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Abstract

This work presents some first steps toward a
more thorough understanding of the control sys-
tems employed in evolutionary robotics. In order
to choose an appropriate architecture or to con-
struct an effective novel control system we need
insights into what makes control systems success-
ful, robust, evolvable, etc. Here we present analy-
sis intended to shed light on this type of question
as it applies to a novel class of artificial neural
networks that include a neuromodulatory mecha-
nism: GasNets.

We begin by instantiating a particular GasNet
subcircuit responsible for tuneable pattern gen-
eration and thought to underpin the attractive
property of “temporal adaptivity”. Rather than
work within the GasNet formalism, we develop an
extension of the well-known FitzHugh-Nagumo
equations. The continuous nature of our model
allows us to conduct a thorough dynamical sys-
tems analysis and to draw parallels between this
subcircuit and beating/bursting phenomena re-
ported in the neuroscience literature.

We then proceed to explore the effects of dif-
ferent types of parameter modulation on the sys-
tem dynamics. We conclude that while there are
key differences between the gain modulation used
in the GasNet and alternative schemes (including
threshold modulation of more traditional synap-
tic input), both approaches are able to produce
tuneable pattern generation. While it appears, at
least in this study, that the GasNet’s gain modu-
lation may not be crucial to pattern generation ,
we go on to suggest some possible advantages it
could confer.

1. Introduction

Evolutionary roboticists employ a range of control archi-
tectures as varied as the research questions they address.
Particular control systems are adopted for many differ-
ent reasons. Some researchers wish to model a particular

biological phenomenon and place emphasis on incorpo-
rating this particular aspect (Alexander & Sporns, 2002).
Other researchers, (Beer, 2000; Tuci, Quinn, & Harvey,
2002) choose controllers for their perspicuity, attempt-
ing to incorporate as few a priori assumptions as possi-
ble. From an engineering perspective, however, we wish
to employ highly evolvable control architectures—ones
that facilitate fast and effective evolution of high-quality
solutions to the kinds of task we are typically faced with.
Unfortunately, as of yet there are few guiding principles
to help researchers choose an appropriate class of control
system.

Recent successes of one novel type of artificial neural
network control architecture, the GasNet (Smith, Hus-
bands, & O’Shea, 2001), have led researchers to con-
sider the evolvability of this architecture, its causes and
generality. Unlike most artificial neural networks, Gas-
Nets include processes inspired by biological neuromod-
ulation in addition to those modelled after the more tra-
ditionally understood process of neurotransmission. Al-
though GasNets have only been tested on a small range
of tasks to date, their success suggests that neuromodu-
lation may increase the evolvability of this class of con-
trol system across a range of real-world tasks (Smith,
Husbands, Philippides, & O’Shea, 2002).

In order to assess this hypothesis, it is important to
try to identify which aspect or set of aspects of the Gas-
Net architecture might be responsible for this increased
evolvability. In doing so, we hope to be able to reveal
design principles underlying successful control systems.
Here we report the initial steps in a dynamical systems
study of the GasNet system. Our goal is to gain a deeper
insight into the possible root causes of the increase in
evolvability exhibited by the GasNet. We will start by
briefly outlining the idea of neuromodulation and sug-
gesting a working definition to be used in the rest of this
study.

2. Neuromodulation in Neuroscience

The traditional bias of modern neuroscience is to assume
that fast synaptic transmission constitutes the primary
means of neuronal interaction. Neuronal communication



is taken to be a composite of three dominating ideas
(Katz, 1999):

1. Fast—pulses or on-off responses act on the 10 mil-
lisecond time scale.

2. Point-to-point—a neuron’s neighbourhood is com-
pletely specified by the incoming synaptic connec-
tions and the outgoing neuronal branches of its den-
dritic tree.

3. Inhibitory/excitatory—synaptic connections either
increase or decrease the activation of a target neu-
ron.

The transmission of synaptic pulses is confined to
the synaptic cleft and is mediated by neurotransmit-
ters. Hence the amalgamation of these notions is com-
monly known as neurotransmission, an idea with his-
torical roots in a 1954 paper by Hodgkin and Huxley
(HH) on the squid giant axon (Hodgkin & Huxley, 1954).
This seminal paper is still regarded as the progenitor
of all modern neuronal models. Hodgkin and Huxley
were particularly interested in the electrical signalling
or firing of nerve cells, primarily because of its ubiq-
uity throughout the nervous system, but also because
the idea of electrical circuits were very much a dominat-
ing paradigm of the era. Consequently, but perhaps not
intentionally, studies of the synapse has dominated sub-
sequent research. Although it has often been recognised
that synaptic pulses do not tell the whole story and that
many more subtle processes take place, these processes
have been largely ignored. Recently, this shortcoming is
being comprehensively challenged. Many neuroscientists
have voiced dissent against the exclusiveness of neuro-
transmission (Harris-Warrick, Nagy, & Nusbaum, 1992;
Abbot, LeMasson, Siegel, & Marder, 2003; Turrigiano,
1999). The “patch clamp” is an experimental technique
which has generated an avalanche of very detailed data
on neuronal activation (Poggio & Glaser, 1993, Ch 1).
Researchers discovered that many phenomena do not
fit easily into the picture provided by neurotransmis-
sion. For example, Harris-Warrick remarks that “it is
no longer possible to discuss sensory processing or mo-
tor coordination without considering the role that non-
traditional forms of neuronal activity and communica-
tion play” (Harris-Warrick et al., 1992).

These non-traditional processes have been collectively
grouped under the term neuromodulation. Although the
word has been used for over 20 years, the ubiquity of such
processes has only just been acknowledged. Throughout
this paper we will employ a working definition of neuro-
modulation provided by Katz that casts neuromodula-
tion as the antithesis or complement of neurotransmis-
sion:

“Any communication between neurons, caused
by the release of a chemical that is either not fast,

or not point-to-point or not simply excitation or
inhibition” (Katz, 1999, p.3).

Neuromodulators act over a range of spatial and tem-
poral scales. Neurotrophines and hormones, for instance,
are large macromolecular chemicals that are transported
via the circulatory system. They can change many prop-
erties of the neural tissue that they come into contact
with, affecting the rates of synaptic growth and intrinsic
properties of neurons (Turrigiano, 1999). Although they
act over large volumes of tissue, they are relatively slow
and diffuse. In comparison amphipathic neurotransmit-
ters are small molecules that can pass through lipid tis-
sue. Consequently they act over small volumes but are
relatively fast (Changeux, 1993). They have been impli-
cated in short term changes to synaptic strengths and the
process of learning. Crudely, whereas neurotransmission
has been conceived of as analogous to the operation of
an electrical circuit, one can visualize neuromodulation
as waves of gases and liquids diffusing from neurons or
perhaps neuronal modules. They affect volumes of neu-
ral tissue and change the functionality of the neurons
and synapses within it. In contrast to the dominating
paradigm of electrical circuitry, a colourful term some-
times used to convey this alternative idea is “the liquid
brain” (Changeux, 1993; Husbands, Philippides, Smith,
& O’Shea, 2001).

3. Neuromodulation in Robotics, Gas-
Nets

Generally, dynamic artificial neural networks are rep-
resented as the simplest extension of the feedforward
McCulloch-Pitts perceptron (Arbib, 1998, p.4-11). They
were first popularised by Hopfield in the 1970’s (Haykin,
1999; Hopfield, 1982), and are described by equations of
the following form:

ui(t + 1) = F

⎛
⎝∑

ij

ωijuj(t) + θi

⎞
⎠ + Ii (1)

The neural activation, ui, of a network node, i, rep-
resents the mean firing rate of either a single neuron
or an average over an ensemble of neurons. Each such
node possesses a threshold, θi, and receives synaptic in-
put from any neighbour, j, weighted by a synaptic link,
wij , as well as external input, Ii. The function F is
known as the transfer function and is generally of sig-
moidal form, i.e. approximately linear in its mid-range
with saturating limits. Note, the only dynamic variables
are the neural activations, every other parameter is fixed
before the network operates.

In the GasNet formalism this network of nodes is em-
bedded in a 2-dimensional continuous space (Husbands
et al., 2001). The neural activation of a node is now
described by an equation of the following form:



Figure 1: Gas diffuses across a control network embedded in

a 2-d place, from (Husbands et al., 2001)

ui(t + 1) = F (κi[
∑
ij

ωijuj(t)] + θi) + Ii (2)

This differs from equation (1) only by the presence of
a prefactor, κi, which is proportional to the concentra-
tion of “gas” in the vicinity of the node. Furthermore,
each node may possess the ability to emit slowly diffus-
ing gas under certain conditions—e.g., when either gas
concentration at the node’s location, or the node’s neural
activation, exceeds some fixed, node-specific threshold.
Thus, as gas ebbs and flows across the plane in which the
node’s are located, it modulates the sum of the inputs in
a multiplicative fashion, deforming the network’s weight
space (see Figure 1).

This gas mechanism exhibits all three qualities of neu-
romodulation as defined above. It is not point-to-point
but diffuse in nature, it acts on a slower timescale than
the electrical signals, and finally it neither simply excites
nor inhibits neurons, but rather modulates the gain, or
the steepness, of their transfer functions. Given this tri-
umvirate of novel functionality, plus the embedding of
the network in a continuous space, it is unclear exactly
which element or combination of elements in the design
of a GasNet is responsible for the increased evolvability
that they exhibit.

Smith et al. (2002) made the first attempt at analysis
of the GasNet architecture. In particular, they identified
a subcircuit of the GasNet control system that had been
evolved to solve a robot control problem, and showed
that it contributed to the “temporal adaptivity” of the
evolved solution.1 This subcircuit was capable of tune-
able pattern generation, in that it could produce electri-
cal oscillations that were slowly modulated by gas such

1The term “temporal adaptivity” refers to the ability of an
agent to respond to changes on a wide range of timescales. Biolog-
ical agents are faced with an environment that exhibits regularities
at scales ranging from seconds and minutes to diurnal and annual
rhythms. They must adapt their internal structures to mirror and
exploit these regularities. The ability to do this has also been
suggested as a vital aspect of artificial control systems.

that rhythmic behaviours were readily achieved. How-
ever the discrete nature of the GasNet system hindered
the completion of a more comprehensive dynamical sys-
tems analysis.

Here we will attempt to extend and generalise this
analysis to some degree by developing and analysing
a simple, idealised, continuous neuromodulatory net-
work. Our model is based on the well-known FitzHugh-
Nagumo equation (Murray, 1989, p.161-166), but inher-
its some important properties from the original Gas-
Net formalism. We will explore the extent to which
behaviours exhibited by GasNet sub-systems are char-
acteristic of neuromodulatory systems more generally.
In doing so, we can take advantage of both the contin-
uous nature of the FitzHugh-Nagumo equation, which
readily admits of dynamical systems analysis, and the
body of existing analysis of the FitzHugh-Nagumo sys-
tem. Moreover, the ubiquity of the FitzHugh-Nagumo
model in neuroscience ensures that we have some chance
of relating our findings on neuromodulation both to the
adaptive behaviour and neuroscience communities.

4. Neuromodulation in the FitzHugh-
Nagumo Equations

4.1 The FitzHugh-Nagumo Equations

While the (HH) equations were extraordinarily success-
ful at reproducing key experimental data, a deep un-
derstanding of the underlying dynamics was hindered
by their inherent complexity. In the early 1960’s, the
FitzHugh-Nagumo model (FHN), a simple, analytically
tractable, yet non-trivial reduction of HH, was developed
(FitzHugh, 1961; Nagumo & Yoshizawa, 1962). Electri-
cal pulses are derived from the differential permeability
of the neural tissue to chemical ions. The dominant ionic
species in nerve membranes are potassium and sodium,
but in general there are many ionic species acting over
many timescales. Since the timescales of the ionic species
in the HH model are not of the same order, simplifi-
cation could be achieved by assuming that sufficiently
fast variables would settle to their steady state values al-
most instantaneously. This allowed certain variables to
be eliminated from the Hodgkin-Huxley equation. The
FHN model is given in equations (3) and (4).

F (v, w) ≡ dv

dt
= f(v)−w+Iα, f(v) = v(a−v)(v−1) (3)

G(v, w) ≡ dw

dt
=

bv − γw

τ
(4)

Here, v is the membrane potential, while w plays the
role of the ionic currents. The remaining terms Iα, b, γ
and τ are all positive constants and 0 < a < 1. This
model has been extraordinarily successful and displays



many of the key phenomena discovered in the original
Hodgkin-Huxley model. For example FHN readily ex-
hibits excitable and oscillatory behaviour (Murray, 1989,
p. 164). Consequently FHN seems a natural choice for
investigating some of the issues raised by GasNet re-
search.

Although the FHN equation involves only two free
variables (alongside time) we cannot solve it directly.
Instead progress can be made by investigating the sta-
bility of equilibrium states of the model. Equilibrium
behaviour is defined as the state, or sequence of states,
that the system settles to after some finite transient.
The equilibrium points correspond to points in the phase
space where all the derivatives with respect to time of
the system are equal to zero. For FHN, the equilibrium
points can be found by setting the derivatives of (3) and
(4) to zero, giving equations (5) and (6).

w = f(v) + I (5)

w =
b

γ
v (6)

If we plot these equations we obtain the nullclines of
the system (see Figure 2). For the whole system to be
in equilibrium, derivatives of both v and w must equal
zero, this point is represented by the intersection of the
nullclines.

These equilibria can be stable (if perturbed from this
value the system quickly returns) or unstable (if per-
turbed from this point the system may not return). With
the aid of linear stability analysis it is possible to derive a
condition for the local stability of any given equilibrium
point. For details of such analysis the reader is referred
to (Strogatz, 1994; Murray, 1989). For a very good in-
troduction to dynamical systems theory for robot control
systems see (Beer, 1995). In the case of FHN, stability
is determined by a single quantity known as the trace.
For this system the condition for stability is given be-
low.Where v∗ is the value of v at equilibrium.

Tr(A) =
∂f(v∗)

∂v
− γ

τ
< 0. (7)

The FHN equations exhibit three classes of behaviour
which are determined by the number and stability of
the equilibrium points. Figures 2a and 2b have a
single intersection which is locally and globally stable.
All initial conditions of the equations will relax to this
point. Such configurations represent excitable systems—
perturbations generate short-lived spiking followed by a
return to quiescence. Alternatively if the nullcline cross
at their centres they can exhibit fixed point or cyclic
behaviour,Figure 2c and Figure 2d respectively.

The empty circles drawn on all plots represent the
bifurcation points of the system. They delimit the re-
gion, for a particular set of parameters, within which
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Figure 2: Modes of FHN behaviour: (a) and (b) represent

non-oscillatory fixed-point behaviour but are excitable under

perturbation. If the nullclines cross at their centres then the

system can exhibit a fixed point (c) or cyclic behaviour (d).

(e) shows a configuration with multiple equilibrium points.

In general E1 and E3 are stable, while E2 is unstable. The

circles drawn on all plots represent the bifurcation points of

the system. They indicate the region within which the value

of v∗ is such that the first term of equation (7) makes the

trace positive and hence unstable (which gives oscillations in

this system). Outside this region the trace is negative and

stable.

the value of v∗ is such that the first term of in equation
(7) makes the trace positive and hence the system is
unstable (which gives oscillations in this configuration).
Outside this region the trace is negative and the system
is stable. Note the size of this region will be altered by
the right hand term of equation (7). We will come back
to this effect later in this work. Figure 2e presents a mul-
tistable configuration of the nullclines. It exhibits three
equilibrium points with two stable (E1 and E3) and one
unstable (E2). It can be shown that cyclic behaviour is
not possible in this configuration.

Our work will focus on the case depicted in Figure 2d,
the only case in this system that supports oscillation and
is thus capable of rhythmic pattern generation. This con-
figuration of nullclines has been implicated in the pro-
duction of effective robot control. For example (Math-
ayomchan & Beer, 2002) evolved recurrent neural net-
works to perform a simple ball catching task. It was
discovered that seeding the initial evolutionary popula-
tion with “centre crossing” networks increased the speed
and reliability of the evolutionary process.

Furthermore the ability to alternate between oscil-
latory and non-oscillatory behaviour has been identi-
fied in a host of neural systems. A parameter change



that causes a qualitative change in a system’s dynamics
(e.g., a transition from non-oscillatory to oscillatory be-
haviour) is known as a bifurcation. The bifurcation in
this particular case is known as the Hopf bifurcation and
has been the focus of a great deal of investigation, both in
its own right (Guckenheimer, Gueron, & Harris-Warrick,
1993) and as a model for biological systems (Rinzel & Er-
mentrout, 1989). In general it is thought that systems
existing at or near bifurcations in their dynamics have
greater potential for exhibiting interesting behaviour—
they are more computationally rich (Poggio & Glaser,
1993, Ch 3). Bifurcation points have also been directly
implicated in modern research on neuromodulation. For
example, researchers argue that it might be advanta-
geous for systems to dwell near bifurcation boundaries,
thus making them sensitive to neuromodulatory input
(Fellous & Linster, 1998).

4.2 A Dynamical Pattern Generator

A GasNet “discrete dynamical pattern generator” was
outlined by (Smith et al., 2002). It is a simple system
of coupled neurons that utilizes a gas dynamic to mod-
ulate electrical oscillations such that tuneable rhythmic
patterns of activity are generated. This key behaviour
is obtained by slowly switching the system from an un-
stable to a stable dynamic. In order to explore a similar
mechanism using the FHN equation, we added to it a
modulatory mechanism analogous to the gas employed
in the GasNet.

Our simple system comprises one node governed by
the FitzHugh-Nagumo equation that emits a modula-
tor, M1, when its electrical activation rises above a fixed
threshold, Tv. A second node is modelled in a much more
simple fashion. Should the concentration of M1 at this
node rise above a fixed threshold, TC , it emits a second
modulator, M2. The first node is sensitive to M2, in that
the concentration of this modulator affects the parame-
ters of the node’s FHN equation. Note that no electrical
activity is modelled for the second node, which is merely
a source of modulator that can be switched on and off
(see figure 3). Our equations for modulator growth and
decay at both nodes are given in (8)-(11).

dC1

dt
= H1(v)G1 + (H1(v) − 1)D1 (8)

H1(v) =
{

1, if v > Tv

0, otherwise (9)

dC2

dt
= H2(C1)G2 + (H2(C1) − 1)D2, (10)

H2(C1) =
{

1, if C1 > TC

0, otherwise (11)

The concentration of each modulator is represented by
Ci, with their specific growth and decay rates denoted

M 1 M 2
Electrical
Activity

Electrical
Activity

No

Node 2Node 1

V W

Figure 3: A dynamical pattern generator circuit: The elec-

trical behaviour of node 1 is described by the FHN equation.

It releases a modulator, M1, when its electrical potential, v,

rises above its electrical threshold, Tv. Node 2 is triggered

to release a second modulator, M2 when the concentration of

M1 rises above its modulator threshold TC . Reciprocally, the

concentration of this second modulator affects the parameters

of node 1’s FHN equation.

Gi and Di, respectively. Each node’s heavyside func-
tion returns unity when it is emitting modulator, zero
otherwise.

The concentration of M2 affects the behaviour of node
1 in the following manner. Increasing concentration of
M2 decreases the γ parameter of node 1 in the manner
described by equation (12), where C2max represents a
ceiling concentration value for M2, and [γmin, γmax] de-
scribes a legal range of values for γ. This γ modulation
affects the node’s nullclines in a fashion analogous to the
gain modulation described in section 3. That is, γ could
be considered to play a similar role to that played by κ
in the GasNet equation (2).

γ = γmax − C2

C2max
(γmax − γmin) (12)

The system is initialised in an oscillatory configura-
tion. The initial nullclines of the system are depicted
by the solid lines and crosses (the bifurcation points) in
Figure 4d. Figures 4a and 4b represent the v and w time
traces of the system with the fixed electrical threshold
Tv superimposed over v. Figure 4c shows the build-up
and decay of modulators M1 and M2, while figure 4d
displays how the nullclines change as a result of modu-
lation. The w nullcline oscillates between the solid and
dashed lines, altering the system’s equilibrium position.
This change in the equilibrium position alters the first
term of equation (7) from a negative to positive value
and hence from an unstable oscillating solution (inside
the crosses) to a stable fixed point (outside the crosses).
Furthermore, because γ also affects the trace through
the second term in equation (7), the modulation also al-
ters the range of the oscillatory region. As modulation
moves the w nullcline from the solid to the dashed line,
the portion of the v nullcline associated with oscillatory
behaviour grows from the section spanned by the two
crosses to that spanned by the two circles.



The general effect of this modulation is to produce
a beating/bursting system, with fast oscillation of the
v and w variables within a low-frequency, modulated
packet. Initially, as the system oscillates, M1 builds,
stimulating the emission of M2. As the concentration
of M2 rises, it decreases γ such that node 1’s equilib-
rium position lies outside the oscillatory region. The
delay between the build up of M1 and M2 produces the
low frequency packet. There is also a smoothing effect
on M2, since while M1 displays small amplitude, high-
frequency oscillations as it builds, these are not present
in the dynamic of M2.

This behaviour strongly resembles that of the discrete
dynamical pattern generator identified within an evolved
GasNet solution (Smith et al., 2002). The amplitude
and frequency of the slow packet can easily be tuned by
altering the speed and maximum concentration of the
modulators. This shows that important aspects of the
GasNet functionality can be instantiated and understood
in a wider class of continuous systems which offer an
advantage in terms of tractable analysis. Hence, we have
demonstrated that dynamical pattern generation of the
kind described for the GasNet is not particular to the
specifics of that formulation of neuromodulation.

Furthermore the continuous nature of this system al-
lows us to draw parallels between its behaviour and
bursting behaviours referred to in the neuroscience liter-
ature (Rinzel & Ermentrout, 1989). The extent to which
the behaviour of our simple model can be used to explore
bursting remains an open question. However, in light of
this observation, it may be interesting to use bursting
ideas from neuroscience as a tool for understanding and
designing robot control systems.

5. Not Inhibitory or Excitatory

We will now take a closer look at the movements of the
nullclines during modulation of several kinds. In partic-
ular we wish to understand whether multiplicative gain
modulation is necessary to effect dynamical pattern gen-
eration.

One of the key tenets of neuromodulation is that it “is
not simply excitatory or inhibitory” but modulatory—
i.e. it alters behavioural parameters, rather than merely
activation levels. Given the tractability of our model, we
are in a position to explore this assertion more closely.
First of all let us assess what we mean by “not simply
excitatory or inhibitory”. In the GasNet formulation
this idea is quite clear—the gain parameter acts as a
multiplicative factor in the update function in contrast
to the merely additive character of synaptic inputs,see
equation (2).

The idea of multiplicative connections is not new. In-
deed, Pollack (1987) argued that greater computational
power would not come about without their use. Typ-
ically the output of a particular node is calculated as
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Figure 4: The output of the dynamical pattern generator:

The figure shows the output of the system under γ modu-

lation. Panels a and b show v and w, respectively. Figure

c depicts the growth and decay of modulators M1 and M2.

Figure d displays the movement of the nullclines and bifurca-

tion points—the solid lines and crosses depict their positions

in the absence of M2, while the dashed line and circles denote

their locations in the presence of a maximum concentration

of M2.

a function of the sum of the synaptic inputs. Pollack
thought that connections that multiplied the sum of the
synaptic inputs were equally as important. Further-
more he believed that full Turing-complete computabil-
ity could not be realized without such connections. This
was later shown not to be the case (Siegelmann & Son-
tag, 1995). Nevertheless, Pollack goes on to state that
“multiplicative connections remain a critical and under
appreciated component of neurally inspired computing”
(Pollack, 1999). Although the addition of multiplicative
connections may not confer new functionality on simple
additive networks, they may alter what behaviour is eas-
ily obtained, and hence network evolvability. The next
section will look closely at the different types of param-
eter modulation possible in our augmented FHN model.

5.1 Modulation in the FHN Equation

Figure 5 shows the change in the nullclines under various
parameter modulations of equations (3) and (4). The
circles mark the oscillatory region on the v nullcline.

Figure 5a shows the effect of modulating γ. The trace
is affected in two ways: because γ affects the gradient of
the w nullcline, it changes the equilibrium position, v∗,
and hence the first term of equation (7). Furthermore,
it also changes the second term of equation (7), which
scales the oscillatory region (note the difference between
the locations of crosses and circles).
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Figure 5: A transition from oscillatory to non-oscillatory be-

haviour caused by three types of modulation: (a) γ modula-

tion, (b) Iγ modulation, and (c) τ modulation. Each panel

displays the movement of nullclines and bifurcation points—

solid lines and crosses depict their positions in the absence

of modulation, while dashed lines and circles denote their

locations in the presence of modulation. See text for details.

In contrast the size of the oscillatory region does not
change under Iγ modulation, which merely translates
one nullcline (see figure 5b). The only change to the trace
is due to the first term of equation (7). This type modu-
lation is closely analogous to synaptic input in equation
(1). Perturbing Iγ is analogous to raising or lowering
a GasNet node’s electrical threshold, i.e. increasing or
decreasing its level of activation. Hence, this type of
change is not traditionally associated with neuromodula-
tion since, at root, it is merely “excitatory or inhibitory”.

Perhaps the most interesting type of modulation con-
sidered here is shown in Figure 5c, for the parameter
τ . Perturbing this parameter produces no change in the
nullclines and hence no change in the position of the
equilibrium point, v∗. Nevertheless, this kind of modu-
lation affects the second term of the trace equation, and
hence alters the range of the portion of the v nullcline
associated with oscillatory behaviour. The effect of ma-
nipulating τ is to scale the w axis while preserving the
nullcline configuration.

In general there are two ways the nullclines can
change, first the equilibrium point can be translated,
which corresponds to a change in the first term of equa-
tion (7). Second, altering certain parameters can change
the size of the oscillatory region, which corresponds to
a change in the second term of equation (7). While γ
(gain) modulation achieves a mixture of both effects, Iγ

(threshold) modulation produces pure translation, and τ
(time constant) modulation achieves pure scaling of the

oscillatory region, leaving the equilibrium position of the
system unchanged.

5.2 Comparing Different Modulation Types

If the neuromodulatory mechanisms in GasNets are re-
sponsible for enhanced evolvability (perhaps through fa-
cilitating the construction and tuneability of dynamic
pattern generators of the kind explored above) it is im-
portant to understand how the different aspects of neu-
romodulation contribute. Is the fact that GasNets em-
ploy gain modulation critical? Our definition of neu-
romodulation (not fast, not point-to-point, not inhibi-
tion/excitation) suggests that it might be since alter-
native styles of modulation (e.g., threshold modulation)
are merely equivalent to excitation/inhibition. Here we
explore the ability of different types of modulation to
effect dynamic pattern generation in an attempt to dis-
cover whether the particular kinds of “multiplicative”
modulation feted in the literature are in some sense be-
haviourally superior. Might simple threshold modula-
tion do the job (despite not counting as neuromodula-
tion)?

Figure 6 shows our FHN model system under Iγ mod-
ulation (i.e. equation (12) is modified such that the
γ, γmin and γmax terms are replaced by equivalent Iγ

terms). It successfully produces beating behaviour anal-
ogous to that seen under γ modulation. Variation in
M2 causes a vertical translation of the v nullcline such
that the equilibrium point, v∗, lies at times inside, and
at other times outside, the region associated with os-
cillatory behaviour. The size of the oscillatory region
remains unchanged.

Figure 7 shows the system under τ modulation. Again,
it successfully exhibits beating behaviour. However, this
is not achieved by translation of the nullclines, but rather
by scaling the region of the v nullcline associated with
oscillatory behaviour. In the absence of M2, oscillatory
behaviour is associated with the portion of the v nullcline
spanned by the two crosses. As the concentration of M2

increases, these points move together, reducing the size
of the oscillatory region, until they collide at a point
indicated by the open circle. At or above this level of
M2 concentration, no oscillatory behaviour is possible.

In both cases (as well as the case of γ modulation de-
scribed earlier), slowly modulating a particular system
parameter achieves beating by allowing the system to
alternate between non-oscillatory and oscillatory modes
of behaviour. The manner in which this alternation is
achieved is all that varies. Thus, even though we have
discovered some fundamental differences between the dif-
ferent forms of modulation, each remains able to support
a dynamical pattern generator circuit. In particular, we
have shown that threshold modulation (that is merely
inhibitory/excitatory) is sufficient in this regard, despite
not satisfying our definition of neuromodulation.
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Figure 6: Output of the dynamical pattern generator under Iγ modulation.
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Figure 7: Output of the dynamical pattern generator under τ modulation.



However, while we have seen that it is possible for
pattern generation to be achieved via a number of mod-
ulatory mechanisms, our current work suggests that the
differences between gain modulation and threshold mod-
ulation are significant in some respects. Specifically,
imagine an arbitrarily configured system of the kind de-
scribed here that happens to be quiescent. Our analysis
shows that gain modulation will be capable of exciting
oscillatory behaviour in any such system. By contrast,
mere threshold modulation will in general be unable to
do so. Future papers will seek to characterise this and
other differences between the behavioural and evolution-
ary potential of different modulatory mechanisms.

6. Conclusion

We have constructed a simple model of neuromodulation
based on the FHN equation. Using this model we were
able to obtain very similar behaviour to that produced by
dynamical pattern generators observed in evolved Gas-
Nets. This lends weight to the idea that important Gas-
Net behaviours are not specific to the particular idiosyn-
crasies of that formalism, but are more generic features
of neuromodulation. We also noted that the observed
behaviours were reminiscent of beating/bursting system
studies in the neuroscience literature (Rinzel & Ermen-
trout, 1989).

We gave a working definition of neuromodulation sug-
gested by (Katz, 1999). The GasNet contains all three
characteristics of this definition. In particular gain mod-
ulation in the GasNet is concordant with the idea that
neuromodulation is neither excitatory nor inhibitory, but
rather modulatory. We investigated what this meant for
our model system, observing how the system’s nullclines
changed under different kinds of parameter modulation.
We concluded that different parameter modulations ex-
hibited key differences in their mechanics. While Iγ

modulation, which we argued was analogous to modula-
tion of electrical threshold or synaptic input, could only
translate the nullclines, γ modulation, which is analo-
gous to gain modulation, could also affect the size of the
oscillatory region (our third mechanism, τ modulation,
was only able to affect this aspect).

Given these differences we explored their effect on the
ability of the system to reproduce the behaviour of a
dynamical pattern generator subcircuit. We discovered
that while each type of modulation was able to effect the
dynamic pattern generation behaviour, each achieved
this in a different manner. Initially this leads us to be-
lieve that the slow dynamic of the modulation (its growth
and decay) is perhaps more important than its additive
or multiplicative nature. However, our most recent work
suggests that multiplicative interactions may neverthe-
less be important for system evolvability.

7. Future Work

The analysis and results presented here are only a first
step toward a complete answer to the question: “what
is the source of GasNet evolvability”? One obvious
next step is to consider the role of spatial embedding
in GasNet evolvability. To what extent is the low-
dimensionality of the space within which GasNet nodes
are embedded implicated in their ability to solve robot
control tasks. Second, we wish to extend our simple
model to consider small assemblies of multiple neurons,
and the role of neuromodulation in their self-organisation
and self-regulation.

We believe that in order to answer these questions, we
need to confront some of the deeper issues concerning
neuromodulation, not only with respect to behaviour-
based robotics but also in the wider context of the neu-
roscience community. In particular, given growing evi-
dence that multiple parallel processes at different spa-
tial and temporal scales co-operate (operate together)
across neural systems, we would like to know, as Eve
Marder puts it, “what factors stabilise network operation
in the face of so many competing influences?” (Poggio
& Glaser, 1993, chapter 2)
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