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ABSTRACT

We present an alternative model of coronal-loop oscillations, which considers that the waves are trapped in a two-
dimensional waveguide formed by the entire arcade of field lines. This differs from the standard one-dimensional
model which treats the waves as the resonant oscillations of just the visible bundle of field lines. Within the
framework of our two-dimensional model, the two types of oscillations that have been observationally identified,
flare-induced waves and “decayless” oscillations, can both be attributed to MHD fast waves. The two components
of the signal differ only because of the duration and spatial extent of the source that creates them. The flare-induced
waves are generated by strong localized sources of short duration, while the decayless background can be excited
by a continuous, stochastic source. Further, the oscillatory signal arising from a localized, short-duration source can
be interpreted as a pattern of interference fringes produced by waves that have traveled diverse routes of various
pathlengths through the waveguide. The resulting amplitude of the fringes slowly decays in time with an inverse
square root dependence. The details of the interference pattern depend on the shape of the arcade and the spatial
variation of the Alfvén speed. The rapid decay of this wave component, which has previously been attributed to
physical damping mechanisms that remove energy from resonant oscillations, occurs as a natural consequence of
the interference process without the need for local dissipation.
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1. INTRODUCTION

The detection of standing kink-wave oscillations on bright
coronal loops by the Transition Region and Coronal Explorer
instrument (e.g., Aschwanden et al. 1999; Nakariakov et al.
1999) proffered the possibility first suggested by Roberts et al.
(1984) that seismic techniques could be applied to magnetic
structures in the corona. Given that the magnetic field of
the corona remains resistant to measurement by spectroscopic
means, coronal-loop seismology permits the direct probing of an
otherwise inaccessible (yet paramount) property of the corona.
Two observational details suggest that many of the observed
motions are those arising from resonant standing waves with
wavelengths corresponding to the fundamental mode. These
observational details are that different segments of the loop are
often observed to vacillate in phase with each other and the
sinuous motion often lacks nodes, except perhaps at the loop
footpoints (e.g., Aschwanden & Schrijver 2011; Anfinogentov
et al. 2013). In some instances in addition to the fundamental
mode with the lowest frequency, coexistent overtones (with
interior nodes and a higher frequency) have been detected
(Verwichte et al. 2004; Van Doorsselaere et al. 2007; De Moortel
& Brady 2007). The discovery of such overtones precipitated a
tumult of theoretical activity with the goals of both explaining
the observed dispersion and developing seismic methods that
use the dispersion to surmise the field strength and mass density
along the loop (see the review by Andries et al. 2009).

The first oscillations to be detected were the response of loops
within coronal arcades to the passage of transient disturbances
launched from solar flares. It has been observed that such oscil-
lations, once initiated, rapidly diminish over three to four wave
periods (e.g., White & Verwichte 2012). A variety of theoret-

ical studies have suggested possible damping mechanisms to
explain the observed diminuation of the signal, with the most
prominent being resonant absorption (e.g., Ruderman & Roberts
2002; Goossens et al. 2002, 2011) and phase mixing between
distinct fibrils in a bundle, each with slightly different wave
speeds (Ofman & Aschwanden 2002). In all cases the diminu-
ation of signal results from a physical loss of energy from the
observed kink waves.

Recent observations (Nisticò et al. 2013; Anfinogentov et al.
2013) using the Atmospheric Imaging Assembly on the Solar
Dynamics Observatory have revealed that in addition to these
large-amplitude flare-induced oscillations there appears to be
a continuous background of fluctuating power that oscillates
at frequencies similar to the flare-induced waves, but with a
lower amplitude that does not exhibit significant attenuation.
These studies have posited that the background oscillations are
excited by a continuous, and perhaps stochastic, driver whose
energy input is balanced on the long term by physical damping.
Thus, the two classes of oscillation are caused by waves with
the same resonant nature, but excited by different sources, one
ongoing and the other impulsive.

Implicit in much of this prior work is the assumption that
each visible loop in a coronal arcade is essentially an indepen-
dent wave cavity. The MHD kink waves are presumed to have
a group velocity that is parallel to the field lines and each loop
oscillates as a coherent entity. Thus, the problem is reduced to a
one-dimensional wave problem and any decay in the signal must
be due to a physical loss of energy. Here we explore an alterna-
tive interpretation. Two properties of the observed oscillations
suggest that the wave cavity may be inherently two-dimensional
instead of one-dimensional. The first of these properties is that
most oscillating loops appear to be part of a coronal arcade
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(a) (b)

Figure 1. Schematic diagram of a coronal arcade. The x–y plane corresponds to the photosphere and the height above the photosphere is given by z. (a) Three-
dimensional view of the thin sheet of magnetic field lines that define the arcade. The arcade lacks shear and is invariant along the axis of the arcade in the y-direction.
(b) Cross-sectional cut through the arcade at constant y showing a thin annulus. The triad of unit vectors for the local Frenet coordinates are shown in red, with the
tangent vector ŝ, the principal normal η̂, and the binormal ŷ. Each field line has a length of L from photosphere to photosphere. For the sake of presentation, we assume
that each field line forms a semicircle.

(A color version of this figure is available in the online journal.)

and that flares often cause the entire arcade to ring and throb.
The second property is that many of the standing waves that
have been observed possess a “horizontal” polarization such that
the loop sways back and forth within the arcade (e.g., Verwichte
et al. 2009). This implies that the motion of a loop impacts
neighboring (and possibly invisible) field lines within the ar-
cade and forces them to move. The individual bundles of field
lines that form loops are therefore not isolated from the larger
arcade structure in which they are embedded. Here we suggest
that the arcade forms a two-dimensional waveguide and that the
observed ringing is a superposition of waveguide modes that
form in response to driving by flares and other sources. The
waves are inherently two-dimensional modes that are trapped
standing waves longitudinal to the field, while propagating up
and down the axis of the arcade perpendicular to the field. We
will find that such a model naturally leads to decaying signals
without the need for a physical damping mechanism. The atten-
uation of the sinusoidal signal observed at a given field line or
loop is a fringe pattern resulting from the self interference of a
wavefront as it expands away from a point source.

In Section 2 we derive a simple wave equation that describes
MHD fast waves that propagate on a thin two-dimensional sheet
of arching field lines. We define the geometry of the field
and describe the boundary conditions that turn the arcade
into a waveguide. In Section 3 we derive the response of the
waveguide to two types of sources, a continuous stochastic
source and an impulsive source. Finally, in Section 4 we discuss
the implications of our calculation and present our conclusions.

2. MHD FAST WAVES IN A WAVEGUIDE

We treat a coronal arcade as a thin magnetized sheet with each
field line in the sheet piercing the photosphere at two locations.
The locus of the footpoints for all of the field lines form two
parallel lines in the photosphere. If we view the photosphere
as a dense, immovable fluid, waves are trapped between the
footpoints and the arcade acts as a two-dimensional waveguide
for MHD fast waves that permits free propagation up and
down its axis perpendicular to the field. We utilize a Cartesian
coordinate system oriented such that the x–y plane corresponds
to the photosphere and the z coordinate is the height above the
photosphere. Let the arcade be invariant in the y-direction and

let it lack shear such that the field has no component in that
direction,

B = Bx(x, z)x̂ + Bz(x, z) ẑ. (2.1)

Figure 1 provides a schematic diagram of the arcade and its
geometry.

For simplicity, we will assume that the corona is magnetically
dominated such that gravity and gas pressure can be ignored
when compared to the magnetic forces. Furthermore, in order to
build an illustrative example without unnecessary mathematical
complication, we will ignore the curvature of the field lines
within the wave equation and assume that the Alfvén speed
VA within the sheet is uniform. With these assumptions, fast
MHD waves can be conveniently expressed using local Frenet
coordinates. The triad of unit vectors that represents this local
coordinate system are the tangent to the field line ŝ, the field
line’s principal normal η̂, and the binormal ŷ. The tangential
coordinate s measures the pathlength along a field line starting
from the photosphere, with the footpoints located at s = 0 and
s = L, where the length of each field line L is the same. The
coordinate y marks distance along the axis of the waveguide and
we assume that the arcade is long enough that we can ignore
edge effects.

2.1. Equation for Driven Fast Waves

Since we are only considering magnetic forces, fast MHD
waves lack motion parallel to the field lines and the transverse
motion is irrotational. The fluid velocity, u, can be decomposed
into two related components,

u = v ŷ + wη̂, (2.2)

∂v

∂η
= ∂w

∂y
, (2.3)

where v is the fluid velocity in the binormal direction and w
is the component in the normal direction. Further, driven fast
waves satisfy the following simple equation,

[
∂2

∂t2
− V 2

A

(
∂2

∂y2
+

∂2

∂s2
+

∂2

∂η2

)]
u = S(x, t), (2.4)
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Figure 2. Eigenfrequencies, ω2
n = (λ2

n + κ2)V 2
A, of the modes of the waveguide

as a function of the wavenumber κ parallel to the waveguide’s axis. Each
curve corresponds to a different mode order n labelling the discretely allowed
wavenumbers λn = nπ/L in the direction parallel to the field. The gravest mode
(n = 1) has the lowest frequency, and each higher order has a correspondingly
higher frequency.

where S(x, t) is a wave driver, the Alfvén speed VA is given
by V 2

A = B2/4πρ, and ρ is the mass density. In observational
contexts, motions in the direction of the principal normal, w, are
often referred to as “vertical” oscillations, whereas velocities
v in the binormal direction, along the axis of the arcade, are
called “horizontal” oscillations. We will explore horizontal
oscillations (w = 0) by supposing that the driver only acts in the
binormal direction and lacks variation across the arcade’s sheet,
i.e., the driver is independent of the coordinate η. With these
assumptions, only two-dimensional wave modes are excited and
they obey the following equation:[

∂2

∂t2
− V 2

A

(
∂2

∂y2
+

∂2

∂s2

)]
v = S(s, y, t). (2.5)

We make the arcade into a waveguide by imposing boundary
conditions at the footpoints. Specifically, we apply the line tieing
condition at the photosphere (i.e., v = 0 at s = 0 and s = L).
The resonant modes of this waveguide form a discrete spectrum
in the tangential s-direction and a continuous spectrum in the
transverse y-direction down the axis of the waveguide,

vn(s, y, t; κ) = Un(s) eiκy e−iωn(κ)t , (2.6)

Un(s) ≡
(

2

L

)1/2

sin(λns), (2.7)

for positive mode orders n = 1, 2, 3, 4, · · ·. The allowed parallel
wavenumbers λn and the eigenfrequency ωn(κ) are given by

λn = nπ

L
, (2.8)

ω2
n(κ) = (

λ2
n + κ2

)
V 2

A. (2.9)

The wave is a standing wave in the direction parallel to the
magnetic field, with discrete wavenumbers λn, and a propagating
wave in the y direction with continuous wavenumber κ . The
temporal frequency ωn(κ) depends on both wavenumbers and is
illustrated in Figure 2. The parallel eigenfunctions, Un(s), have
been normalized such that they form an orthonormal set.

Our general strategy for solving the driven Equation (2.5)
is as follows: we will Fourier transform the equation in the

invariant y-direction, decompose the source and solution into
the eigenfunctions of the waveguide, solve for the amplitude of
each mode in spectral space, and then return to configuration
space by inverting the transform. After Fourier transforming the
driven wave equation and projecting onto the eigenmodes of the
waveguide, we obtain[

∂2

∂t2
+ ω2

n(κ)

]
v̂n(κ, t) = Ŝn(κ, t), (2.10)

where

Ŝn(κ, t) =
∫ ∞

−∞
dy

∫ L

0
ds S(s, y, t) Un(s) e−iκy, (2.11)

v̂n(κ, t) =
∫ ∞

−∞
dy

∫ L

0
ds v(s, y, t) Un(s) e−iκy . (2.12)

In configuration space, the solution is obtained by inverting
the transform and summing over eigenmodes,

v(s, y, t) = 1

2π

∫ ∞

−∞
dy

∞∑
n=1

v̂n(κ, t) Un(s) eiκy. (2.13)

A similar equation holds for the reconstruction of the source
from its spectral decomposition,

S(s, y, t) = 1

2π

∫ ∞

−∞
dy

∞∑
n=1

Ŝn(κ, t) Un(s) eiκy. (2.14)

3. TWO-COMPONENT SIGNAL

We posit that the wave signal seen at the observation loca-
tion y is a superposition of the waves generated by a source
with two components: a broad-band driver that generates a low-
amplitude, resonant, background signal and an energetic impul-
sive source that generates a large initial pulse with subsequent
ringing,

S(s, y, t) = Sbg(s, y, t) + Simp(s)δ(t − t ′)δ(y − y ′). (3.15)

The first term Sbg represents the continuous, broad-band driver,
which could be the incessant buffeting from ambient waves in
the corona external to the waveguide, or perhaps the random
movement of the footpoints of the arcade in the photosphere
by convective motions. The second term Simp is the impulsive
source arising from a single short duration event such as a
flare. Of course each source will independently produce a wave
response,

v(s, y, t) = vbg(s, y, t) + vimp(s, y, t). (3.16)

3.1. Resonant Background Oscillations

The background velocity resulting from the broad-band
component of the source can be expressed as a superposition
of waveguide modes. The amplitude and phase of each mode
can be obtained by taking the temporal Fourier transform of
Equation (2.10), solving for the velocity in spectral space, and
inverting the temporal transform through contour integration
(see Appendix A),

vbg(s, y, t) = 1

2π

∞∑
n=1

∫ ∞

−∞
dκ An(κ) Un(s)

× sin [κy − ωn(κ)t + θn(κ)] . (3.17)
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In this equation, An(κ) is the mode amplitude of the mode
and θn(κ) is the phase of the source function in spectral space,
evaluated at the mode frequencies,

Ŝ(bg)
n (κ, ω) =

∫ ∞

−∞
dt

∫ ∞

−∞
dy

∫ L

0
ds Sbg(s, y, t)

× Un(s) e−i(κy−ωt), (3.18)

Ŝ(bg)
n (κ, ωn) = ∣∣Ŝ(bg)

n (κ, ωn)
∣∣eiθn(κ), (3.19)

An(κ) ≡
∣∣Ŝ(bg)

n (κ, ωn)
∣∣

ωn(κ)
. (3.20)

The amplitude of the mode An(κ) depends on the modulus of the
source function evaluated at the mode frequency. The factor of
frequency appearing in the denominator of the mode amplitude
causes a white source to excite modes such that they all have
equal energy. Since the energy in each mode En is proportional
to both the square of the amplitude An(κ) and the square of the
frequency ωn(κ), an amplitude that is inversely proportional to
its frequency corresponds to an equipartition of kinetic energy.
Even if the source function possesses wavenumber dependence,
we still expect the waves with the lowest frequency to dominate
the background signal as long as the source is not a rapidly
increasing function of wavenumber.

The phase of the response depends on the phase θn of
the source function and the variation of this phase over all
wavenumbers κ comprising the signal. Since the signal has
contribution from a range of frequencies around a dominant
frequency, we expect the interference between the different
frequencies to cause beat patterns that will slowly and randomly
rotate the apparent phase of the oscillation in time. Therefore,
at a given position along the waveguide, we should expect the
resonant background to be dominated by the gravest mode and
produce a signal with the following form,

vbg ≈ Abg sin(πs/L) sin[(πVA/L)t + φ(t)], (3.21)

where the phase φ(t) slowly changes with time (|φ̇n| � πVA/L)
due to the continual excitation by the source.

We will see that this expectation holds true by exploring in
more detail two types of background sources. In Figure 3(a)
we show the source strength (red curve) for a source with a
Gaussian dependence on wavenumber,

∣∣Ŝ(bg)
n (κ, ωn)

∣∣ = S̃ exp

(
− κ2

2Δ2

)
δn1. (3.22)

In this equation, S̃ is an arbitrary constant and Δ is the spectral
width of the Gaussian. For simplicity we have assumed that
the source only excites the fundamental mode n = 1. We
model a stochastic source by imposing that the phase of the
source θn(κ) is a random function with a uniform distribution
between 0 and 2π . Figure 3(a) also shows the mode amplitude
An(κ) as the black curve. This type of source generates an
amplitude spectrum that is sharply peaked at zero wavenumber
with little contribution from the wings. Thus we expect that
the corresponding time-series (shown in Figure 3(b)) should
be dominated by the frequency ω1 = πVA/L, with a phase
that slowly wanders. This is indeed the case. This time-series
was constructed by numerically evaluating the inverse spatial
transform in Equation (3.17).

For the second source we choose a white source whose
strength (by definition) is a constant function of wavenumber.
The phase of the source function is once again chosen to be
random. Figure 4 presents the amplitude spectrum and the
resulting time series. Since the white source contains a broader
range of wavenumbers, it generates a time-series with richer
frequency response. In particular, we can clearly see from
Figure 4(b) that the time series possesses high-frequency jitter.
The time-series generated by both sources are highly correlated
with very similar low-frequency behavior. This is because the
same realization of random phases was used to construct both
sources. The equivalency of the set of phases also manifests in
the temporal power spectra of the two time series (see Figure 5).
The fine structure in the two power spectra is similar because
this structure arises from wave interference, which of course
is determined by the relative phases (which were chosen to be
identical).

3.2. Response to an Impulsive Source

The waves generated by the impulsive source are of course
determined by the Green’s function. Therefore, consider a single
point source of unit amplitude that occurs at time t ′ and at
location (s, y) = (s ′, y ′). We perform a detailed derivation of
the Green’s function in Appendix B. The general procedure is
to Fourier transform the wave equation in the axial direction y,
decompose into waveguide modes, and solve for the temporal
behavior. The solution is then reconstructed by summing over
mode orders and inverting the spatial Fourier transform. After
some manipulation of Equation (B9) this inverse transform is
expressed as

G(s, s ′, y − y ′, t − t ′) = H (t − t ′)
2π

∞∑
n=1

∫ ∞

−∞
dκ Un(s) Un(s ′)

× sin[ωn(κ) (t − t ′)]
ωn(κ)

eiκ(y−y ′),

(3.23)

where H is the Heaviside step function. The inverse transform
has an analytic solution (Weast et al. 1989) involving zero-order
Bessel functions of the first kind, J0,

G(s, s ′, y − y ′, t − t ′) = H (τ )

2VA

∞∑
n=1

Un(s)Un(s ′) J0 (λnVAT ) .

(3.24)
We have written the solution compactly by defining the follow-
ing delayed times:

τ ≡ (t − t ′) − |y − y ′|
VA

, (3.25)

T ≡
√

(t − t ′)2 − (y − y ′)2

V 2
A

. (3.26)

As expected, the Green’s function is nonzero only after the
excitation occurs and after the first wave fronts arrive at the
observation point (s, y), i.e., when τ > 0. Further, since both
the source and the observation point are within a waveguide,
there are many paths that waves can take from the point source
at y ′ to the observation point at y, each reflecting a different
number of times from the walls of waveguide (in this case the
footpoints). The superposition of waves traveling along all these
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(a) (b)

Figure 3. Background oscillations described both in spectral space and as a function of time. The source strength |Ŝ(bg)
1 | is a Gaussian function of wavenumber, chosen

to have unit amplitude (S̃ = 1) and a width of Δ = 2π/L. (a) The source strength (red curve) and the resulting amplitude spectrum A1(κ) = |Ŝ(bg)
1 |/ω1(κ) (black

curve) for the gravest mode (n = 1) as a function of axial wavenumber κ . (b) The time series of the background oscillation as observed at the apex of the arcade,
s = L/2, and at an arbitrary position along the arcade y = yobs. The signal has a dominant frequency ω = nπVA/L, with a phase that slowly wanders with time.

(A color version of this figure is available in the online journal.)

(a) (b)

Figure 4. Background oscillations described both in spectral space and as a function of time for a source that is white with a strength that is independent of wavenumber.
(a) The mode amplitude A1(κ) (black curve) of the background oscillations for the gravest mode (n = 1) as a function of axial wavenumber κ . The source strength
is overlayed in red. Even though the source is white, the signal is dominated by the waves with the smallest axial wavenumbers and hence the waves with the lowest
frequency (see Figure 2). However, the wings of the amplitude distribution are more significant than they are for the Gaussian source. (b) The time series of the
background oscillation as observed at the apex of the arcade, s = L/2, and at an arbitrary point along the arcade y = yobs. Since the wings are enhanced in the
amplitude distribution, the time series has more prominent high-frequency jitter.

(A color version of this figure is available in the online journal.)

Figure 5. Temporal power spectra of the background oscillations illustrated in
Figures 3 and 4. The fine structure arises from the interference between waves
and is, therefore, sensitive to the specific realization of wave phases. Here, for the
sake of comparison, we have used the same realization for both types of source.
The spectrum generated by the white source clearly has a greater contribution
from high-frequency waves. Both spectra have a low-frequency cut-off that
corresponds to the resonant mode frequency ω1 = πVA/L appropriate for
propagation parallel to the field lines (i.e., κ = 0).

(A color version of this figure is available in the online journal.)

paths generates the oscillation pattern seen at any given point.
This superposition is a combination of waves with different
wavenumbers κ and hence directions of initial launch from the

source. This summation is represented by the integral in the
inverse Fourier transform in Equation (3.23).

The response of the waveguide to the impulsive source
appearing in Equation (3.15), Simp(s)δ(t − t ′)δ(y − y ′) is of
course the integral of the product of the Green’s function and
the source Simp(s ′) over the point source’s location s ′,

vimp(s, y, t) = H (τ )

2VA

∞∑
n=1

An Un(s) J0(λnVAT ) (3.27)

An ≡
∫ L

0
Simp(s ′)Un(s ′) ds ′. (3.28)

In Figures 6–8 we show this signal superimposed on the
background oscillations. In all cases, the impulsive source
occurs at time t = 0 and the waves are observed at the apex
of the loop s = L/2. Further, for simplicity we assume that
only the gravest mode n = 1 is excited to significant amplitude
(i.e., |An| � |A1| for n �= 1). Figures 6 and 8 correspond to
an impulsive event that occurs only a short distance away from
the observation point, Δy = y − y ′ = 0.1 L, while for Figure 7
the distance between the source and observation point is a one-
hundred times larger, Δy = 10 L. Not only is there increased
delay between the event and reception of the first signal for the
more distant source, but the fringe pattern is compressed near
the time of first arrival. Thus, more distance sources generate
signals with a wider range of apparent frequencies.
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Figure 6. Wave signal as a function of time arising from both wave sources. The red curve is the background signal generated by a distributed stochastic source. The
strength of the stochastic source is Gaussian in wavenumber κ (see Figure 3(a)). The dominant frequency is the lowest frequency available, corresponding to those
waves with κ = 0 which propagate parallel to the magnetic field. The blue curve is the signal arising from a single impulsive event that occurred rather close to the
observation point along the arcade, Δy = 0.1L. The initial pulse corresponds to waves that have propagated straight down the waveguide, while the latter oscillations
are an interference pattern arising from waves that have taken a variety of paths down the waveguide. The black curve shows the total wave signal. We have chosen
the relative size of the impulsive and background sources such that the background has an amplitude of 10% of the initial pulse height of the impulsive signal.

(A color version of this figure is available in the online journal.)

Figure 7. Same as in Figure 6, except the observation point is much farther from the impulsive source, Δy = 10L. In addition to the existence of the expected delay
required for the waves to arrive at the observation point, the fringes in the interference pattern become compressed in time near the time of first arrival.

(A color version of this figure is available in the online journal.)

4. DISCUSSION

We have proposed an alternate model for coronal loop
oscillations. Instead of the standard picture that the visible
loop is a self-contained one-dimensional oscillator, we propose
that the observed waves are MHD fast waves that live on the
entire arcade and are inherently two-dimensional in nature.
The waves are trapped longitudinally between the loci of field
line footpoints in the photosphere, but freely propagate along the
axis of the arcade perpendendicular to the field lines. Therefore,
the arcade forms a two-dimensional waveguide with modes that
have discretized wavenumbers in the longitudinal direction λn

and continuous wavenumbers κ in the axial direction.
We demonstrate that both the “decaying” flare-induced os-

cillations and the low-amplitude “decayless” oscillations that
have been observed (Nisticò et al. 2013; Anfinogentov et al.
2013) can be explained by such two-dimensional waves if
there are two distinct wave sources: a continuous, distributed,

stochastic source and a large-amplitude impulsive source, local-
ized both spatially and temporally. For this model, the inclusion
of a physical damping mechanism (such as phase mixing or
resonant absorption) is not necessary to reproduce the general
behavior of either observed wave component. We discuss the
properties of the wavefield excited by both of these sources in
the following subsections.

4.1. Decayless Oscillations

The decayless oscillations seen by Nisticò et al. (2013) and
Anfinogentov et al. (2013) appear to be reproduced with fidelity
by considering the effect of a stochastic source that operates
throughout the waveguide and continues for long durations.
Such a source produces a profusion of waveguide modes with
uncorrelated phases. For each longitudinal order n, these modes
form a continuous spectrum in the transverse wavenumber κ
and therefore frequency ω. Each spectrum has a low-frequency

6
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Figure 8. Same as in Figure 6, except the background source is white with equal power in all wavenumbers. The resulting background signal is still dominated by the
lowest waveguide frequency, but the relative importance of high frequency waves is clearly visible.

(A color version of this figure is available in the online journal.)

cut-off below which no modes exist (see Figure 5). This cut-
off corresponds to modes that propagate parallel to the field
lines and hence do not travel up and down the waveguide. As
such, these modes are those that are most analogous to those
that would be obtained in a one-dimensional model where one
assumes that thin bundles of field lines are individually resonant.

For a source with wavenumber dependence that is sufficiently
flat near κ = 0, i.e., near the cut-off, we expect that most of
the relevant modes saturate such that they have equal energy.
Therefore, since the mode energy is proportional to the square
of the velocity amplitude and to the square of the frequency,
the mode amplitude should be inversely proportional to the
mode frequency. This means that the dominant frequency in
the spectrum should be the low-frequency cut-off. Thus, in
observations we should expect to primarily see the fundamental
(n = 1) waveguide mode that propagates nearly parallel to the
field lines (κ = 0). This is, of course, exactly what is observed
for the large-amplitude flare-induced waves (Aschwanden et al.
1999; Nakariakov et al. 1999), but has yet to be verified for the
low-amplitude decayless oscillations.

We further point out that while the spectrum of oscillations
is dominated by the mode with the lowest frequency, the wave-
field also contains higher frequency components. The relative
importance of the high-frequency waves depends on the spectral
content of the source. White spectra produce noticeable high-
frequency jitter (see Figure 4) whereas a more narrow-band
source has a smoother response (see Figure 3). The signal with
high-frequency jitter is quite reminiscent of the decayless os-
cillations presented by Nisticò et al. (2013). Furthermore, the
beating and slow modulation of the phase caused by interference
between different nearby frequency components is also seen in
these observations.

4.2. Flare-induced Oscillations

A point source located within the waveguide generates a
circular wavefront that initially expands isotropically in two-
dimensions across the arcade’s magnetic sheet. This isotropic
expansion stops, when the wavefront impacts the photosphere
and reflection occurs. These reflections then begin to interfere
with other portions of the wave front and after many reflec-
tions the interference pattern can become rather complicated.

Observations made some distance down the waveguide from
the point source will see an oscillatory fringe pattern produced
by this interference. Thus, the oscillation signal that is seen
does not arise from a resonance occurring on the field line
where the observation is made. Instead, the oscillation is an
interference pattern of many waves as they propagate past the
observation point. The initial pulse arises from the segment of
the wave front that propagated straight down the waveguide
without reflection (i.e., waves with κ 	 λn). At later times,
the signal is the interference of segments of the initial wave
front that have taken different paths down the waveguide, all
with the same path length. As time passes the waves that arrive
have undergone more and more reflections and therefore have
smaller and smaller wavenumber κ . Asymptotically, for very
long times all waves contributing to the signal have κ � λ and
thus nearly identical frequencies of ωn = λnVA. Thus, the sig-
nal stabilizes to the same frequency that one would obtain for a
one-dimensional cavity.

One important consequence is that the signal at the obser-
vation point decays, but it does not do so because of physical
damping. We have not included any dissipation mechanisms in
our model. Because of this the decay does not have the expo-
nential fall off with time as one would expect from physical
damping. Instead, as indicated by the asymptotic form of the J0
Bessel function, the signal decreases with time like a power law
1/t1/2. This decay rate (and the fringe pattern itself) is a direct
consequence of the shape of the waveguide and the distance
from source to observation point. The shape of the waveguide
determines the possible paths and therefore the interference.
The distance between source and observation point is important
because the excited waves have differing phase speeds parallel
to the axis of the waveguide,

ω

κ
=

(
1 +

λ2
n

κ2

)1/2

VA. (4.29)

Therefore, the waves disperse as they travel down the waveguide
and the wave packet elongates and changes shape. Thus, the
resulting fringe pattern depends on how far the waves have
traveled from the source. This effect manifests as the delayed
time T =

√
Δt2 − Δy2/V 2

A that appears in the argument of the
Bessel function.
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Finally, we comment that not all observations of flare-driven
kink waves have a sudden onset followed by rapid day. Some
appear to grow initially and only afterward begin to decay (see
Nisticò et al. 2013; Wang et al. 2012). Such cases are likely the
result of a source with a duration that is comparable to or longer
than the period of the waves that are excited. The resulting
signal would be the temporal convolution of the source with the
Green’s function. So, the fringe pattern that would be observed
would not only depend on the shape of the waveguide and the
distance from the source, but also the duration and temporal
variation of the source itself.

4.3. Conclusions

The interpretation of coronal-loop oscillations that we sug-
gest here involves the resonances of a two-dimensional ar-
cade instead of a one-dimensional loop. Therefore, this new
picture complicates how mode frequencies might be ex-
tracted from an observed time series as the time series has
a richer high-frequency spectrum of waves that propagate
obliquely to the field. Fortunately, the dominant frequencies
correspond to the same type of wave that one would derive
from a one-dimensional model. Thus, these frequencies can
still be used in a seismic analysis as others have previously
envisioned.

While none of our figures have included the signal from
higher-frequency overtones (n > 1), such modes will certainly
be excited. Their exact amplitude depends on the distribution of
the driver along the field lines, but in all cases the amplitudes of
overtones likely decrease with mode order as high-frequency
modes tend to have lower amplitudes even for modes with
equal energy. We wish to point out that if one is attempting to
measure overtone frequencies from flare-induced oscillations,
one must be careful. The response of the fundamental mode of
the waveguide to a point source is polychromatic. A wavelet
analysis would suggest that the frequency of the oscillation
slowly decreases from onset until an asymptotic value is
achieved. A distant source in particular may start oscillating
with a rather high frequency compared to its eventual asymptotic
value (see Figure 7). It is this asymptotic value that corresponds
to the one-dimensional resonant frequencies. Of course in
many observations a loop oscillation may only be visible for
several cycles and the asymptotic regime may never be reached
before the flare-induced signal falls below the background
oscillations. Due to the polychromatic nature of flare-induced
oscillations, the low-amplitude decayless oscillations may be
a better frequency diagnostic as the frequency content of the
signal is largely steady with time. This property might allow
significant averaging of Fourier (or wavelet) power spectra such
that the low-frequency cut-offs that should be present for each
mode order become visible and measurable.

Finally, we emphasize that that the decay of the flare-induced
signal may have nothing to do with physical damping. In our
model the decay is a wave interference effect and the resulting
fringe pattern is sensitive to the shape of the waveguide. An
arcade comprised of loops with a wide variety of lengths should
generate a very different fringe pattern and concomitant decay
rate than the rectangular waveguide employed here. Further,
spatial variation of the Alfvén speed within the waveguide
will change the raypaths that combine to form a fringe. Thus
with further analysis, the decay rate might prove to be a useful
diagnostic of the wavespeed when utilized in tandem with the
frequencies.

This work was supported by NASA, RSF (University of
Sheffield), and STFC (UK). B.W.H. acknowledges NASA grants
NNX08AJ08G, NNX08AQ28G, and NNX09AB04G.

APPENDIX A

MODAL EXPANSION OF THE BACKGROUND SIGNAL

In this appendix we provide a derivation of the wavefield
generated by a stochastic source that is distributed both spatially
and temporally. We do so in a standard way by expressing the
solution as a sum over the modes of the waveguide. We begin by
considering the contribution to the wavefield that arises from the
background source Sbg(s, y, t). The wavefield generated by this
source must obey Equation (2.10) with the background source
appearing on the right-hand side,

[
∂2

∂t2
+ ω2

n(κ)

]
v̂(bg)

n (κ, t) = Ŝ(bg)
n (κ, t), (A1)

Ŝ(bg)
n (κ, t) =

∫ ∞

−∞
dy

∫ L

0
ds Sbg(s, y, t) Un(s) e−iκy . (A2)

We now take the temporal Fourier transform of these equa-
tions, adopting the notation that f (ω) is the transform of f (t),

f (ω) =
∫ ∞

−∞
dt f (t) eiωt . (A3)

Note, the opposite sign convention that appears in the oscillatory
waveform used in the spatial versus temporal transform. This
convention was chosen to ensure that waves with positive
wavenumber κ correspond to waves propagating in the positive y
direction. After solving for the velocity amplitude, the transform
of Equation (A1) produces

v̂(bg)
n (κ, ω) = − Ŝ

(bg)
n (κ, ω)

ω2 − ω2
n(κ)

. (A4)

The solution expressed in time t is now obtained by inverting
the temporal Fourier transform,

v̂(bg)
n (κ, t) = − 1

2π

∫ ∞

−∞
dω

Ŝ
(bg)
n (κ, ω)

ω2 − ω2
n(κ)

e−iωt . (A5)

This integral can be evaluated by contour integration. As-
suming that the source is analytic and lacks poles or continu-
ous spectra, when the contour is deformed downwards in the
complex-frequency plane the contribution from the modes is
picked up as the residues around the poles of the integrand.
There are two poles, one for positive frequencies and the other
for negative frequencies, each corresponding to waves propa-
gating in opposite directions up and down the waveguide,

v̂(bg)
n (κ, t) = 1

2iωn(κ)

[
Ŝ(bg)

n (κ, ωn) e−iωnt

− Ŝ(bg)
n (κ,−ωn) eiωnt

]
. (A6)

For the sake of clarity we have momentarily dropped the explicit
κ dependence from the mode frequencies that appear in both the
exponentials and the source function.
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We now transform back into configuration space by inverting
the spatial transform and summing over waveguide modes,

vbg(s, y, t) = 1

2π

∞∑
n=1

∫ ∞

−∞
dκ

[
Ŝ

(bg)
n (κ, ωn)

2iωn(κ)
e−iωnt

− Ŝ
(bg)
n (κ,−ωn)

2iωn(κ)
eiωnt

]
Un(s) eiκy. (A7)

We can put this integral in a more convenient form by making a
change of variable in the integral represented by the second term
in the square brackets, κ → −κ ′, and then changing the name of
the dummy variable back to the original, κ ′ = κ . Noting that the
eigenfrequencies are symmetric, ωn(−κ) = ωn(κ), we obtain

vbg(s, y, t) = 1

2π

∞∑
n=1

∫ ∞

−∞
dκ Un(s)

[
Ŝ

(bg)
n (κ, ωn)

2iωn(κ)
ei(κy−ωnt)

− Ŝ
(bg)
n (−κ,−ωn)

2iωn(κ)
e−i(κy−ωnt)

]
. (A8)

We now use the fact that the source function (in configuration
space) is a real function. Therefore, its transform has complex-
conjugate symmetry,

Ŝ(bg)
n (−κ,−ω) = [Ŝ(bg)

n (κ, ω)]∗. (A9)

Using this symmetry property, we can rewrite Equation (A8)

vbg(s, y, t) = 1

2π

∞∑
n=1

∫ ∞

−∞
dκ

∣∣Ŝ(bg)
n (κ, ωn)

∣∣
ωn(κ)

Un(s)

× sin[κy − ωn(κ)t + θn(κ)], (A10)

where we have defined the complex phase of the source function
evaluated at the mode frequencies,

θn(κ) ≡ arg
{
Ŝ(bg)

n (κ, ωn)
}
. (A11)

APPENDIX B

CALCULATION OF THE GREEN’S FUNCTION

The Green’s function is of course the response of the system
to a single point source of unit amplitude. Therefore, consider
such a source that occurs at time t = t ′ and at location
(s, y) = (s ′, y ′),

S(s, y, t) = δ(s − s ′) δ(y − y ′) δ(t − t ′). (B1)

The Fourier transform of such a source has the following modal
decomposition,

Ŝn(κ, t) = Un(s ′) e−iκy ′
δ(t − t ′). (B2)

If we insert this expression into the right hand side of
Equation (2.10) we obtain an equation that describes the
temporal evolution for each component in the decomposition
of the Green’s function,[

∂2

∂t2
+ ω2

n(κ)

]
Ĝn(s ′, κ, Δt) = Un(s ′) e−iκy ′

δ(Δt), (B3)

where we have defined Δt ≡ t − t ′. At the time of the excitation
event t = t ′ (or Δt = 0) the solution must satisfy appropriate
jump conditions,

[Ĝn]Δt=0 = 0, (B4)

[
∂Ĝn

∂t

]
Δt=0

= Un(s ′) e−iκy ′
. (B5)

The well-known solution is a sinusoid times a Heaviside step
function H,

Ĝn(s ′, κ, Δt) = Un(s ′) e−iκy ′
H (Δt)

sin [ωn(κ)Δt]

ωn(κ)
. (B6)

Because of the particular functional form of ωn(κ),

ωn(κ) = VA
(
λ2

n + κ2
)1/2

, (B7)

the inverse Fourier transform of the Green’s function has a
standard solution (Weast et al. 1989) which demonstrates that
information travels at a finite speed, i.e., the Alfvén speed VA,

Gn(s ′, Δy, Δt) = 1

2π

∫ ∞

−∞
dκ Gn(s ′, κ, Δt) eiκy, (B8)

= 1

2π
Un(s ′) H (Δt)

∫ ∞

−∞
dκ

sin[ωn(κ)Δt]

ωn(κ)
eiκΔy, (B9)

= 1

2VA
Un(s ′) H (Δt) H (τ ) J0(λnVAT ), (B10)

where we have made the following definitions,

τ ≡ Δt − |Δy|
VA

, (B11)

T ≡
√

Δt2 − Δy2
/
V 2

A, (B12)

Δy ≡ y − y ′. (B13)

In this solution, the function J0 is the zeroth-order Bessel
function of the first kind. Since the product of Heaviside step
functions in Equation (B10) is nonzero only if τ > 0, the Green’s
function has the following solution in configuration space,

G(s, s ′, Δy, Δt) = H (τ )

2VA

∞∑
n=1

Un(s)Un(s ′) J0(λnVAT ). (B14)
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Goossens, M., Erdélyi, R., & Ruderman, M. S. 2011, SSRv, 158, 289
Nakariakov, V., Ofman, L., DeLuca, E., Roberts, B., & Davila, J. M. 1999, Sci,

285, 862
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