
This is a repository copy of Extracting Boolean rules from CA patterns .

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/796/

Article:

Yang, Y.X. and Billings, S.A. (2000) Extracting Boolean rules from CA patterns. IEEE
Transactions on Systems Management and Cybernetics Part B: Cybernetics, 30 (4). pp.
573-581. ISSN 1083-4419

https://doi.org/10.1109/3477.865174

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 30, NO. 4, AUGUST 2000 573

Correspondence__

Extracting Boolean Rules from CA Patterns

Yingxu Yang and S. A. Billings

Abstract—A multiobjective genetic algorithm (GA) is introduced to iden-
tify both the neighborhood and the rule set in the form of a parsimonious
Boolean expression for both one- and two-dimensional cellular automata
(CA). Simulation results illustrate that the new algorithm performs well
even when the patterns are corrupted by static and dynamic noise.

Index Terms—Boolean identification, cellular automata, genetic algo-
rithms, spatio-temporal systems.

I. INTRODUCTION

Cellular automata (CA) are mathematical models for complex nat-
ural systems containing large numbers of simple identical components
with local interactions. Since the pioneering work of John von Neu-
mann during the 1950s [1], cellular automata have been largely em-
ployed as a modeling class to approximate nonlinear discrete and con-
tinuous dynamical systems in a wide range of applications [2]–[5].
However the inverse problem of determining the CA that satisfies gen-
eral sets of prespecified constraints [6] has received relatively little at-
tention. One of the most essential problems in this case is the identi-
fication of CA, i.e., how to learn the underlying rule that governs the
local behavior of cells from temporal slices of the global evolution of
the spatio-temporal pattern.

CA in the classical sense are autonomous systems, i.e., there are no
external inputs exerting an influence on the evolution. It is only pos-
sible to observe the evolution of CA as a series of snapshots of the
global states at various times in a certain finite interval of the evo-
lution. An identification procedure can then be established based on
using these fixed global states. In CA identification, it is assumed that
a given spatio-temporal pattern (a pattern that evolves in both space
and time)
 has a dimensiond (d � 1) and can be described by a
cellular automaton. Identification of a CA involves determining a min-
imal description of the CA� that precisely simulates
 such that the
size of the neighborhood of� is as small as possible. It is therefore
necessary to determine not only the CA rule but also the structure of
the CA neighborhood. Ideally, the identification technique should pro-
duce a concise expression of the CA rule. This ensures that the model
is parsimonious and can be readily interpreted for hardware realization
of the cellular automaton. Richardset al.[7] proposed a method for ex-
tracting CA rules from given spatio-temporal patterns using a genetic
algorithm (GA). Adamatskii [8] discussed the complexity of identifi-
cation of cellular automata and presented sequential and parallel al-
gorithms for computing the local transition table. However, neither of
these authors obtained a clear neighborhood structure or parsimonious
rule expression.

In digital circuit design [9]–[14], small Boolean expressions are
searched to reproduce given data tables. But these solutions are

Manuscript received July 10, 1998; revised February 14, 1999 and April 23,
2000. This work was supported by the University of Sheffield and U.K. EPSRC.
This paper was recommended by Associate Editor J. Oomen.

The authors are with the Department of Automatic Control and Systems
Engineering, University of Sheffield, Sheffield S1 3JD, U.K. (e-mail:
yingxu@acse.shef.ac.uk; s.billings@sheffield.ac.uk).

Publisher Item Identifier S 1083-4419(00)06717-0.

concerned with minimizing known Boolean functions and do not
address the general problem of determining the CA rule from an
observed possibly noisy complex multidimensional pattern. The latter
problems are much more complex, as discussed by Richardset al. [7],
and a solution would offer an important step forward in the modeling
of spatially extended systems that arise in such diverse fields as pattern
formation, fluidic mixing, brain imaging and in data compression
problems.

This paper considers the identification of Boolean expressions
for one–dimensional (1-D) and two–dimensional (2-D) CA. An
evolutionary algorithm is proposed using a multiobjective genetic
algorithm to extract a precise local Boolean expression of the CA rule
from given spatio-temporal patterns blurred by noise. The remainder
of the paper is organized as follows. In Section II, the definition of
a group of 1-D and 2-D CA is introduced. Section III reformulates
the Boolean expression for 1-D CA rules and extends these to the
2-D case. The GA search for Boolean expressions of CA rules is
then presented with an emphasis on the construction of parsimonious
forms of CA rules. Simulation results are contained in Section IV, and
Section V discusses the efficiency of the algorithm.

II. ONE- AND TWO-DIMENSIONAL CELLULAR AUTOMATA

A cellular automaton is composed of three parts: a discrete lattice, a
neighborhood and a rule for local transitions. Attention in this paper is
restricted to binary CA where the cells can only take binary values.

A. Neighborhoods

The neighborhood of a cell is the set of all the cells capable of directly
influencing the evolution. Sometimes this includes the cell itself. The
neighborhoods shown in Fig. 1 are used often and have proper names.
CA neighborhoods can take cells from various spatial and temporal
scales. For simplicity, this paper only considers neighborhoods com-
posed of cells from time stept� 1, but the results are not restricted to
this case.

B. Local Rules

The local transition rule updates all cells synchronously by assigning
to each cell, at a given time step, a value which depends only on the
neighborhood. The most common method to define the local transition
rule is to use a transition table analogous to a truth table. In this truth
table, the rule is labeled by assigning neighborhoods in ascending nu-
merical order and specifying which neighborhoods map to zero and
which to one. The truth table is also called the component form of the
CA rule. The component form of a three-site 1-D ruleR is shown as
follows:

000 001 010 011 100 101 110 111

r0 r1 r2 r3 r4 r5 r6 r7

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

where the first row gives all the possible states the cells within
the neighborhood could take. Theri’s in the second row are the
rule components which can take only binary numbers with 1’s
indicating that the components are included in the rule and 0’s
indicating otherwise. The last row shows the coefficients associated
with the corresponding components. The ruleR can be defined as

1083–4419/00$10.00 © 2000 IEEE

574 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 30, NO. 4, AUGUST 2000

Fig. 1. Examples of most frequently used 1-D and 2-D neighborhoods. (a)
1-D von Neumann neighborhood. (b) 2-D von Neumann neighborhood. (c) 2-D
Moore neighborhood.

R = (r0; r1; r2; r3; r4; r5; r6; r7). The numerical labelD assigned
to R is given byD(R) = 2 �1

s=0
rs2

s, which is simply the sum
of the coefficients associated with all nonzero components. All this
applies to the ruleR with any three-site neighborhoods irrespective
of the neighborhood structures. For example, a very often used 1-D
three-site ruleRule22 is defined asRule22 = (01 101000) and the
numerical labelD(Rule22) = 21 + 22 + 24 = 22.

III. EXTRACTING BOOLEAN RULES USING GENETIC ALGORITHMS

A. Boolean Form of CA Rules

For a 2-D CA, the local transition can be denoted assnew(i; j) =
flt(NNN(i; j)), wheresnew(i; j) is the updated state ofcell(i; j) at time
stept andNNN(i; j) represents the states of the cells within the neigh-
borhood ofcell(i; j) at time stept � 1. Reducing the dimensions in
this expression will yield models for 1-D CA as a special case. The
local transition functionflt is equivalent to the local transition table
of length2n, wheren is the size of the neighborhood. Therefore,flt
can be viewed as a Boolean function ofn variables, and CA rules can
be expressed as Boolean rules. There are two different ways of con-
structing Boolean rules, usingNOT, AND, OR, andNOT, AND, XOR
logical operators, respectively. This paper only considers the latter for-
mulation because this usually involves fewer logical operations than
the former formulation for the same rule. For example, the Boolean
form of Rule22 = (01101000), which is illustrated in Table I, is
snew(j) = C �D. For all n-site 1-D CA rules, there is a simple pro-
cedure for the construction of the Boolean expression in terms ofNOT,
AND andXORoperators given the component form (see [15], Algo-
rithm 1.1, p. 30 for details). TheNOT operator can be removed from
the obtained Boolean expression by applyingNOT(a) = 1� a. Fur-
thermore, applying0 � a = a and(a � b) � c = a � c � b � c, it
is then straightforward to state, e.g., that all the 1-D three-site binary
CA can be represented by a Boolean function with onlyANDandXOR
operators of the form

snew(j) = a0 � a1s(j � 1)� a2s(j)� a3s(j + 1)

� a4(s(j � 1) � s(j))� a5(s(j) � s(j + 1))

� a6(s(j � 1) � s(j + 1))

� a7(s(j � 1) � s(j) � s(j + 1)) (1)

whereai (i = 0; � � � ; 7) are binary numbers andai = 1 indicates that
the following term is included in the Boolean function whileai = 0
indicates that the following term is not included. Note that the number
of possible expressions in (1) is28 = 256, which is exactly the number
of all three-site 1-D rules. This implies that the representation in (1) is
unique: one set offai; i = 0; � � � ; 7g corresponds to one and only one
CA rule.

TABLE I
THE BOOLEAN FORM OFRule22 USING NOT, AND, AND XOROPERATORS.
B = s(j�1)�s(j),C = B�s(j+1),D = s(j�1)�s(j)�s(j+1)—�,

AND � REPRESENT THEAND AND XOROPERATOR, RESPECTIVELY

This can be extended to multidimensional CA. For example any 2-D
CA with a five-site von Neumann neighborhood can be represented by
a Boolean expression:

snew(i; j) = a0 � a1s(i� 1; j)� � � �

� a31(s(i� 1; j) � � � � � s(i+ 1; j)): (2)

Extending this further, every CA with an n-site neighborhood
fcell(x1); � � � ; cell(xn)g may be written as

snew(xj) = a0 � a1s(x1)� � � � � aP (s(x1) � � � � � s(xn)) (3)

whereP = 2n � 1 andcell(xj) is the cell to be updated.

B. Extracting Boolean Rules using a Genetic Algorithm

Equation (3) is important because it significantly reduces the com-
plexity of CA identification by using a reduced set of logical opera-
tors and candidate terms. The difficulty in identifying multidimensional
CA is also decreased because higher-dimensional CA rules are reduced
to an equation which depends on the size of the neighborhood rather
than the dimensionality. Assume that the onlya priori knowledge is
the dimension of the CA, which can be obtained from examining the
spatio-temporal patterns [7]. Then the emerging difficulty lies in how
to determine which terms should be included in the Boolean expres-
sion and which should be discarded. The problem is very similar to
the term selection problem in structure detection for nonlinear system
identification [16]. However, in CA identification all the terms are com-
bined by theXORoperator and are therefore nonlinear-in-the-parame-
ters, whereas in nonlinear system identification all the items are com-
bined by the ordinary addition operator and can often be configured to
be linear-in-the-parameters. This difference increases the difficulty of
the CA term selection problem.

Note that CA term selection is different from and more difficult than
Boolean function minimization for which many useful techniques are
available, especially in the digital circuit design literature [9]–[14]. CA
term selection involves both identifying and minimizing Boolean func-
tions while methods related to Boolean function minimization usually
only consider deriving the equivalent minimum expression from al-
ready known Boolean functions. The identification is difficult because
of the logical terms, particularly when cellular automata with large
size neighborhoods and, therefore, a large number of candidate log-
ical terms, are involved.

In the present study, this problem is solved by evolving a genetic
algorithm [17], [18] in the search for appropriate terms through the
space of logical models constructed uponAND and XOR operators.
This algorithm is implemented as follows.

1) Population: In the current application, each candidate Boolean
rule is encoded using a chromosome. Each candidate term is then rep-
resented by a bit in this chromosome. Theith chromosome is defined

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 30, NO. 4, AUGUST 2000 575

as a1� (P +1) binary vectorci, whereP = 2n� 1 andn is the size
of the largest neighborhood under consideration. Each entry in theith
chromosome corresponds to a term in the following term set:

ci(1)! 1; ci(2)! s(x1); � � � ; ci(n+ 1)! s(xn);

ci(n+ 2)! s(x1) � s(x2); � � � ;

ci(P + 1)! s(x1) � � � � � s(xn)

whereci(j) = 1 indicates that the associated term has been selected
andci(j) = 0 indicates otherwise. Define

f = [1 s(x1) � � � s(x1) � � � � � s(xn)] C = [c1 � � � cnp]

wherenp is the number of chromosomes in the population.
2) Multiobjective Fitness Function:The fitness function is de-

signed to measure the performance of Boolean rules represented by the
chromosomes in regenerating the observed spatio-temporal patterns.
Before introducing the fitness function for the CA term selection
problem, the vectorXORoperator� is defined as follows:

[a1 � � � an]� [b1 � � � bn]
T

= (a1 � b1)� � � � � (an � bn)

where� denotes theAND operator. For example,

[a1 0 a3]� [b1 b2 b3]
T

= (a1 � b1)� (0 � b2)� (a3 � b3) = (a1 � b1)� (a3 � b3):

In the present problem, an important measure of the performance of the
chromosomes is the modulus of errors function defined as

Mer(i) =

SET

r

jy(i; j)� ŷ(i; j)j (4)

where
r number of data points in the data set extracted

from the CA patterns;
y(i; j) measured state at data pointj for chromosome

i;
ŷ(i; j) = ci � fj predicted state.

If Mer is chosen as the fitness function, a solution with the least mod-
ulus of errors will be found. However, it is not guaranteed that the asso-
ciated neighborhood is correct and minimal. This is because there may
be more than one model that produces a minimumMer. The initial as-
sumed neighborhood almost always encompasses more cells than are
actually in the real neighborhood. A 1-D ruleRule30 with a von Neu-
mann neighborhood, for example, is most concisely represented as

snew(j) = s(j � 1)� s(j)� s(j + 1)� (s(j) � s(j + 1)) (5)

while during the search for this rule the candidate rules are often
searched for over a larger neighborhood. For example, candidate
rules can be assumed to be operating on a five-site neighborhood
fcell(j � 2); cell(j � 1); cell(j); cell(j + 1); cell(j + 2)g and of
the form

snew(j) = a0 � a1s(j � 2)� � � �

� a31(s(j � 2) � � � � � s(j + 2)): (6)

It is highly likely that more than one expression including (5) may
be selected from (6) to match the patterns. The solution is therefore
not necessarily unique, and this often leads to a false extension of the
neighborhood.

Note that a rule with a larger neighborhood cannot be represented by
a rule with a smaller neighborhood while a rule with a smaller neigh-

borhood can often be expressed by a rule with a larger neighborhood.
Therefore, the best model is always the smallest model amongst all
the possible models chosen. This is the principle of parsimony. Thus,
another search objective must be added to direct the algorithm to pro-
duce a parsimonious logical model with minimal modulus of errors.
An efficient approach to accommodate the second search objective is to
employ a multiobjective fitness function. In the present study, the two
search objectives are to minimizeMer and to minimize the number
of terms in all models with the sameMer. The multiobjective fitness
function in this study is based on a ranking scheme according to the
concept of Pareto optimality [17]. This will guarantee equal probability
of reproduction to all nondominant chromosomes and should generate
a solution nearest to the optimal. The multiobjective fitness function is
constructed as follows.

a) Each chromosome in the current population is ranked with re-
spect toMer. The chromosome with the leastMer occupies
the first position, the chromosome with the second leastMer

occupies the second position and so on. Chromosomes with the
same error share the same rank. So

RANK 1 � � � i i

ERROR Mer(1) � � � Mer(i) Mer(i+ 1)

RANK i � � � np

ERROR Mer(i+ 2) � � � Mer(np)

with

Mer(1) < � � � < Mer(i) = Mer(i+ 1)

=Mer(i+ 2) < � � � < Mer(np):

b) Define the structure functionSt(i) for the ith chromosome
asSt(i) = P+1

j
ci(j). Resort the orders of chromosomes

sharing the same rank in proportion to the associatedSt(i) and
keep the ranking of the remainder unchanged. Thus

RANK 1 � � � i i+ 1

ERROR Mer(1) � � � Mer(i) Mer(i+ 1)

STRUCTURE St(1) � � � St(i) St(i+ 1)

RANK i+ 1 � � � np

ERROR Mer(i+ 2) � � � Mer(np)

STRUCTURE St(i+ 2) � � � St(np)

with

St(1) < � � � < St(i) < St(i+ 1) = St(i+ 2) < � � � < St(np):

c) The multiobjective fitness function of theith chromosome is fi-
nally defined as

fit(i) =
MAX(rank(i))� rank(i)

MAX(rank(i))�MIN(rank(i))
: (7)

The ranking technique results in a search with a preference toward min-
imizing Mer. The structure functionSt will not have any impact on
the first few steps of the search and the fitness of each chromosome in
those steps is determined exclusively byMer because all the chromo-
somes are highly likely to hold various ranks at that initial stage. Only
after certain chromosomes have converged to a similarMer is it pos-
sible to rearrange the ranking at thatMer according to the associated
St. This search is therefore able to always select chromosomes with the
minimum structure within the span of the lowestMer. Hence, chro-
mosomes with a parsimonious logical expression and minimum error
will remain in the latest population to yield the final solution.

To avoid the algorithm becoming trapped at a local optima, two sub-
populations will be introduced which evolve in parallel with the main
population [19]. The subpopulations are evolved separately under two

576 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 30, NO. 4, AUGUST 2000

(a) (b)

(c) (d)

Fig. 2. Noise-free pattern and static noise contaminated patterns produced by 1-DRule22. (a)p = 0. (b) p = 0:05. (c) p = 0:1. (d) p = 0:2.

different search objectives of minimizingMer andSt, respectively.
Each candidate in the main population is produced by genetic commu-
nication between the two subpopulations and is subject to evaluation
by the ranking technique.

For details of reproduction, crossover, and mutation see [18] and
[20].

3) Summary of the CA Term Selection Algorithm:The CA term se-
lection algorithm can be summarized as follows.

a) Generate three initial population setsP , Q andR with each
consisting ofnp individuals. Set the current generation number
i = 1.

b) ComputeMer for each individual inP . CalculateSt in each
chromosome inQ. Rank the individuals inR using the ranking
technique. Calculate the fitness value.

c) Apply the parent selection technique toP andQ.
d) Employ crossover and mutation toP andQ separately to produce

the corresponding offspring setsP0 andQ0. Employ crossover
and mutation toP andQ combined to produce the offspring set
R

0 for the population setR .
e) Calculate the corresponding fitness values for the chromosomes

in the offspring setsP 0,Q0 andR0. Select thenp fittest individ-
uals from both the population setsP , Q, andR and the corre-
sponding offspring setsP 0, Q0 andR0, respectively, by com-
paring the fitness values. ResetP , Q, andR using the cor-
responding newly selectednp individuals. Set the generation
numberi = i + 1 and nullify the three offspring setsP 0, Q0

andR0.
f) Return to c) and repeat until a prespecified number of generations

has been reached.

IV. SIMULATION ANALYSIS

A. The Effects of Noise

In cellular automata, noise is a form of imperfection which at a crit-
ical magnitude is able to induce an essential phase transition that can
suddenly change the behavior of the CA. Static noise can be added to
a spatio-temporal pattern by first evolving a deterministic CA rule and
then randomly flipping a limited number of binary values according to
a specified probabilityp, wherep = q1=q2, q1 is the number of cells
to be flipped, andq2 is the total number of cells in the spatio-temporal
pattern. This is referred to as static noise because it is added after the
CA evolution. Fig. 2 shows the noise-free pattern (p = 0) for the 1-D
Rule22 with von Neumann neighborhood and the same pattern cor-
rupted by noise with probabilities of switchingp = 0:05, p = 0:1, and
p = 0:2, respectively. All these were developed on a 200� 200 lattice
with time evolution from top to bottom, and with a periodic boundary
condition, i.e., the lattice is taken as a circle in the horizontal dimen-
sion, so the first and last sites are identified as if they lay on a circle of
finite radius. The evolution started from an initial condition of a ran-
domly generated binary vector.

Unlike static noise, which is added to the CA patterns after the evo-
lution, dynamic noise is directly involved in the development of the
spatio-temporal patterns by specifying that one or more (not all) of the
rule components of the rule be 1 with a probabilityp and be 0 with
probability(1� p), wherep = w1=w2, w1 is the number of the pre-
specified rule components to be filled in by 1, andw2 is the number
of the prespecified rule components. This may exhibit a transition de-
pending on the probabilityp. Fig. 3 shows the transition from a simple
1-D Rule184 with von Neumann neighborhood to a chaoticRule60

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 30, NO. 4, AUGUST 2000 577

(a) (b)

(c) (d)

(e) (f)

Fig. 3. The transition fromRule184 (p = 0) to Rule60 (p = 1) with p varying to indicate different noise densities (a)p = 0, (b) p = 0:1, (c) p = 0:5, (d)
p = 0:65, (e)p = 0:8 and (f)p = 1:0.

under the transition rule in Table II. Note that the maximum noise den-
sity for the transition is 0.5. For example, whenp = 0:6, the transition
behaves more likeRule60 thanRule184 and, therefore, the noise den-
sity for the transition should be considered as1� p = 0:4 for Rule60
rather than 0.6 forRule184.

B. Extracting Boolean Rules from 1-D CA Patterns

1) From Patterns Corrupted by Static Noise:Assume the neighbor-
hood structure of a class of 1-D CA is defined byfcell(j�2); cell(j�
1); cell(j); cell(j+ 1); cell(j+ 2)g. Given the spatio-temporal pat-
terns in Fig. 2, the CA term selection algorithm was used to produce
the results in Table III. A typical run using data extracted from the
noise-free pattern in Fig. 2(a) is shown in Fig. 4. In each case, 100 trials
were conducted using different initial assignments. The program was
terminated after 120 generations had been reached. Except for method

TABLE II
TRANSITION RULE FROMRule184 TO Rule60 WHERE0 < p < 1

a with p = 0, the optimal solutions were found in all the 100 trials. It
can be seen from the results in Table III that whenp = 0, methoda
tended to find suboptimal solutions for the neighborhood and the rule.
This is also illustrated in Fig. 4(a), where althoughMer has finally
settled to zero,St shows no sign of further decreasing through the re-
maining generations. The Boolean rules found using methoda varied

578 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 30, NO. 4, AUGUST 2000

TABLE III
SUMMARY OF RESULTS OBTAINED IN EXTRACTING Rule22 FROM THE

PATTERNS IN FIG. 2,USING METHODa: AN UNMODIFIED GENETIC ALGORITHM

WITH Mer AS THE FITNESSFUNCTION, AND METHOD b: THE CA TERM

SELECTION ALGORITHM. THE “GENERATIONS” COLUMN INDICATES THE

NUMBER OF GENERATIONSREACHED WHEN THEOPTIMAL SOLUTION WAS

FOUND. AV.R.T. REPRESENTS THEAVERAGE RUN TIME IN THE SEARCH FOR

THE OPTIMAL SOLUTION IN ONE TRIAL . ONE HUNDRED TRIALS WERE MADE

FOREACH PROBLEM. THE OPTIMAL SOLUTION IS ALREADY KNOWN

with different trials, but all involved an incorrectly extended neigh-
borhood. For example, the rule produced from the evolution shown in
Fig. 4(a) is

snew(j) = s(j � 1)� s(j)� s(j + 1)� (s(j � 1) � s(j + 1))

� (s(j � 1) � s(j) � s(j + 2))

� (s(j � 1) � s(j + 1) � s(j � 2))

� (s(j � 1) � s(j + 1) � s(j + 2))

� (s(j � 1) � s(j) � s(j + 1) � s(j � 2))

� (s(j � 1) � s(j) � s(j � 2) � s(j + 2))

� (s(j � 1) � s(j + 1) � s(j � 2) � s(j + 2)): (8)

In contrast, whenp = 0 methodb generated only one Boolean rule
in all 100 trials, this Boolean rule is

snew(j) = s(j�1)�s(j)�s(j+1)�(s(j�1)�s(j)�s(j+1)): (9)

Although the Boolean rules in both (8) and (9) produce the same cor-
rect truth table ofRule22, the former covers a five-site neighborhood
fcell(j � 2); cell(j � 1); cell(j); cell(j + 1); cell(j + 2)g while
the real neighborhood should befcell(j � 1), cell(j), cell(j + 1)g.
The neighborhood structure of the former is therefore suboptimal. This
result was obtained because methoda selected the rules with the min-
imumMer without considering the structure of the neighborhood. In
contrast, the Boolean rule in (9) was obtained using a search also taking
into account the number of terms in the candidate rule, and this pro-
duced a rule exactly the same as listed in [15] with a correct neighbor-
hood and a parsimonious Boolean expression. This is also illustrated in
Fig. 4(b) whereSt diminishes afterMer has settled on zero. Further-
more, the modulus of errors using methodb converged considerably
faster than using methoda because in methodb, subpopulations were
incorporated to accelerate the convergence. This effect is demonstrated
in Table III, where the average run-time using methodb was almost
half the time using methoda. It can also be seen from Table III that
althoughMer did not converge to zero for eitherp = 0:1 or p = 0:2,
due to random flipping of some cell values, the correct and parsimo-
nious Boolean expression in (9) was still obtained in both cases. This
suggests that the CA term selection algorithm is not sensitive to static
noise when the noise density is within a certain amplitude, in this case,
p � 0:2.

2) From Patterns Corrupted by Dynamic Noise:Dynamic noise is
immediately involved in the CA evolution and can considerably af-

(a)

(b)

Fig. 4. Search process forRule22 using the noise-free pattern, and methods
a andb, respectively, (a) using methoda and (b) using methodb. Legend: The
dashed line is the evolution of the number of terms in the chromosome with
the best fitness. The solid line is the evolution of the modulus of error of the
chromosome with the best fitness.

TABLE IV
SUMMARY OF RESULTSOBTAINED IN EVOLVING THE TRANSITION FORM

Rule184 TO Rule60 USING THECA TERM SELECTION ALGORITHM

fect the development. The patterns contaminated by dynamic noise are
therefore much more complicated. Ideally, an identification procedure
should be designed to remain insensitive to these disturbances and to
recover the underlying rule in as much is possible. Table IV shows the
results of a search for the appropriate CA rule using data generated
in the transition fromRule184 to Rule60 shown in Fig. 3. In each
case, 100 trials were conducted using different initial assignments. The
program was terminated when 200 generations had been reached. For
simplicity, only the corresponding average and standard deviation are
listed in Table IV. The search result forp = 0 in Table IV produces

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 30, NO. 4, AUGUST 2000 579

snew(j) = s(j � 1)� (s(j � 1) � s(j))� (s(j) � s(j + 1)), which
is exactly the same as the Boolean form ofRule184 listed in [15]. The
result in Table IV forp = 0:1 produces

snew(j) = s(j � 1)� (s(j � 1) � s(j))

� (s(j) � s(j + 1))� (s(j � 1) � s(j) � s(j + 1))

which generates the rule components (01 011 100). Note that in com-
parison with the correct rule components forRule184 (01 011 101),
the last bit in the identified rule components is incorrect. The reason
for this appears to lie in the nature of the rule itself. Rules that pro-
duce simple patterns of self-repetition or shifting imply that a certain
number of combinations of the states of the cells within the neighbor-
hood have probably never appeared in the existing data set. Hence, the
search is unlikely to learn that particular behavior and most probably in-
discriminately selects a rule from a range of rules satisfying only other
combinations. ForRule184, even though the evolution is slightly com-
plicated, and the data set extracted from the noise-free pattern is rich
enough to allow the identification of the correct rule (00 011 101), the
combination of the states of the cells within the neighborhood (111),
which corresponds to the last component, appears infrequently and the
noise simplifies the data set by eliminating (111). Subsequently, the
search failed to learn the behavior of (111) and, hence, produced a
wrong result. A similar phenomena appears in other simple 1-D rules
such asRule46,Rule116,Rule72, andRule172. The search may re-
peatedly produce incorrect rules even after the size of the data set has
been enlarged. Consequently, under certain combination of rules and
initial conditions, the optimal solution can be deduced only provided
sufficient data are available.

However, forp = 0:8, where the noise density is1� 0:8 = 0:2 for
the rule transition, the search result issnew(j) = s(j�1)�s(j). This
result is correct and parsimonious and exactly the same as the Boolean
expression forRule60 listed in [15], even though the noise level is 10%
higher than inp = 0:1. This appears to be because of the chaotic nature
of Rule60, which is able to generate patterns complicated enough so
that even after the patterns are contaminated by a relatively high density
of noise, the data set still contains sufficient information to correctly
characterize the behavior. Whenp = 1, the result issnew(j) = s(j �
1) � s(j), which is the same as forp = 0:8 and is the parsimonious
Boolean expression forRule60. Note that forp = 0:65, the search
also converged to the correct results(j) = s(j� 1)� s(j) despite the
high noise density of1� 0:65 = 0:35 for Rule60.

The search result for the transition rule atp = 0:8 is also shown in
Table V. Although the data were contaminated by a dynamic noise with
density1 � 0:8 = 0:2, which had substantial impact on the growing
patterns (the growth of the noise corrupted patterns was 100% faster
than the noise-free patterns), and the error did not converge to zero,
the search produced the same correct and parsimonious Boolean rule
as identified in the noise-free case (p = 1). This suggests that the CA
term selection algorithm is robust in the presence of dynamic noise
even for the 2-D case.

C. Extracting Boolean Rules from 2-D CA Patterns

Table V shows the results of the search for CA rules using
data produced by both the evolution of a deterministic 2-D rule
Rule(01101010 11 101110 01001111 11100100) and a
transition(01101010 1 110111(1 � p) 01 001111 p1 100100)
of the same rule atp = 0:8 over the five-site von Neumann neigh-
borhood in Fig. 1(b). The neighborhood was initially assumed as the
nine-site Moore neighborhood in Fig. 1(c). In each case, 100 trials
were conducted using different initial assignments. The program
was terminated when 800 generations had been reached. The result

TABLE V
SUMMARY OF RESULTSOBTAINED IN EXTRACTING A 2-D CA RULE AND THE

SAME RULE CORRUPTED BY ADYNAMIC NOISE/IN TRANSITION AT p = 0:8

USING THE CA TERM SELECTION ALGORITHM

in Table V for p = 1 produces a Boolean expression of theXOR
combination of the following 20 terms:

B = s(i; j � 1); C = s(i; j)

D = s(i; j + 1); E = s(i� 1; j)

F = s(i+ 1; j) � s(i; j + 1)

G = s(i; j � 1) � s(i; j)

H = s(i; j � 1) � s(i; j + 1)

I = s(i; j � 1) � s(i+ 1; j)

J = s(i; j) � s(i; j + 1)

K = s(i+ 1; j) � s(i; j � 1) � s(i; j)

L = s(i+ 1; j) � s(i; j � 1) � s(i; j + 1)

M = s(i+ 1; j) � s(i; j) � s(i; j + 1)

N = s(i+ 1; j) � s(i; j) � s(i� 1; j)

O = s(i+ 1; j) � s(i; j + 1) � s(i� 1; j)

P = s(i; j � 1) � s(i; j) � s(i; j + 1)

Q = s(i; j) � s(i; j + 1) � s(i� 1; j)

R = s(i+ 1; j) � s(i; j � 1) � s(i; j) � s(i; j + 1)

S = s(i+ 1; j) � s(i; j � 1) � s(i; j + 1) � s(i� 1; j)

T = s(i+ 1; j) � s(i; j) � s(i; j + 1) � s(i� 1; j)

U = s(i+ 1; j) � s(i; j � 1) � s(i; j)

� s(i; j + 1) � s(i� 1; j):

Table VI shows the tabular form of this identified Boolean rule. It can
be seen that this rule covers a five-site von Neumann neighborhood,
which has been extracted from the assumed nine-site Moore neighbor-
hood and is correct. The truth table produced from the identified rule
is also correct. Therefore, according to the principle of parsimony, the
identified Boolean rule is optimal. However as shown in Table V the
average run time is much longer than in the 1-D noise-free case. This is
because the growth of the size of the neighborhood will inevitably in-
duce a considerable increase in the number of possible terms that can
be included in the Boolean expression and, hence, an increase in the
complexity of the search.

D. Extracting Boolean Rules from Patterns Produced by a Large
Set of CA Rules

The CA term selection algorithm was tested over a large set of CA
rules with various neighborhoods of randomly chosen radius. Some of
the 1-D results are summarized in Table VII. Because the numerical
label and the component form of the rules grow astronomically with
even a slight increase in the size of the neighborhood, only rules with
relatively small neighborhoods were specified. For each rule, both the
noise-free case and the case where the pattern has been corrupted by
a static noise atp = 0:2 were considered. One hundred runs were
conducted for each problem, and the search was terminated after 1000
generations. The starting neighborhood was assumed as a nine-site
neighborhoodfcell(j � 4); cell(j � 3), cell(j � 2); cell(j � 1),

580 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 30, NO. 4, AUGUST 2000

TABLE VI
TABULAR FORM OF THE IDENTIFIED 2-D BOOLEAN RULE

TABLE VII
SUMMARY OF RESULTSOBTAINED IN EVOLVING SOME 1-D CA RULES

WITH VARIOUS SIZES OF NEIGHBORHOOD. n INDICATES THE SIZE

OF THE NEIGHBORHOOD

cell(j); cell(j+1), cell(j+2); cell(j+3); cell(j+4)g. The identi-
fied neighborhoods and the truth tables produced by the corresponding
Boolean rules are all correct. Therefore, according to the principal of
parsimony, the identified Boolean rules are all optimal.

Simulations over a large set of rules suggest that the average run
time relies more on the size of the assumed neighborhood than on the
size of the actual neighborhood. For example, forRule22, the average
run-time in Table VII, where the initial neighborhood was assumed
as nine-site, is considerably larger than in Table III, where the initial
neighborhood was assumed as five-site. However, as has also been in-
dicated in Table VII, under the same neighborhood assumption, rules
with more cells in the actual neighborhood tend to require more gener-
ations to converge to the optimal solution. Because the CA term selec-
tion algorithm discriminates only the number of cells in the neighbor-
hood rather than the position each individual cell occupies, the results
for 2-D rules were very similar to the 1-D case and are therefore not
listed in this paper.

V. CONCLUSIONS

A solution to the inverse problem in cellular automata has been pro-
posed using a multiobjective evolutionary algorithm. Both 1- and 2-D
cellular automata have been investigated, and it has been shown that
the CA rule, in the form of a parsimonious Boolean expression, can be
identified by carefully formulating the GA search procedure. The sim-
ulation results illustrate the efficiency of the new algorithm and demon-
strate that the correct neighborhood and CA rule can be determined in
the presence of both static and dynamic noise.

REFERENCES

[1] J. von Neumann, “The general logical theory of automata,” inCerebral
Mechanisms in Behavior—The Hixon Symposium. New York: Wiley,
1951.

[2] L. Brieger and E. Bonomi, “A stochastic cellular automaton simula-
tion of the nonlinear diffusion equation,”Phys. D, vol. 47, no. 1–2, pp.
159–168, 1992.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 30, NO. 4, AUGUST 2000 581

[3] G. Hernandez and H. J. Herrann, “Cellular automata for elementary
image enhancement,”Graph. Models Image Process., vol. 58, no. 1, pp.
82–89, 1996.

[4] S. Bhattachariee and S. Sinha, “Cellular automata based scheme for so-
lution of Boolean equations,”Proc. Inst. Elect. Eng. Comput. Digital
Tech., vol. 143, no. 3, pp. 174–180, 1996.

[5] S. Surka and K. P. Valavanis, “A cellular automata model for edge re-
laxation,”J. Intell. Robot. Syst., vol. 4, no. 4, pp. 379–391, 1991.

[6] W. Li, N. H. Packard, and C. G. Langton, “Transition phenomena in
cellular automata rule space,” inCellular Automata: Theory and Exper-
iment, H. Gutowitz, Ed. Cambridge, MA: MIT Press, 1991.

[7] F. C. Richards, “Extracting cellular automaton rules directly from exper-
imental data,”Phys. D, vol. 45, pp. 189–202, 1990.

[8] A. I. Adamatskii, “Complexity of identification of cellular automata,”
Autom. Remote Control, pt. 2, vol. 53, no. 9, pp. 1449–1458, 1992.

[9] W. V. Quine, “A way to simplify truth functions,”Amer. Math. Monthly,
vol. 62, pp. 627–631, 1955.

[10] E. J. McCluskey Jr., “Minimization of Boolean functions,”Bell Syst.
Tech. J., vol. 35, pp. 1417–1444, 1956.

[11] S. C. Gupta, “A fast procedure for finding prime implicants of a Boolean
function,” Int. J. Electron., vol. 51, no. 5, pp. 701–709, 1981.

[12] S. R. Perkins and T. Rhyne, “An algorithm for identifying and selecting
the prime implicants of a multiple-output Boolean function,”IEEE
Trans. Computer-Aided Design, vol. 7, pp. 1215–1218, Nov. 1988.

[13] P. P. Chu, “Applying neural networks to find the minimum cost coverage
of a Boolean function,”VLSI Design, vol. 3, no. 1, pp. 13–19, 1995.

[14] S. Chattopadhyay, S. Roy, and P. P. Chaudhuri, “KGPMIN: An efficient
multilevel multioutput AND-OR-XOR minimizer,”IEEE Trans. Com-
puter-Aided Design, vol. 16, pp. 257–265, Mar. 1997.

[15] B. H. Voorhees, Computational Analysis of One-dimensional
Cellular Automata, ser. World Scientific Series on Nonlinear Sci-
ence. Singapore: World Scientific, 1996.

[16] S. A. Billings, S. Chen, and M. J. Korenberg, “Identification of MIMO
nonlinear systems using a forward-regression orthogonal estimator,”Int.
J. Control, vol. 49, no. 6, pp. 2157–2189, 1989.

[17] Z. Michalewicz,Genetic Algorithms + Data Structures = Evolution Pro-
grams. New York: Springer-Verlag, 1994.

[18] D. E. Goldberg,Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Reading, MA: Addison-Wesley, 1989.

[19] J. R. Koza,Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA: MIT Press, 1992.

[20] A. J. Chipperfield and P. J. Fleming, “Genetic algorithms in control sys-
tems engineering,”Control Comput., vol. 23, pp. 88–94, 1996.

The Certainty Factor-Based Neural Network in Continuous
Classification Domains

LiMin Fu

Abstract—The integration of certainty factors (CFs) into the neural
computing framework has resulted in a special artificial neural network
known as the CFNet. This paper presents the cont-CFNet, which is devoted
to classification domains where instances are described by continuous
attributes. A new mathematical analysis on learning behavior, specifically
linear versus nonlinear learning, is provided that can serve to explain how
the cont-CFNet discovers patterns and estimates output probabilities.
Its advantages in performance and speed have been demonstrated in
empirical studies.

Index Terms—Certainty factor, classification, fuzzy set theory, machine
learning, neural network, probability estimation.

I. INTRODUCTION

The certainty factor (CF) model has been applied to traditional ex-
pert systems for management of uncertainty [2], [17]. To map this
model into a neural computing framework has generated a number of
successful applications [4]–[8], [11], [13]. The term CFNet has been
coined by Fu [8] to refer to an artificial neural network whose activa-
tion function is based on the CF model. An important result is that the
CFNet can generalize more effectively than neural networks using the
sigmoid activation function [7]. Recent research has shown that this
network can discover the domain rules with better accuracy than the
decision-tree approach [8]. Because certainty factors have traditionally
been applied to rule-based environments for handling symbolic data,
the CFNet has been tested in domains where instances are described
by discrete nominal attributes. It would be a new challenge to apply
the CFNet to domains where the data involve continuous numerical
attributes. In order to realize this capability, a new system named the
cont-CFNet exploits the strength of fuzzy representation. Here, a brief
background on fuzzy neural networks is worthwhile.

Based on Zadeh’s fuzzy set theory [19], fuzzy logic views each pred-
icate as a fuzzy set. In fuzzy logic, a linguistic variable like “size” can
have several linguistic values like “small,” “medium,” or “large.” Each
linguistic value is viewed as a fuzzy set associated with a membership
function, which can be triangular, bell-shaped, or of another form. The
degree of membership can be interpreted as the degree ofpossibility,
which evades the requirement of satisfying the probability axioms.

The relationship between fuzzy systems and neural networks has
drawn much attention since both are trainable systems capable of han-
dling uncertainty and imprecision and both have found may successful
applications. Their complimentary roles suggested in [10] and [14]
have led to so-called fuzzy neural networks for handling the fuzzy (in-
exact) nature of inference involving symbols (symbolic inference). In
such networks, an input pattern is enhanced via fuzzy representation.
Furthermore, when the decision function or boundary involves curves,
a smooth membership function at fuzzy neural units allows close mod-
eling or approximation.

Manuscript received July 11, 1999; revised May 28, 2000. This work was
supported by the National Science Foundation under Grant ECS-9615909. This
paper was recommended by Associate Editor W. Pedrycz.

The author is with the Department of Computer and Information Sciences,
University of Florida, Gainesville, FL 32611 USA (e-mail: fu@cise.ufl.edu).

Publisher Item Identifier S 1083-4419(00)06719-4.

1083–4419/00$10.00 © 2000 IEEE

