [1]). Moreover, by extending the kernels we can define, for the k'* order kernel, a
k-dimensional ‘transfer function’ Wi(s1,-+,8:) fors; € C, 1 <i<k.

Conversely, if the function Wi(s1, -, ;) is rational, strictly proper and recognizable
then there exists a finite-dimensional bilinear realization of this kernel (see [3]). (Here,
recognizable means that if W (s, - v8k) = P(81,+++,88)/Q(sy, - , 8¢ ) for polynomials P
and Q, then Q(sy,---,s¢) = ¥, Q:i(s;) for some polynomials @i.) The separability of
@ makes the theory very easy; however, we shall see that introducing feedback naturally
introduces nonseparable functions Q which do not have bilinear realizations. In this paper
we shall develop a generalization of classical feedback control theory based on system poles
and zeros, feedback compensation and root locus. Along the way we shall generalize the
theory of partial fraction expansion and develop a general theory for the inversion of the k-
dimensional Laplace transform based on Leray’s theory of residues and Alexander-Poincare

duality. Finally, we shall give a simple example to illustrate the theory.



3 Inversion of the Laplace Transform

In this section we shall derive a method for inverting a k-dimensional Laplace transform
by generalizing the one-variable case. Thus we show that partial fraction expansion can be
extended to C* and that the inversion of irreducible rational functions can be accomplished
in many cases by k-dimensional residue theory (for more details, see [2]). In what follows

we therefore consider a rational transfer function of the form

P(S]"':Sk)
R(81+-,8k) = ==
(s1 k) 11(51"',3k)"' ?‘(81"',5.&)

where each @; (1 < 7 < £) is an irreducible polynomial on C¥, and the Q; are relatively

prime. Thus, we would like to write R in the form

By (51 Sk)
R(s1--+,81) = 1 (3.1)
,‘%2 I
for some P;; € C[s; - -, s3]. It turns out that we can do this if and only if

(P) C(@1)+ - +(Q1)

where (1) is the principal ideal generated by ¢ and Q! = HJ¢,Q . From this it follows that

a necessary condition that R can be written in the form (3.1) is
V(@) NV(Q;) CV(P), Vi, j (3.2)

where V(1) is the variety defined by the polynomial ¢. If the ideal > ;(@}) is minimal, i.e.

\ /}:j (Q%) = 2-;(Q;) where /() is the radical ideal, then this condition is also sufficient.
Example

1 a; ag

5
s3—8s37 851 =5y 81+,

for any a;,a; € CJsy, s2]. Note that

V(si—s2)NV(s1+5)=0



while V(1) = @ and condition (3.2) is violated. However, the rational function

st 1.1 1 1

s1—s2 " 281 —55 28 + 55

(3.3)

is separable since V(s;) = {(s1,82) : 57 = 0} D 0. Note that, unlike the one-variable case,

a; and ay are not unique, if they exist. In fact we can write (3.3) in the form

81

_ 1
-5 2

14 a(s1,55)(s1 — 82) i 1 1 — a(sy,52)(s1 + s2)
81 — 89 2 81+ 82

for any « € C[s1,55]. Note that a(s; —s;) € (Q1) where Q1 = s1—s2 and a(s;+52) € (Q2)
where Q3 = s; + s5. Here, (.) denotes the principal ideal. It turns out that this is generally
true, i.e. the P;; in (3.1) are determined modulo an appropriate ideal depending on the Q!s.

To see how this works suppose

o ﬁ (S - Sk
R(Sl . l_’,‘ I * )
g; QJ(SI lsk)
is another representation of R. Then,
£ m;
YN (P -Pi)/@i=0
1=lg=1
and so
£ my _ )
>3 (P = Py)Qpr QP QP =0
i=1j=1

Then the next result follows:
Lemma 3.1 In the expansion (3.1), P;; is uniquely determined modulo the ideal (Qr '-"H)
so that P,; is well-defined in C[s; - -, 8;]/(Q~7*1). m)

Note that we have the sequence of (generalized) coordinate rings

Clss -, 8:)/(Q:) C Clsy -+, sk]/(QF) € - C Clsy -+, s /(QM™)
for each i and so repeated factors are associated with a corresponding coordinate ring.

5



In order to determine values of P;; (mod the ideal (Q™ %)), consider the special case

P(s1,s2) Py Py Py, Py Pa Py,
Sy 0 PRV WL L S
Q7 (81,82)Q5%(s1,82) @1 @ Q3 Q™M Q@ e

(The general case is similar.) Then, if such an expression exists, we have
P = vQ5 + wQp
for some polynomials v and w, where
v € Clsy -+, 8]/(Q™) ,w € Clsy -+, 5] /(QF).
Now,
v=PuQM 14 PiaQP=23 oo f Pipm;.

Using the division lemma we have

S5
|

a1Q1+ f1 = (@2Q1 + B2)Q1 + 1 = - -

= Q’ml—IQTl_l +ﬁm1-1QTl—2 +--4+ 5

and the F;s are determined. If we write the polynomialsin s; with coefficients in C[s;] and
each polynomial has highest-order coefficient independent of s, (i.e. a unit in C[s;]) then
it can be shown that the P;;’s are unique.

Example Consider the rational function

s _ B 4 Py & Py
(51— 83)%(s1+253)  s1—s3  (s1—53)2 &5 4262
Note that
V(s1— 83) NV (s1+2s3) = {0} C V(s?),
and

V(52 = (53) € /(51 = 53)2 + (51 + 263)



and so a partial fraction expansion exists. Then,

2

s 51 _ 4_ )
PS - (51 _ Sg)g 31+23§=D - g (E C[S], 82]/(31 + 232)) .
Write
7= r(s1+283) + 5 (1 = 8312
Then,
5 2
FEga= 535
and so
r=Pi(s1 — 53) + P,
whence,

5 1
P1=§ " P2=§S§.

We come next to the inversion of the Laplace transform. The general expression for the

inverse transform is, of course,

1 o1+ico Ok +ioco
fltr, - )= -——] f Flsyy- - m)elathit=sntlde, . 4o (3.4)
od a

(2mi)E J; —ico i
as in the one-variable case. Computation of this integral is, however, generally difficult and
we search for a generalization of the one-variable residue theory. To do this we shall use
singular homology and duality, and so we first recall some basic notions. If X is a differ-
entiable manifold, let Cp,(X) denote the singular p-chains and Zp(X), Bp(X) the singular p
cycles and boundaries, respectively. If w is a p-form we define

#
jw:é mi/w
cp gl

=1



where ¢, € Cp(X) is given by ¢, = 371, m;ay, for singular simplexes o7. If ¢}, ¢2 € Z,(X)

and o3 & ¢f, Le. o] = ¢} + £b2 for some b2 € B,(X), then by Stoke’s theorem we have

[ o= [ @+ (3.5)

for any ¢. Hence, if Hy(X) and HP(X) denote the (singular) homology and (de Rham)
cohomology groups, respectively, we can define

b= 1,

where ¢, € [¢p] € Hp(X) and w € [¢?] € HP(X). The main result we need is the well-known
Alexander-Poincare duality theorem:

Theorem 3.1 Let S” be an n-manifold homeomorphic to the n-dimensional sphere and
T a polyhedral submanifold of 5". Then, if r + ¢ = n, the homology groups H,_1(T) and
H,(S"\T) are isomorphic. Moreover, if {¢1,-,¢p} is an (r—1)-dimensional homology basis

of T, then there is a corresponding dual basis {d;,---,d,} of S"\T such that
'U(C;‘, d:) =F 6lj (iaj = 11 == ap)

O

Here, v is the linking coeflicient. (For a proof of this and a definition of the intersection
index and linking coefficients, see [4].) The linking coefficients are linear in the arguments
and so if F is analytic in C*\T and T' = T U {cc}, then for any cycle ¢ € Zn(C"\T) we

have

P
/ F(z)dz = (2mi)* 3 by Ry
j=1

c

where

h; = v(o;,¢)



for some (n — 1)-dimensional homology basis {0;} of T, and R is the ‘residue’ given by

_ 1

;)
in which {c;} is an n-dimensional homology basis of C"\T dual to {2;):
Returning to (3.4), it follows from (3.5) that if 4 is any cycle in Crn(S*¥\T) which is

weakly homologous to the cycle S*\{oo} € C1(52%\{o0}) then

f(tll“.’tk) = E-](F(Sl,"',&'k))

k
1
i) [fF(sl,---,sk)exp (Zsfii) dsy A+ Adsy.

i=1

Hence, by theorem 3.1, if {¢/ }1¢j<p is a basis of Hy—1(T) and {¢;}1<j<p is the dual basis

of Hi(C*\T), we have

P k
K'J(F(sl,---,sk)): (Q:i)kzhj/ F(s1,---,st)exp (Zl:sit!) ds; A+ - Adsy

£y

where
h‘j = ‘U(C‘j,‘f).

Example Consider the inverse Laplace transform of the function

1
1+5152

F(s1,89) =
The singular variety is
T= {(51152) € C2 P 8189 = --]_}

Since =T U{oo} is the 2-sphere with two points identified, the homology groups H, (T")

H,(C?\T) have dimension 1. Dual homology basic cycles are given by

e={(s1,82): Im sy =Im sy =0,Re s =1/Re s;, 0< Re s < oo}



(in Z,((T)) and
d={(s1,82) : 81 = 26" | 55 = 2¢'7 , 1,7 € [0,2n]}
(in Z5(C?\T)). Now it can be shown that
e, d) =1

and so

1 ef1titsats

e a8 /
(L1 F)(t,t2) G L, Tran ds; A dsy
=)
1 E ef1litsat
= ZW(—I) ‘/dmdsl /\ng
(

_I)k a?k

(8811]4_5?12) |(s1,s;)=(0‘0)

Example Consider the function

2

F(s1,82) = (1=5182)(1+ 5182)

It is easy to check that we can write

1 + 1
1 =518 1+.5‘132

F(Slasz) =

so that

Flt1,t2) = =Io(2(t1t2)M2) + Jo(2(t112)V/2).

4 Application to Control Theory

In this section we shall consider a very simple application of the previous theory to feedback

control design, generalizing the familiar linear theory. Consider a second order bilinear sys-
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tem, i.e. one with only a second order kernel H (s1,82) which is recognizable. In the first
place we shall assume that H is also symmetric, i.e. H(sy,s2) = H(s2,81). Suppose we put

H in a feedback loop of the form shown in fig. 1.

Fig. 1. A Simple Nonlinear Feedback System

Then, the general input-output relation for H is

H(81,32) = E%g% (4'1)

where Z(s;,s;) is the output of H such that the actual output £ is given by £(t) =

L=Y(Z)(t1,2)|ty=ts=¢- Since H is symmetric and separable it follows from (4.1) that Z(sy, s5)

is also symmetric and separable. Hence,
5(51 y 52) = Y(SI)Y(Sz)
where £(t) = y*(t). Hence, chasing the system around the loop, we get

(R(s1) — E(51))(R(s2) = E(s2)) = Y (s1)Y(s2) = H(s1,52)U(5:1)U(s2)

]

H(s1,52)G(51)E(51)G(52) E(s2).

11



Thus,

E(s1)B(6) = T GG~ R(6) Rlsa) + Blor)R(s2) + E(s2)R(s1))

Define the closed loop ‘transfer function® K(s1,52) by

1
1~ H(s1,82)G(s1)G(s2)"

K(s1,80) =
Then we have
E(s1)E(s2) = K(s1,52)(=R(s1)R(s2) + E(s1)R(s2) + E(52)R(s1)).
Hence,

e(tr)e(tz) = —(k(ty, t2) % x(r(t)r(t2))) + (k(t1, t2) % %(e(t1)r(t2))) + (k(t1, t2) % *(e(ta)r(11)))

where ** denotes the double convolution. It f (t1,t2) is a function of two time variables, we

denote by ||f(1,2)||Lspo,7] the norm

- 1ip
([ [ sopaa)

and if h(t) is a function of a sungle variable, |[h]|z»[o,7) denotes the usual p-norm. Thus,

lellZeo.ry < lkllzoto Pl Zogo,ry + 2kl oo, ryllel zato 7l oo,y (4.2)

by Young’s inequality where 1 = ;1—) 2 % - 1,

Theorem 4.1 For the feedback system in fig.1 with a separable H of second order, we

have
a+va?+4b
llellgstsiny £ ———— (4.3)
where

a = 2[|kllzspo,milirllzato,ry 5 & = [1Ellz1po,mlIrllFap0.1y-

12



In particular, if k € L?[0, T] then the system (r — ¢) is (L* N LY, L™ )-input-output stable.

Proof From (4.2) we have n? — an—b < 0 where = ||e||z2[0,r) and a, b are as above. The

result now follows easily from the elementary theory of quadratic inequalities. o
Example Consider the bilinear system given by H(s;, s2) = — “1’2. Then K(s;,s2) =

o e, where we have simply chosen G to be a gain v. By theorem 4.1 we see that

a+vVaZ+4b

r <
llellz 0.7 < 5

where

a = 2| Jo(2v(t1t2) )|z millrllLapor » b = [1Jo(2y(tst2)Hlpso mllrllEepo -

Remark (a). For a fixed T in the last example ||J0(27(t1t2)1/?)||p[0,;r] — () as y — 0.
Thus we see that the error can be made small for large gain.

(b) If H is not symmetric, but is invertible then we can consider the symmetrized system
H +H where H(sy,s2) = H(s2,51). A desired output from H determines an input u so that
(H +H)U can be used as the desired output from the symmetrized system. The use of such

techniques coupled with a generalization of the root locus are currently under investigation.

5 Conclusions

In this paper we have begun a generalized frequency domain feedback control systems theory
for nonlinear systems. Firstly, the classical partial fraction expansion technique has been
generalized to the case of rational functions of n complex variables using ideal theory. It has
been shown that such an expansion does not always exist and when it does is only determined
modulo a (generalized) coordinate ring in the sense of algebraic geometry. Next the n-
dimensional Laplace transform has been considered and, by using de Rham cohomology

theory, a method of computing the inverse has been presented. Finally, it has been shown

13



that by including separable rational transfer functions in feedback systems leads naturally to
nonseparable ‘transfer functions’ and a technique for studying the stability of the feedback
system has been given. There is clearly a great deal more work to be done in this area before
anything like a classical design technique exists, but these results certainly demonstrate that
such a generalization of classical feedback theory is quite possible. It appears that functions
like Jo(f) may well take the place of exponentials for linear systems, a conjecture which is

currently under investigation.
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