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Abstract

We consider the dynamical response of a thin beam held fixed at one
end while excited by an external driving force. A motion limiting con-
straint, or stop, causes the beam to impact. During wind-up or wind-down
operations, in which the driving frequency is continuously altered, the sys-
tem can undergo complicated motions close to the value of frequency at
which impacts may first occur, the grazing bifurcation. In this region
the beam may experience several impacts within a long period repeating
solution or even chaotic behavior which, in practical terms, may be unde-
sirable to the long-term integrity of the system. The first task is to identify
the zones in the space of parameters (forcing amplitude, or alternatively
the gap between the beam and the stop) in which period-1 motions can be
guaranteed. In this paper, in the areas in which complicated or chaotic
motion occurs, a control strategy is proposed which stabilises unstable
period-1 motions. As a consequence, numerical simulations indicate that
for any choice of parameter, simple period-1 motions can be maintained,
limiting the number of impacts (together with their velocity).

1 Introduction

We examine here a particular configuration for a driven beam whose free end
is allowed to impact with a stop during dynamical motions which falls into a
class of systems called impact oscillators. While this allows comparison with
earlier works and experimental studies [1] the results can be considered repre-
sentative of a wide class of impacting systems. Following earlier work by Shaw
and Holmes [2] a great many research studies have been carried out on impact
oscillators (also known as vibro-impacting systems), with particular emphasis
on highlighting the complex behavior that can follow as a result of a grazing
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bifurcation. Such a bifurcation occurs when an orbit just touches the constraint,
or stop, leading to a zero (or very low) velocity impact. To explain this behav-
ior Nordmark [3] derived a nonlinear mapping which was valid close to grazing.
The non-smooth nature of the mapping results in an array of behavior and new
bifurcations [4] which correspond well with experiments [5, 6, 7].

There 1s therefore much that we know about impact oscillators and yet in
engineering terms many of the complicated motions may be considered unde-
sirable, reducing our ability to predict the number of impacts or the forces ex-
changed during interaction. Of interest here is the behavior of the system during
operations in which the frequency of driving is either increased from zero, at
fixed amplitude, or decreased to zero which may typically occur in start-up or
shut-down procedures. Based on a simple model, for a specific placement of the
restraining stop, 1t is theoretically possible to determine a critical value of forc-
ing amplitude for which a smooth transition occurs between non-impacting and
impacting period-1 motion [8, 9]. On one side of this critical value a finite jump
between period-1, non-impacting and period-1 impacting is possible, while the
other side produces complicated and chaotic behavior. In a typical engineering
environment it may be hard to achieve suitable precision or choice of parameter
so that an unwanted and unpredictable response cannot be avoided [10].

In separate studies the control of chaos has been at the forefront of recent
research following the seminal work of Ott, Grebogi and Yorke [11]. Motivated
by this concept the aim of the current research is to determine the parameters
for which the grazing bifurcation produces complex, chaotic motion and then
implement a control strategy which stabilises period-1 impacting motions as the
driving frequency is varied so that simple, period-1 motions can be maintained.

2  Mathematical model and parameter varia-
tions

The physical system we consider consists of a stiff vertical beam, clamped at the
base but free to vibrate in response to a driving electro-magnetic force. A stop is
fixed in position which inhibits motion so that under certain conditions the beam
may impact with the stop. For driving frequencies close to the fundamental
natural frequency it has previously been demonstrated that a single degree of
freedom mathematical model adequately captures much of the qualitative and
quantitative behavior of the beam [1].

Experimental evidence of the control process is not given in this paper and
will form the basis of future work but the model is selected for study since some
experimental evidence is already available from earlier research.

We thus focus our mathematical attention on the dynamic behavior of the
single degree of freedom impact oscillator. The displacement of the oscillator’s
mass is represented by a nondimensional value z(t). At a displacement z = a
a rigid impact stop restricts the motion of the mass. Thus away from the stop
z < a the model is governed by the equation of motion for a one degree of
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Figure 1: Analytically determined response curve for impact oscillator; Overall displacement vs
Frequency. Solid lines; labelled (a) represent stable non-impacting period-1 solutions, those labelled

(b) represent impacting (1,1) solutions. Dashed lines represent unstable (1,1) impacting solutions.

freedom forced linear oscillator.

¥+ 2az+x = F coswt z(t)<a (1)

Where #(t) and #(t), are the acceleration and velocity of the mass. w is the
ratio of the forcing and natural frequencies and ¢ is nondimensional time, scaled
from real time via natural frequency. 2« and F' are the nondimensionalised
damping and forcing respectively. An overdot represents differentiation with
respect to dimensionless time ¢.

Equation (1) has been nondimensionalised in such a way that an impact
occurs when z(t) = a = 1. At impact a simple instantaneous coefficient of
restitution rule i1s applied.

P(tH) = —ri(t”) () =a (2)

Where z(t7) is the velocity before impact , #(¢T) is the velocity after im-
pact and 7 is the coeflicient of restitution which has a range between 0 and
1 depending on the material properties of the system. To perform numerical
simulations we select parameters which are representative of other experimental
work [1, 12]. We note that, for the steel components used in the experimental
impacting beam the coefficient of restitution has been estimated to be in the
range 0.7 — 0.9. However past investigations [1, 12] have demonstrated that to
match experimental and numerical results values around 0.2 have to be used. In
this way the decreased value of coefficient of restitution is used to additionally
account for energy loss due to the beams response in higher modes. In addition
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Figure 2: Numerically determined response curve for impact oscillator; overall displacement vs

frequency. The complex motion between first grazing and stable (1,1) impacting motion is labelled

(c).

these studies indicate that a damping value in the range 0.05 — 0.1 is a close
approximation for the actual damping of the beam.

The forcing amplitude F' and frequency w are chosen as parameters which
can be varied during the experiment. The stop distance a can also be used as a
control parameter to obtain similar results, see for example [8; 13].

Periodic impacting solutions are denoted as (m, n) solutions with m impacts
in n periods of 27/w of the forcing. For this much simplified mathematical
system analytic solutions can be determined for the (1,n) motions [2, 14] and
used to compute amplitude response bifurcation diagrams.

An example of this is shown in figure 1. Here the forcing amplitude F' has
been fixed at 0.25 and forcing frequency w is used as the bifurcation parameter.
The response is measured as maximum displacement minus minimum displace-
ment, so that, with a stop distance at a = 1, grazing will occur when the overall
displacement (Zmay — Lmin) = 2. Solid lines represent stable period-1 solutions;
those labelled (a) are non-impacting and those labelled (b) have one impact per
period. Dashed lines represent unstable impacting solutions. From the analyt-
ical expressions we see that a stable period-1 non-impacting motion exists as
the driving frequency w is increased from zero. As w is increased the amplitude
of the oscillating periodic orbit grows approaching the stop at which point the
first grazing occurs at the point GP, w & 0.875, producing a zero velocity im-
pact. After grazing the motion loses its stability. From other detailed numerical
evidence the subsequent impacting motion may either be chaotic or undergo a
complicated sequence of bifurcations (see figure 2). At the point PD the mo-
tion stabilises onto a (1, 1) impacting solution via a period doubling bifurcation.



This motion persists as frequency is increased, until a saddle node bifurcation
occurs at SN and the motion jumps to a non-impacting period-1 solution.

Winding down the frequency (from w = 1.6, say), the non-impacting period-
1 solution grows in amplitude until grazing at GS, w ~ 1.11. Here the motion
jumps to the (1,1) impacting solution thus forming a hysteresis loop between
GS and SN. For a further decrease the motion then continues as the reverse of
the wind-up behaviour.

The labels GP and GS denote grazing bifurcations of different type [15].
GP is a grazing bifurcation of the period doubling type, and GS' is a grazing
bifurcation of the saddle node type.

The numerical simulation of the system (using the same parameter values as
used in figure 1) given in figure 2 shows the complex behavior in the unstable
(1,1) region (¢) between GP and PD of figure 1. In this region an unstable
(1,1) impacting solution exists and is shown as the dashed line between GP and
PD in figure 1.

Again, due to the simple nature of the mathematical model, it is possible
to produce analytical expressions for the value of forcing amplitude at which a
grazing bifurcation will first occur for any chosen frequency via the relation;

Foraze = a\/(l —w?)? 4+ 4aw? (3)

The locus of these first grazing bifurcations can be plotted in the (F,w)
parameter space. In addition the locus of the saddle node, SN and period
doubling P D bifurcations can also be followed in the same parameter space.
Combining this space with the response diagram of figure 1 gives the parameter
space-response diagram shown in figure 3.

Here the locus of first grazing bifurcations is shown as a solid line in the
frequency wvs forcing amplitude plane. The dashed line between the points C'1
and C3 is the locus of period doubling bifurcations. The other dashed lines
in this plane represent loci of saddle node bifurcations. The structure of the
response curve from figure 1 can be seen in the overall displacement vs frequency
plane. Dashed lines are used to show how bifurcation points on this curve relate
to the bifurcation loci in the (F,w) plane. The locus of first grazing bifurcations
contains both the GP and GS type. The solid line between points C'1 and C'3
is a locus of G P type bifurcations, other solid lines are of the G'S type.

In figure 3 the points C'l and C'3 denote the points where grazing, period
doubling and saddle node loci meet, forming a codimension 2 bifurcation. The
structure of this bifurcation has been discussed in Ivanov [9] and Foale [14].

Away from these codimension 2 points, the singularity in the derivative of
the grazing bifurcation [3] leads to one of the eigenvalues tending to infinity
when a zero velocity impact occurs, and hence a high degree of instability. The
codimension 2 points points occur when 2(\ﬂ1 —a?))/w =1,2,3,... at which
values the singularity in the derivative is cancelled by the term (sin[?(\ﬂl -
a?))r/w]) becoming zero.

We label the points accordingly as C'1,C2,C3, ... so that for a system with
fixed damping o« we can identify the corresponding values of w for each C'
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Figure 3: Parameter space response diagram for impact oscillator. Frequency vs forcing amplitude

vs overall displacement.

value. Then the corresponding F value can be found by substituting the w
value associated with the point C'7 into equation 3, thus locating the point C'i
in (F,w) plane.

In the parameter range shown in figure 3 only the points C'1 and C3 are
present. The region around C'3 is schematically shown in close up in figure 4,
indicating regions of different dynamic behavior. The inset diagrams illustrate
a typical phase plane (x, &) for each of the regions. The impacting and non-
impacting regions are separated by the GP and saddle node line. Within the
impacting region there are three separate areas;

1. Stable period (1, 1) impacting.

2. Unstable period (1, 1) impacting, where other periodic and chaotic behav-
ior may be present.

3. Hysteresis; non impacting period-1 and stable (1,1) impacting solutions
coexist in a hysteretic loop.

Within the window of parameters given in figure 4. it can be seen how at the
point C3 the period doubling and saddle node lines coalesce with the GS and
GP lines. As discussed in Peterka [8] and Ivanov [9], selecting an appropriate
value of forcing amplitude Fio so that as w is increased we pass directly through
the point C'3 produces a motion which moves continuously from non-impacting
to impacting at the graze.
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Figure 4: Close up around C3 in the parameter space; frequency wvs forcing amplitude for the
impact oscillator. Inset diagrams represent typical phase portraits (z, #) for each of the regions of

dynamical behaviour.

This scenario is numerically demonstrated in figure 5 where we see that our
aim of producing only stable period-1 motion as w increases is achieved. The
point labelled GC3 is the codimension 2 grazing point associated with Fies.
Jumps will still occur at SN for increasing w and G'S for decreasing w.

From close investigation of the behavior at C'3, seen in figure 4, for values
of forcing amplitude larger than Fi¢ the saddle node bifurcation occurs before
the grazing (when increasing w from zero) so that the complete picture of the
period-1 motions when followed for increasing and decreasing frequency is given
in figure 6. Thus for typical values just above F¢ our aim of producing only
period-1 motions is achieved although now jumps will occur at grazing and
saddle node bifurcations for both increasing and decreasing w with hysteresis

between SN and GS.

3 Control strategy

From our earlier discussion we note that for values of forcing amplitude less
than Fo, chaotic motions or periodic orbits of long periods cannot be avoided.
This may create severe problems in a practical engineering environment since the
number and velocity of impacts can no longer be predicted. However, motivated
by studies on the control of chaos [11], we note that while the period-1 impacting
motion is no longer stable after grazing at GP an unstable solution does exist.
Our control strategy is then one based on a stabilisation of this unstable motion
using control in conjunction with a tracking technique to follow the orbit as w



26

24 b SN g
22 F=0.560634561 g
§ 2 GS i
a
E 18 4
5
g
3
16 g
14 F g
12 L L L L L L L
0 02 04 06 08 1 12 14 16

Frequency

Figure 5: Analytical response curve for the impact oscillator for F' = Fc. Overall displacement

vs frequency.

2.8

Overall Displacement

14 I I I I I I I
0 02 04 0.6 0.8 1 12 1.4 1.6
Frequency

Figure 6: Analytical response curve for the impact oscillator for F' > Fc. Overall displacement

vs frequency.
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Figure 7: Control tracking unstable (1,1) impacting motion as frequency is decreased towards
grazing (GP). Overall displacement vs frequency

is varied.

To carry out the control a variety of methods could be applied, however
we use here a self-locating scheme based on the Newton root finding algorithm
which incorporates the feedback of an output sequence on accessible parameters.
More details of the method can be found in [16]. Before applying control only
an approximate location of the position of the unstable orbit is required which 1s
readily available from our analytic studies. In the control and tracking process
we select the amplitude of the driving force F' as the accessible control parameter
though numerically the damping or gap between the beam and the stop could
equally be used. The control input is adjusted once during each period of the
tracked orbit. Figure 7 indicates the path of the tracked period-1 impacting
motion as w is decreased towards the grazing bifurcation (GP). To perform the
tracking w is adjusted once the difference between successive amplitudes of the
periodic orbit is within 0.0001. For successful tracking, particularly close to GP
very small increments in frequency must be taken. For this numerical study we
chose Aw = 0.0001 under which conditions we can approach to within a distance
of 0.009 of the grazing. Close to grazing the magnitude of the eigenvalues
increases dramatically so that in a small zone of frequency the control process
fails but this zone is small when compared to the original unstable zone.

4 Conclusion

We have focused our attention on the period-1 solutions for a simple vibrat-
ing beam. From analytical and numerical investigations we have demonstrated



that the parameter space around the natural frequency for such a beam can be
divided into two main regimes of behavior separated by a codimension 2 bifurca-
tion. At this point we have shown that a smooth transition from non-impacting
to period (1, 1) impacting is possible by winding frequency up or down through
the critical value Fo. Above this value jump phenomena exist between impact-
ing and non-impacting solutions. Below F¢ control of chaos techniques can
be used to stabalise onto period (1,1) impacting solutions after grazing. Thus
for wind-up or wind-down operations from a non-impacting state through the
impacting zone close to resonance, period-1 non-impacting and impacting (1,1)
solutions can be maintained.
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