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Abstract

This article details the development of a novel composite two-phase method to predict the

thermodynamic physical properties of carbon dioxide (CO2) above and below the triple point,

applied herein in the context of Reynolds-Averaged Navier-Stokes computational modelling. This

work combines a number of approaches in order to make accurate predictions in all three phases

(solid, liquid and gas) and at all phase changes for application in the modelling of releases of

CO2 at high pressure into the atmosphere. We examine predictions of a free release of CO2 into

the atmosphere from a reservoir at a pressure of 10MPa and a temperature of 283K, typical of

transport conditions in carbon capture and storage scenarios. A comparison of the results shows

that the sonic CO2 jet that forms requires a three-phase equation of state including the latent

heat of fusion to realistically simulate its characteristics.
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Keywords: Complex Fluids, Computational Fluid Dynamics, Green Engineering, Multi-phase
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INTRODUCTION

An essential prerequisite for computational studies of the behaviour of materials is to

have an accurate formulation for the description of their thermodynamic properties, appli-

cable over a wide range of pressures and temperatures. This allows for reliable comparison

of simulation to experimental data and the development of predictions for efficient and safe

operations with the material in industrial applications. This particular role is typically per-

formed by an equation of state, either optimised or specifically developed for the material in

question. These equations of state are often constructed so as to give the best representation

of an experimental data set. However, their accuracy is liable to be poor away from the

range of the data. The effect can be pronounced and common, since users of predictive

codes typically require equations of state to work as black boxes and, as long as the results

are plausible, they may not concern themselves about accuracy outside the range of validity.

Limitations also arise when a continuous function is unable to reproduce discontinuities at

phase boundaries, e.g. the change in internal energy when changing phase from liquid to

solid - the latent heat of fusion. Hence, most equations of state are only valid in the gas and

liquid phases above the triple point of the substance in question. For many substances, the

triple point is well below the temperature range of interest, and hence this limitation does

not affect many simulations of real-world operational cases.

In the case of CO2 however, with a triple point temperature of 216.592K and large values

of the Joule-Thomson coefficient, experiments and simulations have shown that rapid expan-

sion from high pressures results in the expanding material dropping below this temperature.

This particular ‘rapid expansion of supercritical solution’ property has been employed in

the production of micro- and nano-scale particles, as an effective cleaning process, for some

time. Hence, any equation of state employed to model releases of CO2 from high pressures

to ambient atmospheric pressure must therefore be able to cope with material across a range

of temperatures and pressures which span the critical point and the triple point. We show

a schematic phase diagram for CO2 in Figure 1.

High pressure releases of CO2 are of particular interest in relation to carbon capture and

storage (CCS) schemes, where the intention is to capture CO2 during production - e.g. the

burning of fossil fuels - and transport it to a storage site such as a sub-ocean floor saline

aquifier, thereby avoiding its release to atmosphere and any subsequent green house gas

effects. The transport process is most efficient in the liquid phase, typically at pressures
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of 10MPa or more in order to avoid problems of approaching the phase boundary during

normal operations. However, the dispersion characteristics of a leak of such high pressure

material is an issue, since in the atmosphere, CO2 has a toxic effect above 5% concentration

and causes hyperventilation above 2%1,2.

The Peng-Robinson equation of state3 and related equations extend the ideal equation of

state in a simple cubic form, with parameters expressed in terms of the critical properties

and the acentric factor. The chief aim is to provide reasonable accuracy in the gas and

liquid phases, particularly near the critical point. The Span & Wagner equation of state for

CO2
4 is a complex equation (approximately 50 terms) explicit in the Helmholtz free energy.

It consists of a simultaneous nonlinear fit to all of the available data on the thermodynamic

properties of CO2. In the temperature range from the triple point up to 523K and up to

30 MPa, the estimated uncertainty of the equation ranges from ± 0.03% to ± 0.05% in the

density, ± 0.03% to ± 1% in the speed of sound, and ± 0.15% to ± 1.5% in the isobaric

heat capacity. It is considered the most accurate equation of state available for CO2 at the

present time and is the basis of the commercial GERG5 and industry standard REFPROP

software packages. For the gas and liquid phases, it is the benchmark to measure against.

The Peng-Robinson equation of state is satisfactory for the gas phase, but when compared

to Span & Wagner, it is not so for the condensed phase, as we will demonstrate in the next

section. Furthermore, it is not accurate for the gas pressure below the triple point and, in

common with any single equation, it does not account for the discontinuity in properties

at the triple point. In particular, there is no latent heat of fusion. Span & Wagner give a

formula for the Helmholtz free energy that is valid for both the gas and liquid phases above

the triple point, but it does not take account of experimental data below the triple point,

nor does it give the properties of the solid. In any case, the formula is too complicated to

be used efficiently in any computational fluid dynamics (CFD) code.

There is a clear need for a computationally efficient equation of state that can accurately

span the critical point and the triple point, with continuous derivatives throughout the range,

for use in CCS scenarios. It is the first objective of this paper to introduce a computationally

efficient composite method for the accurate modelling of releases of CO2 as a two-phase fluid,

modelling the vapour phase and the condensed phase, including the latent heat of fusion in

order to model both the liquid and solid phases. It is the second objective to demonstrate

the improved performance of this composite approach over other common computationally

simple approaches applied to the near-field of a high pressure release of CO2, of relevance
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to the carbon capture and storage industry. Specifically we consider also the ideal equation

of state and the Peng-Robinson equation of state. The the focus of the Results section is on

the comparison of these two equations of state to the new composite approach. Accuracy of

the equation of state is not only important for fundamental physical investigations, but also

for safety assessment of CO2 pipelines where accurate knowledge of the near-field structure

of an escaping CO2 jet may be necessary for producing reliable predictions of subsequent

dispersion behaviour, necessary for industrial safety modelling and risk assessment.

The layout of this paper is as follows. Section 2 describes the format of an equation of state

and the Peng-Robinson equation of state for CO2, highlighting its limitations and introduces

the improved composite equation of state formulation for three-phases. Section 3 describes

the computational method which we have developed to simulate atmospheric releases of

CO2 and its implementation into an appropriate Reynolds-Averaged Navier-Stokes (RANS)

equation solver (the MG code). Section 4 sets out our testing and validation of this composite

equation of state. Section 5 presents the results of modelling a high pressure release into

ambient air, demonstrating the improved performance of the composite method over ideal

gas and two-phase (Peng-Robinson) equation of state approaches. Section 6 discusses these

results and our conclusions are drawn in Section 7.

INVISCID FLOW MODEL

The RANS equations for an inviscid flow model are

∂ρ

∂t
+∇ · (ρu) = 0 equation of continuity, (1)

∂ρC

∂t
+∇ · (ρCu) = 0 scalar transport, (2)

∂ρu

∂t
+ ρ(u · ∇)u+∇p = 0 momentum, (3)

∂e

∂t
+∇ · [u(e+ p)] = 0 energy, (4)

where e is the total energy per unit volume. We employ these equations in this work.

EQUATIONS OF STATE

We assume an equation of state of the form

p = p(v, T ), (5)
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where p is the pressure, v is the molar volume and T is the temperature.

Following previous authors (e.g. Span and Wagner), we choose to work with the

Helmholtz free energy, F , in terms of T and v since all other thermodynamic proper-

ties can readily be obtained from F . The Helmholtz free energy per mole for an ideal gas is

given by

F = Fi = −RT

[

1

(γ − 1)
ln

(

T

T0

)

+ ln

(

v

v0

)]

, (6)

where T0 and v0 are for some reference state for which the ideal equation of state is valid.

We can now use the standard relation

p = −

(

∂F

∂v

)

T

, (7)

to obtain F for any other equation of state from

F (T, v) = Fi(T, v0)−

∫ v

v0

p dv. (8)

This assumes that F (T, v0) = Fi(T, v0), which is valid provided v0 is sufficiently large.

Since the entropy is given by

S = −

(

∂F

∂T

)

v

, (9)

the internal energy is hence given by

U(T, v) = F + TS = F − T

(

∂F

∂T

)

v

. (10)

The adiabatic sound speed of a pure component is given by

c =

[(

∂p

∂ρ

)

S

]1/2

=

[

−v2
(

∂p

∂v

)

S

]1/2

(11)

and it can be shown that
(

∂p

∂v

)

S

=

(

∂p

∂v

)

T

−

(

∂p

∂T

)

v

(

∂S

∂v

)

T

(

∂T

∂S

)

v

.

In equilibrium on the saturation curve, p(T ) satisfies the Clapeyron equation
(

∂p

∂T

)

sat

=

[

S(T, vc)− S(T, vv)

vc − vv

]

, (12)

where vc(T ) and vv(T ) are the molar volumes of the liquid/solid and gas, respectively.

Ideal Gas Equation of State

The ideal gas equation of state can be expressed as

p = p(v, T ) =
RT

v
. (13)
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Peng-Robinson Equation of State

The Peng-Robinson equation of state3 extends the ideal equation and is

p = p(v, T ) =
RT

(v − b)
−

aδ

(v2 + 2bv − b2)
, (14)

where a, b and δ are given by

a = 0.45724
(RTcrit)

2

pcrit
,

b = 0.07780
RTcrit

pcrit
,

δ =

[

1 + (0.37464 + 1.54226ω − 0.26992ω2)

(

1−

√

T

Tcrit

)]2

.

(15)

Here pcrit is the critical pressure, Tcrit is the critical temperature and ω is the acentric factor.

For carbon dioxide these are pcrit = 7.3773 MPa, Tcrit = 304.1282 K, and ω = 0.228.

Figure 2 shows the saturation pressure predicted by the Peng-Robinson and Span &

Wagner4 equations of state. From Figure 2, it can be seen that the Peng-Robinson and

Span & Wagner equations agree rather well, but, as can be seen from Figure 3, the liquid

density given by these two equations does not agree nearly so well. On the other hand,

Figure 3 also shows that the gas densities are in close accord.

Improved Composite Equation of State

We have constructed a composite equation of state in which the gas phase is computed

from the Peng-Robinson equation of state. The liquid phase and saturation pressure are

calculated from tabulated data generated with the Span & Wagner equation of state and

the best available source of thermodynamic data for CO2, the Design Institute for Physi-

cal Properties (DIPPR R©) 801 database (http://www.aiche.org/dippr/), academic access to

which can be gained through the Knovel library (http://why.knovel.com).

The properties of gaseous CO2 are obtained from the Peng-Robinson equation of state

with the parameters given in the previous section. The internal energy in the gas phase is

computed using the following expression for the specific heat at constant volume

Cv = A+B T + C T 2 (J kg−1 K−1), (16)

where here A = 469.216, B = 0.6848, and C = 1.211 × 10−4. This expression has been

obtained by fitting to the internal energy data in the DIPPR R© Project 801 database over
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the temperature range 150 ≤ T ≤ 300 K. The internal energy of the gas at the reference

state used by Span & Wagner is then U0 = 1.71403 × 105 J kg−1 at T = 298.15K and

p = 1.01325× 105 Pa.

The internal energy of the liquid is taken from Span & Wagner, except that we add

1.4422×104 J kg−1 to the Span & Wagner values in order to ensure that differences between

the gas and liquid internal energies on the saturation line in our model are close to theirs.

Figure 4 shows that the agreement is very good in the crucial temperature range from the

triple point to 280 K. The pressure dependence of the internal energy of the liquid is modelled

via a quadratic fit to the tabulated data presented in Span & Wagner.

The sound speed for the liquid is taken from Span & Wagner and is assumed to be equal

to that on the saturation line. The pressure dependence of the density of the liquid is

calculated from the density and sound speed on the saturation line in combination with a

quadratic fit to the tabulated data presented in Span & Wagner.

For the internal energy of the solid, we use

U = −4.04533× 105 − 36.4215(T − Ttrip)

+12.3027(T 2 − T 2
trip)/2

+0.02882(T 3 − T 3
trip)/3 (J kg−1).

(17)

This has been obtained from the DIPPR R© 801 Database tables along with the latent heat

of fusion at the triple point of 204.932 kJ kg−1. Note that we have ignored the pressure

dependence and the difference between the internal energy and the enthalpy for the solid

since these are negligible.

To calculate the solid density, we use the same approach as Witlox et al.6

ρ = 1289.45 + 1.8325T (kgm−3), (18)

again based on property information from the DIPPR R© 801 Database. From Liu7, the solid

sound speed at atmospheric pressure and 296.35 K is 1600 m s−1 and we assume that this

is independent of temperature and pressure. Note that the results are extremely insensitive

to the solid density and sound speed.

The saturation pressure above the triple point is taken from Span & Wagner. Below the

triple point, they give the following empirical formula

ps(T ) = ptrip exp{[a1(1.0− T/Ttrip) +

a2(1.0− T/Ttrip)
1.9 + a3(1.0− tv)2.9)]

Ttrip

T
} (Pa),

(19)
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where Ttrip = 216.592K is the temperature of the triple point, ptrip = 0.518× 106 Pa is the

pressure at the triple point and a1 = −14.740846, a2 = 2.4327015, and a3 = −5.3061778.

Figure 5 shows the internal energy of the gas and condensed phases on the saturation line.

The transition from liquid to solid has been smoothed over 4K with a hyperbolic tangent

function centred on the triple point. This has been done for computational reasons in order

to ensure the function and its differentials are smooth.

THE COMPUTATIONAL MODEL

Homogeneous Mixtures

Since any computational model of CO2 releases has to deal with mixtures of air and CO2

in liquid/solid and gas form, we need to derive the appropriate equations for such mixtures.

Let α be the mass fraction of the CO2 that is in liquid/solid form and β the total mass

fraction of CO2. The mass fraction of air is then 1 − β. We assume that the mixture is

homogeneous, i.e. that the solid/liquid and gas phases are well mixed and that the liquid

drops or solid particles are sufficiently small. We also assume for the purposes of elucidating

the differences between equations of state that the air is dry and contains no water vapour.

With these assumptions, in unit volume the mass of liquid/solid phase CO2 is

mc = αβρ,

which means that the volume of liquid/solid CO2 is

vc =
αβρ

ρc
,

where ρc is the density of the liquid/solid condensed form of CO2. The volume of gaseous

CO2 and air is then

vg = 1− vc = 1−
αβρ

ρc
.

Since the masses of gaseous CO2 and air per unit volume are

mv = β(1− α)ρ, ma = (1− β)ρ,

their densities are

ρa =
ma

vg
=

(1− β)ρ

[1− αβρ/ρc]
, (20)
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ρv =
mv

vg
=

β(1− α)ρ

[1− αβρ/ρc]
. (21)

The total gas density is then

ρg = ρa + ρv =
(1− αβ)

[1− αβρ/ρc]
ρ (22)

and one can show that
1

ρ
=

αβ

ρc
+

(1− αβ)

ρg
. (23)

Mixture Frozen Sound Speed

If any thermodynamic change is so rapid that the liquid and gas mass fractions remain

constant, then the relevant sound speed is the frozen sound speed.

Differentiating equation (23) with respect to p at constant entropy gives

1

ρ2c2
=

αβ

ρ2cc
2
c

+
(1− αβ)

ρ2gc
2
g

, (24)

where cc and cg are the adiabatic sound speeds for the liquid/solid and gas phases respec-

tively. cc is given by equation (11) with the liquid/solid equation of state.

For the gas we have

dp = c2adρa + c2vdρv, (25)

where ca and cv are the sound speeds of air and gaseous CO2. Differentiating equations (20)

and (21) with respect to ρ gives

dρa =
(1− β)

(1− αβρ/ρc)2
dρ, dρv =

β(1− α)

(1− αβρ/ρc)2
dρ.

Using these to eliminate ρa and ρv in equation (25) gives

dp

dρ
= c2g =

1

(1− αβρ/ρc)2
[c2a(1− β) + c2vβ(1− α)]. (26)

This sound speed plays a role if it takes a finite time for the liquid and gas to come into

equilibrium.

Equilibrium Sound Speed

It is also necessary to calculate the adiabatic sound speed for a pure CO2 liquid/solid-gas

mixture when it remains in equilibrium. We start from

v = αvc + (1− α)vg.
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Differentiating this gives

dv = (vc − vg) dα + α dvc + (1− α) dvg. (27)

dα can be determined from the fact that this is an isentropic process. We have

S = αSc + (1− α)Sg.

Differentiating this gives

dS = (Sc − Sg)dα + αdSc + (1− α)dSg = 0 (28)

which implies

dα =
1

(Sg − Sc)
[αdSc + (1− α)dSg]. (29)

The differentials of the entropy are given by

dSc,g =

(

∂Sc,g

∂T

)

v

dT +

(

∂Sc,g

∂v

)

T

dvc,g. (30)

In order to get differentials of the volumes, we start from

dp =

(

∂p

∂T

)

sat

dT =

(

∂p

∂T

)

v

dT +

(

∂p

∂v

)

T

dvc,g, (31)

which then gives

dvc,g =

[(

∂p

∂T

)

sat

−

(

∂p

∂T

)

v

]

dT

(∂p/∂v)T
. (32)

Using (29), (30) and (32) in (27) gives dv in terms of dT . Since we know dp in terms of

dT from (31), this gives (∂p/∂v)S and hence the sound speed.

Homogeneous Equilibrium Model

In such a model, all phases are assumed to be in dynamic and thermodynamic equilibrium,

i.e. they all move at the same velocity and have the same temperature. In addition, the

pressure of the CO2 gas is assumed to be equal to the saturation pressure whenever the

condensed phase is present. The pressure of the condensed phase CO2 is assumed to be equal

to the combined pressure of gaseous CO2 and air (the total pressure). These assumptions are

reasonable provided the CO2 liquid drops or solid particles are sufficiently small. It should

be noted that for small droplets, the Kelvin effect will cause the vapour pressure to deviate

from the saturated pressure. However, calculation of the Kelvin effect relies on accurate
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knowledge of the surface energy of CO2 droplets - currently unknown, see for example8. In

line with this previous work, we assume this is zero and ignore the Kelvin effect. Future

work will consider this in more detail, but for now we consider both an equilibrium model

and a homogeneous relaxation model in the next section.

Since the code into which this model will be introduced is conservative, it works with the

total energy per unit volume

e = ρU +
1

2
ρu2, (33)

where ρ is the total density, U is the internal energy per unit mass and u is the magnitude

of velocity. The code also computes the total mass fraction of CO2, β.

In order to integrate the conservation equations, it is necessary to compute the mixture

pressure (pt), temperature (T ), mass fraction of liquid/solid CO2 (α), density of CO2 gas

(ρv), density of air (ρa) and density of liquid/solid CO2 (ρc) from ρ, U and β. The densities

of air and CO2 gas are given by (20) and (21).

Since the gaseous CO2 is in equilibrium with liquid/solid CO2, we have

ps(T ) = p(ρv, T ), (34)

where ps(T ) is the saturation pressure and p(ρv, T ) is the pressure given by the equation of

state.

The mixture pressure is given by

pmix =
ρaRT

wa

+ ps(T ). (35)

The total internal energy per unit mass is given by

U =
(1− β)RT

wa(γa − 1)
+ (1− α)β U(ρv, T ) + αβ U(ρc, T ). (36)

where wa and γa are the molecular weight and ratio of specific heats for air. Note that we

have used the ideal equation of state for air.

In general, mixing occurs at pressures close to atmospheric, so one can use the ideal

equation of state for the gaseous CO2

p(ρv, T ) =
ρvRT

wc

(37)

and

U(ρv, T ) =
RT

wc(γc − 1)
(38)
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where wc and γc are the molecular weight and ratio of specific heats for CO2.

The density of the liquid/solid can be obtained from

ρc = ρc(pmix, T ), (39)

which is obtained from the equation of state.

Equations (21), (20), (34), (35), (36) and (39) are solved for T , pmix and α using a

Newton-Raphson iteration.

This procedure is somewhat simpler for pure CO2 (β = 1) on the saturation line. We

then have
1

ρ
=

α

ρc
+

(1− α)

ρv
, (40)

and

U = αU(ρc, T ) + (1− α)U(ρv, T ). (41)

Equations (40) and (41) give T and α since ρc = ρc(T ) and ρv = ρv(T ) on the saturation

curve.

Homogeneous Relaxation Model

The vapour will only be in equilibrium if the size of the liquid drops or solid particles is

sufficiently small. There are some indications that this will not be true, in particular for test

calculations in which the rupture size is of the order of centimetres. A full model will require

the inclusion of drops or particles and is beyond the scope of the present paper. For the

current model, it is possible to derive a simple sub-model for the relaxation to equilibrium

by assuming that the condensed phase mass fraction is given by

∂ρα

∂t
+∇ · (ρα u)−∇ · (µT∇α) = Sα. (42)

and ignoring temperature relaxation. The source term is then

Sα = β
(pv − ps)

τps
(43)

where pv is the vapour pressure, ps is the saturation pressure and τ is a relaxation time.

This is consistent with the form of evaporation/condensation rate given by Jacobson9. In

the simulations presented here, we employ a relaxation time of τ = 10−3, ensuring a rapid

relaxation to equilibrium, appropriate in the initial expansion. Future work will consider
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the implications of increasing this timescale beyond the Mach shock and more accurately

modelling the post Mach shock flow.

In this case obtaining the temperature from the conserved variables is somewhat simpler

than for the homogeneous model since α is already known. We can assume that the solution

is insensitive to ρc and then use a secant method to solve equations (20), (21) and (36) for

T . ρc can be updated within each iteration from (39).

Numerical Solution Method

All three equations of state were implemented into the Adaptive Mesh Refinement (AMR)

RANS hydrodynamic-code MG, developed by Falle10. The code employs an upwind, con-

servative shock-capturing scheme and is able to employ multiple processors through paral-

lelisation with the Message Passing Interface (MPI) library. Integration in time proceeds

according to a second-order accurate Godunov method11. In this case, a Harten Lax van-

Leer12,13 (HLL) Riemann solver has been employed to aid the implementation of complex

equations of state. The disadvantage of the HLL solver is that it is more diffusive for contact

discontinuities; this is not important here since the contact discontinuities are in any case

diffused by the artificial viscosity. The artificial viscosity is required to ensure shocks travel

at the correct speed in all directions and is at a very low level, decreasing with increasing

resolution. The AMR method14 employs an unstructured grid approach, requiring an order

of magnitude less memory and giving an order of magnitude faster computation times than

structured grid AMR. The two coarsest levels - 0 and 1 - cover the whole computational do-

main, finer grids need not do so. Refinement or derefinement depends on a given tolerance.

Defragmentation of the AMR grid in hardware memory is performed at every time-step,

gaining further speed improvements for negligible cost through reallocation of cells into

consecutive memory locations. Figure 6 demonstrates this technique, and where there are

steep gradients of variable magnitudes such as at flow boundaries or discontinuities such

as the Mach disc, (demonstrated by the plot of temperature in Figure 6) the mesh is more

refined than in areas of the free stream in the surrounding fluid. Each layer is generated

from its predecessor by doubling the number of computational cells in each spatial direction.

This technique enables the generation of fine grids in regions of high spatial and temporal

variation, and conversely, relatively coarse grids where the flow field is numerically smooth.

Figure 6 shows the population of 5 levels of AMR when simulating a CO2 release at sonic
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velocity.

TESTING AND VALIDATION

In order to elucidate the physical differences in realistic situations between the new com-

posite equation of state, the Peng-Robinson equation of state and an ideal equation of

state, an identical scenario with identical initial conditions must be simulated with each.

A comparison of the results will reveal the performance of each approach. Ideally, further

comparisons should be performed against experimental results. However, experimental mea-

surements of high pressure releases of CO2 are scarce and we have been unable to find any

published in a form which would allow for direct comparison of the near-field structure of a

release.

Initial Conditions

We wish to elucidate the physics associated with releases of CO2 for conditions typical of

those under consideration in relation to CCS schemes. Transportation within CCS scenarios

is likely to be undertaken along high pressure pipelines, similar to those used in the natural

gas industry, with typical operating conditions in either liquid or supercritical phase, at

operating pressures around 10-15MPa15.

We have calculated thermodynamic pipeline decompressions from three representative

pipeline conditions, specified in Table I using a method similar to that presented in16. Fig-

ure 7 shows the thermodynamic decompression paths from these three initial conditions in

a pressure-temperature p-T diagram. All three conditions follow isentropic adiabats in the

p-T diagram which intersect the saturation curve at different locations and, since this is

a homogeneous equilibrium model, the thermodynamic conditions at the exit plane then

adhere to the saturation curve during the steady-state stage of the release and also conse-

quently as the temperature reduces. The supercritical release intersects the saturation curve

at only a slightly lower temperature and pressure than the critical point. We have chosen

a single set of initial exit plane conditions on the saturation line that are representative

of these high pressure releases. These initial conditions are specified in Table II, and are

typical of those conditions that would occur in the exit plane of an accidental puncture in a

high pressure pipeline17,18. In order to compare performance between the three equations of
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state, pressure and mass-flow must be conserved at the orifice. Hence the temperature and

velocity conditions are the same for the Peng-Robinson and composite equations of state,

but considerably different when conserving pressure and mass-flow with the ideal equation.

The ideal equation of state has been included as it is employed in a variety of engineering

applications for modelling gas dispersion.

In computationally simulating this release, we have employed a two-dimensional cylindri-

cal polar axisymmetric coordinate system with a domain extending to 20 exit diameters in

both the r and z directions. The coarsest grid level contains 40× 40 cells. 6 levels of AMR

have been employed to fully resolve the near-field structure, giving 32 cells across the release

diameter. The initial state of the fluid in the domain consists entirely of stationary air at a

pressure of 105 Pa and a temperature of 290K. Conditions in air are calculated via an ideal

gas equation of state with γa = 7/5. We use γc = 1.28 for CO2. Boundary conditions have

been specified as symmetric at r = 0, free-flow at r = 20 and z = 20, and fixed at z = 0.

Given that vortex structures may be present in the jet as it reaches steady state, velocities

that lead to inflow can occur at the free-flow boundary at z = 20. Hence the boundary

condition is adjusted to ensure that only ambient air can flow into the domain, with the

same properties as the initial condition, and no CO2. The exit conditions in Table II are

enforced on every time step at the z = 0 boundary for r < 0.5.

The simulations performed employed an artificial viscosity dependent on grid resolution

in order to avoid numerical instabilities. This viscosity decreases with the maximum number

of AMR levels employed. The simulations presented below employed 6 levels of AMR and

hence a very low level of artificial viscosity. Steady state was achieved through starting

simulations at the coarsest level and establishing a steady state before adding another grid

level and again advancing in time with the same constant exit conditions until steady state

was again achieved. The simulations shown below are convergent and show little variation

with exit pressure, temperature and velocity.

RESULTS

In this section we compare the results of simulating the near-field structure from a high

pressure CO2 release with the ideal, Peng-Robinson and composite equations of state. We

show two-dimensional r-z plots of the near-field from the simulations on a subset of the

computational domain from 0 to 6 release orifice diameters in both r and z. This subset
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reveals the structure of the near-field, defined here as the region including the rapid expansion

and Mach shock. A short post-shock region that is representative of the conditions in the

rest of the downstream jet is also included. Other representations of the data include one-

dimensional cuts along the axis of the jet (r = 0) to show changing conditions through the

Mach shock.

Figure 8 shows the near-field temperature structure resulting from the three different

equation of state approaches. Note that the initial temperature of the ideal model is different

because pressure and mass-flow have been conserved in the initial condition. The ideal

equation of state predicts a width of the jet at the Mach shock 15% narrower than the Peng-

Robinson equation of state, and 23% narrower than the composite equation of state. The

three equations of state also clearly lead to qualitatively different temperature distributions.

In the lower right panel of this figure we compare the temperatures along the jet axis. The

ideal approach (dotted line) predicts a lower temperature - down to 55K just before the

Mach shock - in the expansion region, as compared to the Peng-Robinson (dashed line)

and composite (solid line) equations of state, which predict 155K and 168K, respectively.

Post-shock, when the pressure in the jet is close to atmospheric, solid and gaseous CO2

coexist. In a homogeneous equilibrium model, such as the one presented here into which all

three equation of state approaches were implemented, a mixture of pure two-phase CO2 at

atmospheric pressure must be on the saturation curve, at what is defined as the sublimation

temperature: 194.675K for CO2
19. All three models predict 100% CO2 at approximately

atmospheric pressure in the core of the jet immediately after the Mach shock, thus allowing

for an excellent test - the core of the jet should be at the sublimation temperature. The

ideal equation of state predicts a high core temperature around 247.5K, whereas the Peng-

Robinson and composite equations of state predict 185.3K and 193.9K, respectively. The

composite model is therefore in excellent agreement with the sublimation temperature, the

slight difference due to the fact that the pressure immediately after the Mach shock is

approximately 5% lower than atmospheric. The low temperature in the Peng-Robinson

equation case is a demonstration of how the model-predicted saturation pressure diverges

from the real saturation pressure going below the triple point.

The ideal equation of state also predicts a warm core and a cold annulus around the

jet, unlike the Peng-Robinson and composite equations of state where the temperature is

approximately constant across the entire width of the jet. The three different equations of

state also predict different locations of the Mach shock. The Peng-Robinson and composite
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equations of state are in reasonable agreement in terms of downstream distance, whereas

the ideal equation of state would appear to be in disagreement with both. These differences

in structure highlight how unsuitable an ideal gas approach is for modelling the near-field

jet structure of high pressure CO2 releases. The Peng-Robinson equation of state employs

an accurate model in the gas and liquid phases, which deteriorates in quality below the

triple point in the solid phase. This is highlighted by the post Mach shock temperature

and purely dimensional differences between the Peng-Robinson predictions and those of

the three-phase-accurate composite equation of state which predicts the correct post Mach

shock temperature in this homogeneous equilibrium model. As expected, between the Peng-

Robinson and composite approaches, the temperatures agree in the expansion until the triple

point is reached, at which point the Peng-Robinson equation of state continues smoothly,

whereas the composite equation of state model accounts for the latent heat of fusion change

to the solid phase, and the temperature profiles diverge. The temperatures predicted here

by all three equations of state are clearly low enough to make it absolutely crucial that an

accurate three-phase equation of state for CO2 is used to model these depressurisations.

Figure 9 shows the magnitude of velocity in the near-field of the jet resulting from the

three different approaches. Note that the initial velocity of the ideal model is different

because pressure and mass-flow have been conserved in the initial condition. The ideal

equation of state predicts a high velocity in the expansion and annulus regions - between

400 and 600m/s. In contrast, the Peng-Robinson and composite equations of state predict

a velocity approaching 400 and 450m/s, respectively, in the expansion fan just before the

Mach shock. Further, the ideal equation of state does not predict any velocity differences

across the expansion fan, although a slow core and fast annulus become apparent post-

shock. Contrastingly, the Peng-Robinson and composite equations of state predict velocities

around 200m/s surrounding the expansion fan and into the annulus, encasing a similarly

slow moving core. The annulus velocities are a factor of two less than for the ideal equation

of state. Oblique shock waves originating from the shock triple point are also clear in

the results from the Peng-Robinson and composite equations of state at the same levels.

The lower right panel in Figure 9 shows the magnitude of velocity along the cylindrical

axis of the jet. The Peng-Robinson and composite equations are again in agreement until

the temperature reaches the triple point, at which the internal energy released during the

formation of solid is converted to kinetic energy (the scheme is energy conserving) driving

a secondary expansion of the jet and leading to a wider expansion fan, larger Mach shock
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and higher pre-shock velocities. Post Mach shock, the velocities from the Peng-Robinson

and composite equations of state are in good agreement, whereas the ideal model predicts

much larger velocities, again demonstrating the inapplicability of the ideal approach.

Figure 10 shows the pressure in the flow domain. All three models have the same pres-

sure at the nozzle, as defined by the conservation of pressure and mass-flow in the initial

conditions. They begin to diverge immediately, although this is only clear in panel (d) of

the figure after the pressure drops though the triple point pressure (0.518 MPa, 5.71 on the

y axis of panel (d)). The composite and Peng-Robinson models remain similar, although the

effect of correctly accounting for the latent heat of fusion is clear where the abrupt gradient

change occurs at the triple point along the composite prediction (solid line panel (d)). Post

Mach shock all three models return to atmospheric pressure as would be expected, although

the position of the Mach shock is clearly incorrectly predicted by an ideal equation of state,

once again demonstrating the lack of suitability of this ideal approach. The composite equa-

tion of state predicts that the Mach shock should be slightly further downstream than the

Peng-Robinson equation of state.

Figure 11 gives the fraction of CO2 in the domain. Pure CO2 fills the entire expansion

fan, the post Mach shock core and annulus in all three cases. Mixing is confined to a very

narrow region at the outer radial edge of the jet. This is likely to be the reality around the

expansion fan, but beyond the Mach shock this is unlikely to be realistic - we discuss this

further below. Note though that mixing region at the edge of the ideal jet is thinner than

the mixing regions at the edges of the Peng-Robinson and composite jets.

Figure 12 shows the fraction of CO2 in the condensed phase predicted by the Peng-

Robinson and composite equations of state. No results are shown from the ideal equation

of state since this is a gas phase model with no condensed phase. Close to the release point,

before the temperature drops below the triple point, the condensed CO2 is in the liquid phase

and the two approaches show identical predictions. Dramatic differences become apparent

once the triple point temperature is reached and the liquid phase CO2 solidifies. The Peng-

Robinson equation of state smoothly predicts a continuous fraction in the condensed phase

as the temperature drops through the triple point - clearly unphysical as it implies a zero

latent heat of fusion. In contrast, the composite equation of state, which correctly models the

phase change from liquid to solid, shows a rapid decrease in the amount of condensed phase

material as the temperature passes through the triple point, in agreement with the energy

requirements of forming solid. Although the Peng-Robinson equation of state is strictly
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inapplicable beyond the point at which the material temperature drops below the triple point

in the expansion fan, the predicted fractional change across the Mach shock is in agreement

with the composite equation of state which is applicable in this regime. The fraction of solid

CO2 present after the Mach shock is considerably lower in the composite model than in the

Peng-Robinson case, as expected when the latent heat of fusion is accounted for.

DISCUSSION

Choice of the equation of state to use numerically is a balance between the accuracy of

calculation and computational time. For example, certain computer codes utilize lookup

tables of thermophysical properties rather than an explicit equation. This is usually done

because calculating such properties in real time can be very computationally expensive.

Hence we have employed lookup tables for Span & Wagner rather than the complete for-

mulation which would be prohibitively expensive for the type of calculations reported here.

We have seen the same level of performance between the Peng-Robinson and composite

models, i.e. we find no performance penalty in using the improved three phase equation of

state with tabulated data rather than a single explicit equation. We have also assumed that

sound speed is independent of temperature and pressure. We have found that the results are

extremely insensitive to the sound speed and also our choice for calculating solid density, as

also employed by other authors6.

The results shown in the previous section have demonstrated the differences between using

various equations of state in the calculation of sonic jets of carbon dioxide. Clearly, an ideal

equation of state is unsuitable due to its lack of realism, and as it predicts incorrect dimen-

sions of the near-field structure of such jets, as well as incorrect temperatures and velocities.

Further, the method does not include the condensed phase which has been demonstrated to

be fundamentally important for these releases. The Peng-Robinson equation of state, like

many others used for CO2, is a two-phase equation of state which is, in general, as accurate

as any other for this situation above the triple point. However, the results in the previous

section have highlighted the need for an equation of state which accurately handles the solid

phase and the transition to it, hence we have developed the composite form detailed here.

During the development of this composite equation of state, we also examined the suit-

ability of a number of other formulations. We considered the PRSV20, PRSV-221 and GERG

20045 (which is fundamentally based on the Span & Wagner method) equations. Whilst all
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these provided comparable results in the gas and liquid phases, none are applicable below

the triple point. We have also considered the three phase equation of state developed by

Yokozeki et al.22, however, whilst the latent heat of fusion may be included, the method is

difficult to implement computationally as continuous derivatives are required, the presence

of which are nor clear from Yokozeki’s description. An improvement to this method may be

gained by using Yokozeki’s equation, with appropriate computational smoothing, but as we

are already using the most accurate equation of state - Span and Wagner - we have not used

Yokozeki’s equation as it complex with a relatively large number of terms and parameters.

So, for the purposes of examining the performance of our composite approach, we chose

the Peng-Robinson equation of state given its simplicity to implement in a computational

method. The composite method itself can be implemented with any of the equations of state

noted above via lookup tables constructed from the chosen approach. The method will still

correctly account for the latent heat of fusion and solid phase, as is required for simulations

of high pressure releases of CO2 into air.

We have also repeated the entire set of simulations discussed using a fully turbulent RANS

approach, closed using a compressibility corrected23 k − ǫ turbulence model. These simula-

tions are consistent with those presented here, revealing essentially the same behaviour. As

expected, the main effect of the inclusion of flow turbulence is to widen the mixing region

at the edge of the jet in the near-field.

The results presented here consider flows similar to Yamamoto et al.24. In their work, CO2

flows through a nozzle with upstream pressures up to 2MPa were considered. The upstream

temperatures considered were above the critical temperature (400K, 600K), although in

the expansion temperatures dropped below the critical point. The authors employed the

PROPATH thermophysical library for tabulating the thermophysical properties of CO2.

However, this library is only applicable above the triple point (the reference manual indicates

most functions are applicable down to 220K, but some only down to 240K). Their results

lend support to our results, but unlike Yamamoto et al. and the PROPATH library, our

composite equation of state and fluid flow predictions are trans-triple-point and applicable

to the CCS industry.
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CONCLUSIONS

We have developed a new two-phase composite method of predicting the thermophysical

properties of the three phases of CO2 for the range of temperatures of relevance to carbon

dioxide dispersion from releases at sonic velocities, of interest to the carbon, capture and

storage industry and in other applications. This new equation of state has been imple-

mented in a way that is convenient for computational fluid dynamic applications; the gas

phase is computed from the Peng-Robinson equation of state, and the liquid and condensed

phases from tabulated data generated with the Span & Wagner equation of state and the

DIPPR R© Project 801 database. Saturation pressure, gas and condensed phase densities,

sound speed and internal energy have all been tabulated against temperature, providing the

basis for a fully functional form for differentiation, interpolation and extrapolation in numer-

ical simulations. No discontinuity or loss of accuracy at the critical point or anywhere along

the saturation curve has been encountered by using this composite approach with different

equations of state, as we have ensured that the Helmholtz free energy has continuous first

derivatives.

A set of steady-state simulations has been performed to investigate the physical condi-

tions in high pressure releases of CO2 into air and to compare predictions employing three

different equation of state approaches: an ideal gas, the Peng-Robinson equation and the

new composite approach. The simulations have all shown that the material temperature of

CO2 drops below the triple point when released into air from high pressure. The new com-

posite equation of state described in this paper fully accounts for the triple-point limitation

of other equations of state in modelling these releases by correctly including the solid phase

properties, e.g. density, and the transition to the solid phase, i.e. the latent heat of fusion.

Predictions from the composite approach show agreement with Peng-Robinson and Span &

Wagner above the triple point, as expected, with physically realistic predictions below the

triple point; unlike the other approaches, the composite method correctly predicts the pure

CO2 mixture of solid and gas to be at the experimentally measured sublimation temperature

at atmospheric pressure. These simulations have demonstrated that it is absolutely crucial

to employ a three-phase equation of state to model atmospheric dispersion of high pressure

CO2.

Future developments of the composite approach will include the adoption of a suitable

particle model and transport method. Without including these, further alterations of the
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equation of state employed in the gas phase or liquid phase will achieve no greater accuracy

than the model presented here. An improved equation for the solid may be desirable, but

will make almost no difference to the results presented here. Possibilities of extending this

approach for the transport of CO2 with impurities (e.g. a small fraction of nitrogen) exist

by adjusting the liquid and gas phase behaviour, but are beyond the scope of the present

paper. Additionally, the publication of experimental data on the near-field structure of

these releases would allow for a more complete validation of the composite equation of state

approach.
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NOTATION

Roman letters:

a model parameter

b model parameter

c adiabatic sound speed

C specific heat

d non-dimensional nozzle diameter

e total energy per unit volume

F Helmholtz free energy

k turbulence kinetic energy

m mass

p pressure

r non-dimensional radial location

R universal gas constant

t time

S entropy

T temperature

u magnitude of velocity

U internal energy per unit mass

v molar volume

w molecular weight

z non-dimensional axial location
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Greek letters:

α condensed phase fraction

β total mass fraction of CO2

δ Peng-Robinson equation of state parameter

ǫ dissipation rate of k

γ ratio of specific heats

µ molecular viscosity

ρ density

τ relaxation time

ω acentric factor of the species

Subscripts:

0 reference state

a air

c condensed phase

crit critical point

g gas

i initial

mix mixture

s saturation

trip triple point

v vapour
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TABLE I. Representative pipeline conditions for CO2 in the gas, liquid and supercritical phases.

Phase Pressure (MPa) Temperature (K)

Liquid 7.0 283.15

Supercritical 10.0 313.15

Gas 3.0 283.15
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TABLE II. Initial conditions - representative of releases from reservoirs or pipelines containing

high pressure liquid or supercritical CO2.

Initial Conditions

Reservoir pressure 10.00 MPa

Reservoir temperature 283.15 K

Reservoir CO2 fraction 100.00%

Condensed phase fraction 100.00%

Exit plane pressure 2.79 MPa

Exit plane temperature 265.51 K

Exit plane velocity 71.62 m s−1

Exit plane Mach number 1.18

Exit plane CO2 fraction 100.00%

Exit plane condensed phase fraction 82.43%
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Robinson equation of state (b) and the composite equation of state (c). In panel (d), we

show a comparison along the jet axis between the three models - ideal (dotted line), Peng-
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Figure 9. Magnitude of velocity in the near-field of the flow domain. This figure shows

the magnitude of velocity of the jet predicted by the ideal equation of state (a), the Peng-

Robinson equation of state (b) and the composite equation of state (c). In panel (d), we

show a comparison along the jet axis between the three models - ideal (dotted line), Peng-

Robinson (dashed line) and composite (solid line).

Figure 10. Pressure in the near-field of the flow domain. This figure shows the pressure
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in the jet predicted by the ideal equation of state (a), the Peng-Robinson equation of state

(b) and the composite equation of state (c). In panel (d), we show a comparison along the

jet axis between the three models - ideal (dotted line), Peng-Robinson (dashed line) and

composite (solid line).

Figure 11. Concentration of CO2 in the near-field of the flow domain. This figure shows

the amount of CO2 in the jet predicted by the ideal equation of state (a), the Peng-Robinson

equation of state (b) and the composite equation of state (c).

Figure 12. Concentration of condensed phase CO2 in the near-field of the flow domain.

This figure shows the amount of condensed phase CO2 as a fraction of the total CO2 in

the jet predicted by the Peng-Robinson equation of state (a) and the composite equation of

state (b). In panel (c), we show a comparison along the jet axis between the two models -

Peng-Robinson (dashed line) and composite (solid line).
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FIG. 1. Schematic of the phase diagram for carbon dioxide25.
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FIG. 2. Predictions of saturation pressure obtained using the Peng-Robinson (line) and the Span

& Wagner (markers) equations of state.
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FIG. 3. Predictions of density on the saturation curve obtained using the Peng-Robinson (line)

and the Span & Wagner (markers) equations of state.
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FIG. 4. Predictions of internal energy of CO2 gas on the saturation line. Line: adjusted Span &

Wagner equation of state; markers: Peng-Robinson equation of state.
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FIG. 5. Predictions of internal energy on the saturation line for the composite equation of state.

Tcrit marks the critical temperature. The triple point temperature can be identified by the steep

connection between the liquid and solid phases - the latent heat of fusion.
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0 cells (0.5D on a side) are only employed outside the pictured domain.
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FIG. 7. Predicted thermodynamic decompression paths on a pressure-temperature diagram for

the three representative pipeline conditions. The start of the line at each condition title indicates

the start of the decompression path for each case. The critical point is also marked (Tc) - note

that the decompression path from the supercritical state hits the saturation line just below the

critical point. The saturation line (phase transition line) is indicated by the curve starting at Tc.

I.C. marks the initial conditions used in this work that are representative of decompressions from

reservoirs or pipelines containing high pressure liquid or supercritical CO2.
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FIG. 8. Temperature in the near-field of the flow domain. This figure shows the temperature

structure of the jet predicted by the ideal equation of state (a), the Peng-Robinson equation of

state (b) and the composite equation of state (c). In panel (d), we show a comparison along the

jet axis between the three models - ideal (dotted line), Peng-Robinson (dashed line) and composite

(solid line).
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FIG. 9. Magnitude of velocity in the near-field of the flow domain. This figure shows the magnitude

of velocity of the jet predicted by the ideal equation of state (a), the Peng-Robinson equation of

state (b) and the composite equation of state (c). In panel (d), we show a comparison along the

jet axis between the three models - ideal (dotted line), Peng-Robinson (dashed line) and composite

(solid line).
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FIG. 10. Pressure in the near-field of the flow domain. This figure shows the pressure in the

jet predicted by the ideal equation of state (a), the Peng-Robinson equation of state (b) and the

composite equation of state (c). In panel (d), we show a comparison along the jet axis between

the three models - ideal (dotted line), Peng-Robinson (dashed line) and composite (solid line).
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FIG. 11. Concentration of CO2 in the near-field of the flow domain. This figure shows the amount

of CO2 in the jet predicted by the ideal equation of state (a), the Peng-Robinson equation of state

(b) and the composite equation of state (c).
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FIG. 12. Concentration of condensed phase CO2 in the near-field of the flow domain. This figure

shows the amount of condensed phase CO2 as a fraction of the total CO2 in the jet predicted by

the Peng-Robinson equation of state (a) and the composite equation of state (b). In panel (c), we

show a comparison along the jet axis between the two models - Peng-Robinson (dashed line) and

composite (solid line).
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