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Causality in real-time dynamic substructure testing
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aCentre for Systems and Control and Department of Mechanical Engiggé&niversity
of Glasgow, GLASGOW. G12 8QQ Scotland.

b Department of Mechanical Engineering, Queens Building, Universityistd, Bristol
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Abstract

Causality, in the bond graph sense, is shown to provide a conceptoaviiak for the
design of real-time dynamic substructure testing experiments. In particutawnkstabil-
ity problems with split-inertia substructured systems are reinterpreted aalibaissues
within the new conceptual framework.

As an example, causality analysis is used to provide a practical solution to a spi&in
substructuring problem and the solution is experimentally verified.

Key words: Substructuring; hardware-in-loop testing; causality; bond graphs.

1 Introduction

Real-time dynamic substructure testing is a hybrid numkagperimental test-
ing technique for simulating the dynamics of structuresalltiws critical elements
within a structure to be experimentally tested at full scalbilst subjected to dy-
namic forcing. The structure under consideration is sptid ian experimental test
piece (omphysical substructupeand a numerical model describing the remainder of
the structure (onumerical substructuje The challenge is to ensure that the phys-
ical and numerical substructures interact in real-timehsihat they emulate the
behaviour of the complete structure during dynamic exoitat

Hybrid testing of large civil engineering structures subgelcto extreme dynamic
loading, such as earthquakes, has been successfullymeddor many years at ex-
panded time-scales (known pseudo-dynamitesting [1-4]). For large structures,

1 Corresponding author. Email: P.Gawthrop@eng.gla.ac.uk

Preprint submitted to Elsevier Preprint 1 October 2007



a significant advantage of substructuring is that scalifgcef can be eliminated
as the portion of the structure being tested physically aaatlfull-scale. Due to
the quasi-static nature of these expanded time-scale teditaitation is that dy-
namic and hysteretic forces must be estimated. Real-timtg, i@hich allow the
experimental testing of velocity-dependent characiessivere first proposed by
Nakashima et.al. [5]. Current real-time substructuringaesh falls broadly into
two main areas; the development of numerical integratigorthms to compute
the numerical model [6—8] and the development of contraltsgies to at the inter-
face between the two substructures [9—12]. This paper izvatetl from the control
engineering approach, but has implications which span &@hs of work. This is
because the causality of a real-time dynamic substrucésteid largely indepen-
dent of both the control and numerical integration metha#sluThe causality is a
property of how the two systems goened and where the division between numer-
ical and physical is chosen. For many systems causal cocdlicbccur, with the
result that the system can be unstable and/or un-impletolen®y using a simple
example, we seek to explain how causality in real-time dyinambstructuring is
an essential concept which should be used in the design sificti tests.

Analysis of the system causality can be done in a number o wayhis work the
motivation comes from bond graphs [13-17], for which ane&ftand numerical
methods for analysing causality have been established. Boagh analysis has
already been applied to real-time dynamic substructunnG@awthrop, Wallace &
Wagg [18], where the concept olvatual junctionbetween numerical and physical
subsystems was developed. A introduction to causality amdl lyraphs is given
by Gawthrop & Bevan [17] and an in-depth discussion of catysai given by
Marquis-Favre & Scavarda [19]; In substructuring theretlree main issues which
relate to causality:

(1) The inclusion or exclusion of inertia, damping or elastirces in either sub-
system can affect the causality of the substructured model.

(2) The form of the numerical model will be determined by thasality substruc-
tured model. Ideally an ordinary differential equationnfiois sought rather
than a differential-algebraic equation which is more diffi¢co implement nu-
merically.

(3) The design of thdéransfer systenfdescribed in detail below), in particular
the choice of force or displacement actuation, dependsenahsality of the
substructured model.

In some situations it is possible to hagausal conflictwhich in substructuring
usually indicates problems relating to items 1-3.

Causality and inversion are closely related [17]. In thedmease where systems
can be represented as single-input, single-output trafigietions, bond graph re-
sults can be represented in block diagram terms. In paaticcdusality change cor-
responds to taking the reciprocal of the correspondingstearfunction. As block



diagrams may be more familiar, results are interpretediglay thoughout the

paper. However, the bond graph approach is more generakasaompasses non-
linear and multivariable systems as well; more importaraihough the block di-

agram is a useful way of presenting bond graph results, thétsecould not have
been obtained as easily using block diagrams alone.

Substructuring involving split-mass systems is known tegise to implemen-
tation problems [12, 20]. This paper provides a new caysbised conceptual
framework for such systems as well as an experimentallifi@grpractical solu-
tion.

The purpose of this paper is to explain why causality is anoirtgmt issue for

real-time dynamic substructuring. Section 2.1 gives a daydamsed framework

for substructuring and gives illustrative examples. $#ctl focuses on situations
where there is causal conflict and proposes a solution baseadeodesign of a

coupling systemSection 5 applies the methods to an experimental couplediype

lum oscillator system [20, 21]; the range of experimentahp@eters is substantially
increased using the new approach. Section 6 concludes plee. pa

2 Substructuring and Causality

2.1 Substructuring

The physical and numerical substructures interact thrakiglapplication of inter-
face equilibrium and compatibility conditions. This maydihieved by measuring
the force at the interface and imposing it on the numerichssucture within the
numerical integration routine, hence satisfying the eloitim condition. Then the
interface displacement computed from the numerical madeiposed on the phys-
ical system, satisfiying the compatibility condition transfer systenftypically an
actuator) is required to impose the interface displaceroaiculated from the nu-
merical substructure on the physical substructure. We teféhis substructuring
configuration aglow actuation(adopting the bond graph terminology in which in-
teractions between systems are thought of as efforts ang)tléMternatively, the
measured interface displacement may be imposed on the mansubstructure
and the resulting computed force imposed on the physic&sysThis configura-
tion, in which the transfer system is required to impose titerface force, we term
effort actuation

For accurate recreation of the overall structural dynajnézg-time control errors at
the interface between the numerical and physical substegEmust be minimised.
One of the most significant sources of error in substrucgcomes from the effects
of the transfer system (i.e. the actuator) dynamics. Thestes system is typically



a single electric or hydraulic actuator but may be more cempior example an
hydraulic shaking table [12]. Typically the actuator hasrabuilt or ‘proprietary’
controller, which is usually some form of PID control, andula provide a suf-
ficient level of control for standard dynamic testing. Hoeguvn substructuring,
there is a second feedback loop through the numerical modatidition to the
controller feedback loop. The implication of the second btk loop is that the
control accuracy required for real-time substructurinfaisgreater than for stan
dard dynamic testing. Itis now well established that theopesary controller is not
sufficient to compensate for the actuator dynamics, pdatityuvhen testing lightly
damped structures such as those typically found in civilreging [7, 22, 23]. To
reduce the effect of actuator dynamics, a range of contrategjies which can be
implemented as aauter-looparound the proprietaryiriner-loop controller have
been proposed [10-12, 18, 22]. Gawthrop et.al [24] presentedhnique to calcu-
late the required control accuracy in terms of the maximwandgfer system delay
before system instability occurs. It has been observeddndightly damped sys-
tems representative of those found in civil engineering dielay can be less than 1
ms [7].

For simplicity, we will assume that the transfer-system aiyits are linear and
given by the transfer functiofe(s) in the case of effort actuation affd(s) in the
case of flow actuation. As discussed previously [24], it isvamient to approximate
these dynamics by a pure time-delay for the purposes of lesig

2.2 Causal analysis of the ideal case

For a substructuring test where the compatibility condit®imposed on the phys-
ical substructure the actuator will need to be in displacdrsentrol and hence
have a displacement feedback loop. In this case the equitibcondition must
be imposed on the numerical substructure and to achievéniactuator force is
measured and fed into the numerical substructure whichringanerates the dis-
placement demand for the actuator — hence closing the séeedbdack loop. This
combination of equilibrium and compatibility conditionssires that the system is
causal It is possible to swap the conditions between the two subsys and still
retain a causal system. However, it is also possible to m@®poange of non-causal
substructuring configurations. So the first observation \&kenis that a causal sub-
structuring system arises naturally when a ‘collocatediildzyium-compatibility
condition is used.

[Fig. 1 about here.]

To formalise this concept we consider the bond graph showfigare 1 which
shows a substructured system whishem and Phy represent th@umericaland
physical substructures respectively. Bobdtum and Phy are assumed to have a



bond graph representation and are joined by a single bondsemting the ideal
coupling of the two subsystems (i.e. ignoring transferesysgffects). Interactions
between elements within a bond graph are defined in terms effart (which in
this case is force) anow (the bond graph convention is to use velocity however
we will use displacement as this relates to our later ang)lylsi Figure 1g, denotes
the numerical effort (force) ane, the physical effort (force). Similarly the flows
(displacements) are denotégand f, corresponding to the numerical and physical
displacements respectively. In the ideal substructurasge, = ep and f, = f,, as
denoted by the bond graph in Figure 1 [24]. In fact the bonglyfarmalises the
concept of a collocated equilibrium-compatibility conalit exactly by the effort
and flow conditions defined on the bond. So the bond graph ar€ify represents
the coupling of the two subsystersim andPhy using the equilibrium condition
én = €p and the compatibility conditiorfi, = f,. There are two causality cases for
the substructured system in Figure 1 corresponding to usthegr effort or flow
actuation.

2.3 Choosing effort or flow actuation

The ideal case shown in Figure 1 ignores the transfer syst¢m bseful to demon-
strate the difference in causality between force (effon) displacement (flow)
actuation. This is shown in Figure 2 in both bond graph andkbtbagram form.

[Fig. 2 about here.]

Figure 2(a) shows the bond graph for effort (force) actuadiod Figure 2(b) shows
the case for flow actuation (displacement control). The tawsality cases are dis-
tinguishable by theausal strokgthe vertical line drawn at one end of the bond)
which indicates whether effort or flow is imposed on the sgbmys joined by the
bond — see [17] for further details. Each case can also besepted as a block-
diagram representation. The block diagram of Figure 2(c)esponds to Figure
2(a) and Figure 2(d) corresponds to Figure 2(b). In the blliekgrams we have
introduced transfer function representation®Nafm andPhy which areN(s) and
P(s) respectively, whersis a complex scalar i.e. the Laplace domain variable. The
subscripte and f are used to denote whether the transfer functd(g andP(s)
are defined for effort of flow causality respectively. It ispartant to note that the
physical substructurdqy ) is typically strongly nonlinear and so a transfer func-
tion representation is not normally possible. Howevers iuseful in this context
to analyse the closed loop system wilth§/ ) approximated by(s) + f(-), where
f(-) represents the some arbitrary nonlinear dynamics whichbeilneglected,
without loss of generality, in some of our analysis.

The key observation to make from Figure 2 is that by changnmegctiusality the
transfer function blocks are effectively inverted (a moetagled discussion is given



by Gawthrop & Bevan [17]). In fact the relationship can be esged as

Nt (
P (

As a result if the transfer functions are strictly propeg.(with relative degrege-1)

in one configuration then they will be improper in the othertHe later case causal

conflict can occur, or the system could be non-causal. Thmpbes shown later

demonstrate that this causal conflict often manifestd iégssh change from integral

to derivative causality. A discussion on the problems dased with derivative
causality can be found in [17].

Ng X(s), (1)
P X(s). ()

»u o

2.4 Natural causality

In bond graph terms theatural causalityof a system is that where the dynamic
bond graph componentqrepresenting masses) afd(representing springs) are
in integral causality{17]: the block diagram equivalent is an integrator ratlant

a differentiator. In this case, the corresponding systemsfier function is proper.
In the sequel, we associate the proper transfer fundish with Phy in natural
causality and the proper transfer functidfs) with Num in natural causality.

Implementing the system in it's natural causality will nmmse problems associated
with points 1- 3 and should be seen as an important part ahprery substruc-
turing design. The concept of natural causality (as we useré) is not formalised
beyond the conceptual, and we note that example systemsecaanfigured in
which natural causality either does not exist or altermdyivs non-unique.

Defining a natural causality depends primarily on the dediniof the substructur-
ing problem, which includes point 1; the inclusion or ex@hasof inertia, damping
or elastic forces in either subsystem. In some cases, wHerirdethe substructur-
ing problem, there is a choice of how the system can be divedegled, and in this
situation causality analysis can be used as a tool to enseir®y/stem has a natural
causality.

For simple systems, such as those considered in this papetausality analysis
can be achieved by considering the proper/improper natutlkeotransfer func-
tions. Alternatively the sequential causality assignnpeatedure (SCAP) [15, 17]
developed for bond graph representations of the systemecasdd to assign inte-
gral causality td andC components. In this work we will assume that systems are
casual if the causality can be completed using SCAP, and \ee teethis later as
the SCAP assumption. Using SCAP has some other direct bertafitexample,
the SCAP assumption implies that the entire system can beewiit state-space
form and therefore simulated numerically as an ordinarfedghtial equation: a



differential-algebraic equation solver is not requiretislresolves the issue raised
in point 2.

3 Dividing the system: A mass-spring-damper example

The choice of which parts of the complete system are to fBhg andNum is
often dictated by practical issues such as which partiadarponent of the overall
system needs to be tested. Beyond this there may be somelitgxib(i) choos-
ing where to divide the system, and (ii) choosing whetherpit & component
between the substructures. In this section we consideearlimass-spring-damper
system which demonstrates the key concepts associatetheithividing/coupling
process.

[Fig. 3 about here.]
[Table 1 about here.]

The mass-spring-damper system can be divided in a numbeays,\&nd in Figure

3 the case is shown wheRhy contains the spring and the numerical substructure
Num contains the mass and damper. This division is shown scleathatn Fig-

ure 3(a) and the corresponding bond graph is shown in Fig{loe Bhe natural
causality can be found either by using the bond graph, Fig(b¥g (using SCAP)

or by examining the transfer functions. In this case thedgiglisystem corresponds
to the causality of Figure 2(b) which corresponds to flow flisplacement) actua-
tion. This corresponds directly to the block diagram showfkigure 2(d) and the
transfer function®; andN; are defined in the first row of Table 1 — see Gawthrop,
Wallace & Wagg [18] for a more complete discussion of thiseyst

3.1 Splitting components

In this section we consider the consequences of splittiagpining betweeNum and
Phy . This is achieved by using the parameteto indicate the proportion of the
component placed iNum . Having considered the case for splitting the spring we
repeat the process for the damper and the mass.

We will use the concepts dbop-gainandphase-margirj25] to assess the robust-
ness of the split component systems — see [24] for a disqusdithese concepts
applied to substructuring. Using the block diagrams of Fegw2(c) and 2(d), the
loop-gainsLe(s) andL¢(s) are defined as the product of the two transfer functions



in the feedback loop respectively:

Le(s> = Ne(s) Pe(s> (3)
Lt(s) = Nt (s)Ps(s) (4)

The loop gain and phase margin will be used for comparing daseasfferenta
values.

3.1.1 Split spring
[Fig. 4 about here.]
[Table 2 about here.]

The case for the split spring is shown in Figure 4. The bongliggan Figures 4(a)
& 4(b), now indicate that the spring is divided in two partaean Num and the
other inPhy . This system retains the original (integral) causalityhaf tase when
all the spring was irPhy . The corresponding transfer functioNs(s) andPs(s)
(in the second row of Table 1) are proper.

The frequency response of the loop ghits) (given by equation (4)) is shown in
two forms. The Nyquist diagram shown in Figure 4(c) shows sitability margin
increases with increasing. This is expected, because whenr= 1 the system is
entirely numerical, with no physical component, and so It mo longer be a sub-
structured system. The modulus of the frequency resporsémign in Figure 4(d),
with the corresponding phase shown in Figure 4(e). This shibat the loop-gain
goes to zero at high frequencies, indicating that high feegies are attenuated.
The phase marging,, measured from these plots give an indication of how robust
the system is to delay (and other uncertainties) in the fieasystem (as discussed
in [24]). The variation of phase margin is shown in Figure 4p)l summarised
in Table 2 . As shown by the Nyquist diagram, the stabilitg.(phase) margin
increases with increasing

3.1.2 Split damper
[Fig. 5 about here.]
[Table 3 about here.]
The situation here is similar to that of splitting the springofar as causality is

unchanged. In contrast to the spring case, however, Figanel @able 3 shows that
phase margins are only slightly changed by splitting themm



3.1.3 Splitmass
[Fig. 6 about here.]
[Table 4 about here.]

The split mass case is shown in Figure 6. This case is signifjcdifferent from the
previous two cases. In this case the causality has changedifitegral to deriva-
tive. This can be ascertained either from the bond graphsrshoFigures 6(a) &
6(b), or the transfer functions shown in (Table 1). Spedificthe physical part of
the mass haderivativecausality andPs (s) is improper.

As before the frequency response of the loop @aifs) is shown as both a Nyquist
diagram, Figure 6(c) and as loop gain, Figure 6(d) and phasgim Figure 6(e).
The Nyquist diagram shows that stability margin increasels w. However, the
loop gain shows that at high frequencleg's) does not go to zero but rather that
Lt () = 2. Thus ifa > 0.5, the phase margins, shown in Figure 6(e) reduce to
zero and the system becomes unstable for an arbitrarilyl glhase delay in the
transfer system.

In this discussion, flow actuation has been considered elrdise of the split-mass,
switching to effort actuation does not resolve the restmcona. From equations
(1), (2), (3) and (4), it can be seen that the loop gain in e#otuationL¢(s) is the
inverse of the loop gain in flow actuation. Therefore, as Wabv actuation, at high
frequencies the loop gain does not tend to zero, resultirtgarcondition that if

a < 0.5 a small delay would induce instability. From a causaligwpoint, in the
case of flow actuation thBhy transfer function is non-proper and in the case of
effort actuation thd&Num transfer function is non-proper.

An approach to resolving this causal conflict is given in thgtrsection.

4 System design to avoid causal conflict

[Fig. 7 about here.]

In the previous discussion, we have considered several inaykich causal con-
flict can occur; a typical example arises from splitting a sna@mponent described
in Section 3.1.3. However, in common with most forms of dyi@atasting, sub-
structuring need only be accurate within a limited freqyelband . This fact can
be exploited to resolve causal conflict by introducingaapling systemCou ,
into the substructured system. Typically this would be iteebetweeMNum and
Phy as indicated in Figure 7(a). This coupling system would tegieed to gives
strong coupling within the frequency band of interest, betikw coupling outside
this range. In a range of cases, this approach can be usesbteeeausal conflict.



In generalCou is a two-port (and therefore two-input, two-output) systghich,

in the linear case would have four scalar transfer functtongescribe it. Figures
7(b) and 7(c) give two simple special case€ofu which, in the linear case, are as-
sociated with the single transfer function correspondathé one-port subsystem
cou . With the causality given, the version of Figure 7(b) imps#ort on both
ports whereas the version of Figure 7(c) impoles on both ports. As discussed
in Section 4.1cou could, for example, represent a damped spring.

Figure 7(d) gives the block diagram corresponding to thellgpaph of Figure 7(a)
when using the version @@ou given in Figure 7(b) and, as discussed in Section
3, whereN(s), C(s) andP(s) are the transfer functions corresponding\tom ,
cou andPhy in natural causality.

[Fig. 8 about here.]
[Fig. 9 about here.]

A key observation is that Figure 7(d) shotw loops and there are, therefore, two
loop gains. As discussed in Section 2.1, the loop gain is mapbwhen analysing
robust stability of the substructured system. The questises as to which loop is
the relevant one in this case. As discussed previously f8itds thetransfer sys-
tem providing the interface between numerical and physichssuctures, which
causes stability problems. Therefore it is the locatiomefttansfer systeifra that
determines the critical loop to consider. The two possibgicorrespond to whether
the transfer system generates flow or effort and lead to Egy8iand 9 respectively.
In each of these figures, (a) gives the bond graph of the sudbgted system with
Tra included but withoutCou , (b) gives the bond graph witGou included and
(c) and (d) give the corresponding block diagrams. We can wate down the
expressions for the loop gain and the closed-loop frequessponseld) as

N NP

“ =P PNt P ®)
P
~CN _ N(1+CP)
Lp_1+cp Dp_l+C(N+P) 0
CP
(9)
Note that at those frequenciesvhereC(jw) is large:

Ln(jw) ~ Lt (jw) (10)

Lp(jo) ~ Le(jw) (11)

Dn(jw) ~ Dt (jw) (12)

10



In the case of Figure 7(b):

ep = €n=Ce(s)(fn— fp) (13)
and in the case of Figure 7(c):

fp=fn=Ct(S)(en —€p) (14)

whereCqg(s) andCs (s) are the transfer functions correspondingtiu with effort
and flow output respectively.

4.1 Example: Split mass system

[Fig. 10 about here.]

Split-mass systems are common in substructuring — seecgon@e, Neild et. al.
[12]. The system used as an example in this section is a isezhrersion of a
coupled oscillator-pendulum system which has been amlyseviously [20, 21];
new experimental results appear in Section 5 of this papepatticular, it was
shown [21] that a key parameter is the rafiof the two massesp(= %) and
that stable substructuring requirps< 1. As will be shown in Section 4.1.1, this
result is a direct consequence of causal conflict. With a&atausality, the transfer
functions corresponding tdum , cou andPhy respectively are:

S

N =gt erk (12)

cls) = = (16)
1 1

P(s) = mps = pms (17)

The following subsections correspond to the bond graphsadied in Figures 8(b)
and 9(b) (with the block diagram equivalents of Figures &ddl 9(d) using the
special coupling systef@ou of Figure 7(b).

41.1 Flow actuation
[Fig. 11 about here.]

With reference to Figure 8(a), withoGbu , there is causal conflict; eithBlum or
Phy , but not both, has natural causality. With flow actuatiois teads to a loop
gain given by (5)

N pmg

Li(s) ==

P m@+cst+k (18)

11



Settings= jw and lettingw — oo, it follows that this loop gain has a constant high-
frequency gain ofp. Following the standard textbooks, this high-frequenciynga
must be less than unity for stability. This corresponds ®résult of Gonzalez-
Buelga et. al. [21]. Note that in the paper of Neild et. al. [12} 12—0% =0.2.

However, from (7), insertin@ou gives the loop gain:

CN MpS?(CeS+ Ke)

L p— p—
P714+CP  (MpS2 + oS+ ko) (M +cs+k)

(19)

As L, is proper, limy_»Lp(jw) = 0: the high-frequency gain is zero. This im-
plementation implies that the transfer systém imposes flow onto the physical
system; it must implement a form dfsplacementontrol.

In view of (19), it is convenient to reparameteri€®u in terms of natural fre-
guencyw, and damping rati§; when coupled t&’hy :

ke = Mpw? (20)
Ce = 2Mp&c (21)

The implication of includingCou in Phy is that aphysicalspring must be attached
between the physical mass, and the actuator. This idea has been previously sug-
gested by [11].

[Fig. 12 about here.]

Alternatively, using elementary block-diagram manipiglaton Figure 8(d), it fol-
lows that
ERCLIC C(SP(S)
P14 C(9)P(s) " 14+C(s)P(s)
The latter form of the equation corresponds to Figure 12 andttwas be imple-
mentednumerically In particular, using (16) and (17), the required filter is:

=P 1 ()Ts(s) (22)

C(s)P(s) cCcS+ks
1+C(s)P(s)  mMpS?+CcS+ks

(23)

However, this formulation is based on the assumption Biat is linear with a
known transfer functiof®(s). If these assumptions do not hold then the implemen-
tation of Figure 12 is aapproximationto the implementation of Figure 8(d).

4.1.2 Effort actuation

[Fig. 13 about here.]

12



The use of flow actuation (Section 4.1.1) leads to either thysipal implementa-
tion of the coupling syster@ou or an approximate numerical implementation. An
alternative approach is to use effort actuation and imptgr@eu numerically.

With reference to Figure 9(a), withoGbu , there is causal conflict; eithBlum or
Phy , but not both, has natural causality. With effort actuatitis leads to a loop
gain given by (6)
P ms +cs+k

Le(s) = N~ Lt~ (s) = “om@
This loop gain has a constant high-frequency gain%oionce again, this con-
stant high-frequency gain is undesirable; however, fromi(&ertingCou gives
the loop gain:

(24)

CcP (ces+ ke)(MS + cs+ k)

L= 1ieN T Mps2 (M + (C+ Cs)s+ (K+ Ke))

(25)

As Ly, is proper, limy_. Ln(jw) = 0: the high-frequency gain is zero.

This implementation implies that the transfer systéra imposes effort onto the
physical system; it must implement a formfofce control.

With reference to Figure 9(d), the force control represgrite the transfer sys-
temT; (S) is embedded within a feedback loop involviRgs) andC(s). In control
system termsJg(S) represents an inner-loof(s) a controller and?(s) a system.
The interpretation of the bond graph represen@{g) as a controller is explored
in [17, Figure 11].

5 Experimental Results

[Fig. 14 about here.]

The experimental system is shown in Figure 14. This systesrblean discussed
previously [20, 21] and analysed in terms of its equationsneotion linearised
about the vertical down pendulum position. As the purposthefexperiment is
to examine non-linear system behaviour for a range of paesat is advantage
to have as wide range of parameters as possible. A key paaisd¢he mass ratio

= 1, which represents the ratio of the pendulum mas$o the mass-spring-
damper mas3d\l. It is usual to consider this system when the mass gatidl, such
that the pendulum is driven by the mass-spring-damperifgad autoparametric
resonance phenomena. When- 1, the situation is reversed and the inertia from
the pendulum mass drives the mass-spring-damper. In mesgidstructuring tests
only the p < 1 case could be simulated. A detailed analysis of whyghe1 is
unstable is given by Kyrychko et. al. [20].

13



[Fig. 15 about here.]

In this section, a redesign of the substructuring experirbased on the causality
reasoning of Section 4.1 will allow the range of paramgid¢o be increased to
include values op > 1. As in the previous work, this analysis is based on a lin-
earised system model and results presented in this sebibenexperimentally that
the predicted enhanced parameter range is experimergakybie when applied to
the actual non-linear system.

The experimental setup used was the same as that reportezilpgxcept that
the coupling systenCou is included in the form of (23) of Section 4.1.1. The
excitation to the system is via a forég = a sin(wet), acting on the mass-spring-
damper system. See figure 14. Two different sets of expetsneere developed:
in the first ones we show that it is possible to conduct subgiring tests when
p > 1. In the second ones we study their accuracy. As in [21] useful to express
results in terms of the effective delayeading to instability. In particular we define

Tc o (26)
wheregn, is the phase margin anah, the corresponding frequency, such thatep-
resents theritical delay value at which the system goes unstable. This phenom-
ena has been demonstrated using experimental substngctests, for example
in [21, Figure 6], where experimental and theoretical risssthowing the stability
boundary of the substructured relatipg- 7 to delayt are shown.

Previous experiments had shown that the actuator had actiedf@lelay oft, =
0.025sec. In order to locate the stability boundary an aduifioariable numerical
delay,t, was added during the tests. Different p ratios where testetiédnging the
pendulum bob (m). For each value pshown in Figure 15, the delay= 15+ 1,
was increased until the onset of instabilitytat 1. Results for two differento
values are shown in Figure 15. As can be seen from Figure ,J&{axperimental
value ofp = 1.65 was reached. For comparison, the highest experimerited xe
ported in [21, Figure 6.] was abopt= 0.6. Because of the built in actuator delay
(ta=0.025sec), it was not possible to reduderrther than shown. It's important to
note that, despite the limitations of the experiment, tte®thtical curve becomes
asymptotic to thep axis asp — o, whereas without the coupling system the curve
terminates at the = 1 point [20, 21]. So the effect of introducing the couplingsy
tem in this case is (i) to increase the stable zone of oper&ticthe substructuring
system, and (ii) to allow the > 1 case to be simulated.

In the second set of experimental hybrid tests, to highlightsignificance of the
improvement achieved, we have performed experimental sudbsting simula-
tions of the stability boundary of the semitrivial soluti@the downward vertical
position of the pendulum is stable) in the- & parameter space. is the magni-

tude of the external excitation armol= Z%p the ratio between external excitation

14



frequency and twice the pendulum frequency.

The stability boundary marked ‘Theory’ in Figure 16 corrasgs to a line of sub-
critical Hopf bifurcations. Above this line the downwardtreal pendulum position
becomes unstable [26]. In the previous work, [21], this waasied out forp = 0.1,
andp = 1 was not possible. The results shown in Figure 16 are produsiad the
coupling system wittp = 1.

[Fig. 16 about here.]

A clear resonance can be seernat 1, with the stable zone being below the data
lines. There is a good correlation between experimentadtsutiuring results and
the theoretical curve.

6 Conclusion

Building on the bond graph framework of Gawthrop et. al. [1Bg causality at-
tribute of the bond graph approach has been used to examiresis$ substruc-
turing arising when components are split between the nualeaind physical sub-
strucures. The concept of @upling systenihas been introduced and shown to
overcome problems arising when a mass is split. A set of @xjeetts reported by
Gonzalez-Buelga et. al. [21] is redesigned using the cog@ystem concept and
rerun with parameter values not previously compatible witibility of the sub-
structured system.
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en =€
Num Phy

fn = fp

Fig. 1. Bond graph interpretation of substructuriNgim is thenumericalsubstructure (im-
plemented in software) arféhy is the physical substructure. The bond linkikgm and
Phy carries an effort (typically a force) and a flow (typically a velocity).
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en = € I
Num A1 Phy
fn - fp

(a) Effort actuation: bond graph

Num I Phy

fn - fp

(b) Flow actuation: bond graph

I

(c) Effort actuation:
block diagram

ey fw
Pr(s) =

(d) Flow actuation: block dia-
gram

Fig. 2. Bond graph Causality. (a) The causal stroke indicates that éffimposed on
Phy and flow is imposed ofNum ; this corresponds tforce actuation. (b) The causal
stroke indicates that flow is imposed &my and effort is imposed ohum ; this corre-
sponds tgpositionactuation. (¢) The block diagram corresponding to the bond graph of
(a). (d) The block diagram corresponding to the bond graph of (ble thatNe = N;l and

P.= P{l. In (c) and (d) an external effort has been added for later usesmonding to an
external force acting oNum .
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Numerical Physical ‘ I:m 3 | Gk
substructure substructure 3 o 3 Ji !
| ssdio A1 Ea.
: Num 3 : Phy 3
: Ric | 3

(a) Schematic (b) Bond graph

Fig. 3. A mass-spring-damper system. (a) The schematic diagram showssaspniag—
damper system substructures so tRaim comprises the mass and damper &ity the
spring. (b) The bond graph corresponding to (a) has been dividedime 1. It is assumed
that an external force is appliedum via theSS component.
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(d) Loop gain|L(jw)| (e) Loop phase ailg(jw)

Fig. 4. Split springky = ak, ke = (1—a)k, k=m=1,c=0.1. Unlike Figure 3, the spring
(the bond grapl€:component) has been split betwedam andPhy ; in this case, causal-
ity is not changed. (c) The Nyquist diagram indicates that the stability margneases
with a, numerical values appear in Table 2.
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(d) Loop gain|L(jw)| (e) Loop phase ailg(jw)

Fig. 5. Split dampercy = (1—a)c, cp = ac, k=m= 1, c = 0.1. Unlike Figure 3, the
damper (the bond grapR:component) has been split betweNim and Phy ; in this

case, causality is not changed. (c) The Nyquist diagram indicates thatabhility margin
is unchanged witlt, numerical values appear in Table 3.
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(d) Loop gain|L(jw)|

(e) Loop phase afg(jw)

Fig. 6. Split massmy = (1—a)m, mp = am, k=m= 1, c = 0.1. Unlike Figure 3, the
mass (the bond graplhcomponent) has been split betweldam andPhy ; in this case,
causality is changed: one of thenust havederivativecausality. (c) The Nyquist diagram
does not tell the full story in this case as the derivative causality leads ¢éo-aero loop
gain at high frequencies (jo) # 0). (d). Although the system of Figure 8 & 0) gives a

loop gain with zero gain at high frequencies, this is not the case fo aslL (jo) = 2.
In particular, whera > 0.5, L(joo) > 1 leading to zero stability margins
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Num Cou Phy
(a) Bond Graph
cou cou
€n €p €n €p
R i

Ja o

(b) Effort-imposingCou

Jn

Fo

(c) Flow-imposingCou

»9» N(s)
C(s)
=2 p(s)

Fo

(d) Block Diagram

fn

_|_

Fig. 7. Avoiding Causal Conflict using a coupling syst@mu . (a) Cou is interposed be-
tweenNum andPhy of Figure 6. (b) and (c) are special forms@bu imposing effort and
flow respectively. (c) gives the block diagram corresponding to (greN(s), C(s) and

P(s) are the transfer functions correspondind\iom , cou andPhy in natural causality.
Note thatCou createswo feedback loops.
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Num } Traf } Phy Num } Traf } Cou ﬂ Phy

(@) No coupling system: Bond (b) Cou in Phy : Bond Graph
Graph

(c) No coupling system: block diagram  (d) Cou in Phy : block diagram

Fig. 8. Coupling system: flow actuation. (a) and (b) give the bond grapteseptation
without and with a coupling system; note that the causalitylof changes when the cou-
pling system is added. (c) and (d) give the corresponding block diagafsis the flow
actuation version of the transfer syst@na associated with the transfer functidn(s)
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|

A Phy

Num 2 Trae
(&) No coupling system: Bond
Graph

Num } Cou Trae ﬂl Phy

(b) Cou in Num : Bond Graph

L Pls) et

(c) No coupling system: block diagram

fn N(s) €n _+ e
y C/(s)
+
Te(3>
b oplgy et

(d) Cou in Num : block diagram

Fig. 9. Coupling system: effort actuation. (a) and (b) give the bond greplesentation
without and with a coupling system; note that the causalitNofn changes when the
coupling system is added. (c) and (d) give the corresponding blockasiegTrae is the
effort actuation version of the transfer systima associated with the transfer function

Te(9)
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Numerical i Coupling | Physical

substructure i System : substructure
. (Num) . (Cou) . (Phy)

_ m ! S ! m

1 fui I_ : f P

C i i

l'm C:k Rice 1 C:k l:m,
i SStext 1 1 : 3 } 0 A ‘ ‘ 71
Num Cou Phy
,,,,,,,,,,,,,, Re ..
(b) Num (c) Cou (d) Phy

Fig. 10. Split-mass system: bond graph. (a) shows the schematic diageamesk-spring—
damper system. (b) Shows the numerical syskéuinm : a mass-spring-damper oscillator
(c) shows the coupling syste@ou of Figure 7(b) which corresponds to a damped spring.

(d) Phy is an inertia with massn, represented biym,. A key parameter ip = %
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(a) Loop gainL, andL¢ (b) Closed-looD, andDy

Fig. 11. Frequency responses: flow actuatioss 1kg,c = 2kg/seck = 500N/m,m= 1kg,

&c =1, w = 20rad/sec. (a) The Magnitude of the loop gdiggFigure 8(b)) and.; (Figure
8(a));|L¢(joo)| = 1, butCou ensures that the loop-gadlir is small at high frequencies. (b)
Closed-loop frequency respor§¥ jw)| Cou leads to a discrepancy above about 20rad/sec
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O N(s) =

C(s)P(s)
L+C'(s)P(s

Y
T(s)

e

Fig. 12. Approximate numerical implementation
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Fig. 13. Frequency responses: effort actuation. The parametdhear@me as in Figure 11.
(a) The Magnitude of the loop gaihg (Figure 9(b)) and.e (Figure 9(a));jLe(jo)| =1, but
Cou ensures that the loop-galin is small at high frequencies. (b) Closed-loop frequency
responséD(jw)| Cou leads to a discrepancy above about 20rad/sec
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(a) Photograph (b) Schematic Diagram

Fig. 14. Experimental Pendulum-Oscillator System
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Fig. 15. Experimental results. (a),(b) give experimental measuremethis ofset of insta-
bility compared with theoretical values for the linear case this corresponds t&i216]
but with larger mass-ratip.
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Fig. 16. Experimental results. Experimental measurements of the onsstatsility of the

coupled pendulum-oscillator system — corresponds to [21, Fig. 10akittutmass ratio
increased fronp=0.1top=1.
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Split Ns (s) P (s)
Between spring and mas,sm%FC E
Within spring e (1—sa)k
Within damper msk(iia)c gestk
Within mass (1_a)1ms+c am552+k

Table 1
Substructure Transfer Functions
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o | @m(deg)| Tm(ms)

0.0|5.7 100
02|77 134
0.5| 11.8 208
0.8] 23.9 422
10| o 00

Table 2
Split spring: stability margins
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o | @n(deg)| Ty (ms)
0.0 5.7 100
0.2| 5.7 100
05| 5.7 100
0.8 5.7 100
1.0|5.7 99

Table 3
Split damper: stability margins
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o | @n(deg)| Tm (ms)
0.0 | 5.7 100
0.2| 7.6 133
050 0
0.8|0 0

1.0| 0 0

Table 4
Split mass: stability margins
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