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Simulation of Impedance Spectra for a Full Three-Dimensional Ceramic
Microstructure Using a Finite Element Model

Julian S. Dean,† John H. Harding, and Derek C. Sinclair

Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building Mappin Street, S1 3JD Sheffield, UK

A method of characterizing electrically heterogeneous electr-

oceramics for a full three-dimensional collection of randomly
shaped grains is presented. Finite element modeling, solving

Maxwell’s equations in space and time is used to simulate

impedance spectroscopy (IS) data. This technique overcomes

several deficiencies associated with previous methods used to
simulate IS data and allows comprehensive treatment of a full

three-dimensional granular representation of ceramic micro-

structure without the requirement for equivalent circuits based

on the Brickwork layer model (BLM) or the introduction of
constant phase elements to describe any nonideality of the IS

response. This is applied to a full three-dimensional ceramic

microstructure with varying grain size and electrical properties

to generate IS plots that highlight limitations of the BLM in
data analysis.

I. Introduction and Background

I MPEDANCE spectroscopy (IS) is widely employed to decon-
volute the intrinsic (bulk) and/or extrinsic (grain bound-

ary, electrode effects, etc.) contributions to the electrical
properties of electroceramics by measuring the impedance
response over a frequency spectrum,1,2 commonly from mHz
to MHz. Since the late 1960s, extracting information from IS
data, such as grain core (bulk) and grain-boundary capaci-
tance and resistance values, has been done using some form
of appropriate equivalent electrical circuit.3 This usually con-
sists of an arrangement of resistors and capacitors, connected
in series and/or in parallel to model the IS response of the
polycrystalline ceramic under investigation and to provide
insight into the intrinsic and extrinsic properties. Identifica-
tion of the correct form of the equivalent circuit is required
for meaningful analysis of the system.1,4 This is based on the
likely physical processes that occur in the material and often
requires some level of intuition. In many cases, to a first
approximation, the grain-core (bulk) response is described in
an equivalent circuit by a parallel combination of a resistor
and a capacitor (RC). This combination results in an ideal
arc in the complex impedance and electric modulus plane
plots, Z* and M*, respectively, and an ideal Debye peak in
spectroscopic plots of the imaginary components of imped-
ance, Z″, and electric modulus, M″, with a full-width half
maximum (FWHM) of 1.14 decades on a logarithmic fre-
quency scale.5 Due to heterogeneities associated with defects,
impurities, and complex conduction processes, such an ideal
response for the grain core is seldom obtained. This leads to
a nonideal Debye-like response, i.e., a depressed arc in Z*
and M* plots and a nonideal Debye response in Z″ and M″
spectra with a FWHM >1.14 decades. Such responses cannot

be treated accurately using a simple RC circuit4,6 and nor-
mally requires the addition of a constant phase element
(CPE) to the equivalent circuit.

One of the first attempts to correlate the microstructure of
an electroceramic with a mathematical combination of resis-
tors and capacitors was proposed in the late 1960s by Bau-
erle.3 This attributed the response of the ceramic to two
parallel RC elements connected in series; one assigned to the
grain core and the other to the grain boundary. This success-
fully represented an ion-conducting ceramic and modeled the
dual-arc Z* plots obtained from experimental IS data. This
simple model was further developed into a three-dimensional
resistive boundary layer model7 and later into the well-
known brick layer model (BLM) in the early 1980s.8,9 The
BLM is a general representation of a ceramic using the anal-
ogy of bricks surrounded by mortar to represent grain cores
surrounded by grain boundaries. Nafe10 in the mid-1980s
developed this further to allow the possibility of current flow
around the grain core, through the grain core or a combina-
tion of both, by summing pathways (where appropriate) in
parallel. Using these approximations it is possible to convert
bulk data such as resistances and capacitances into intrinsic
material properties such as conductivity and permittivity for
the grain core. However, due to the unknown geometry of
the grain boundaries, this method is generally considered to
be unreliable to extract grain-boundary conductivity and
permittivity values.

The BLM method has also been incorporated into a finite
difference pixel-based simulation to calculate the current dis-
tribution.11–13 Here, a pixel consists of six orthogonal nested
cubes, each being assigned an RC element with the properties
of a grain core or grain boundary. These pixels form the
points on which the conduction path can be calculated with
the nested cubes allowing a 3D interconnectivity of the
microstructure to be constructed that the previous BLM
methods could not provide. This not only allows the treat-
ment of current pathways, thus replicating IS data, but also
permits the BLM to be used for grain-core volume fractions
from zero to unity with no breakdown of the calculation.
These BLM methods, however, all have two intrinsic limita-
tions. First, they simulate grains as cubes or regular shapes.
Studies by Kidner et al.13 varying the imposed shape of sim-
ulated grains have shown that the cubic grain approximation
is only applicable to micrometer-sized grains in ceramics and
is no longer valid for nano-sized grains. Second, the pathway
the models predict through the sample is dependent on the
nested cube connections. As this is limited to six per pixel it
cannot fully represent the complex conduction paths that are
possible in a ceramics with irregular grain shapes.

An alternative approach to simulate the electrical response
of an electroceramic is to use effective medium theory.14,15

This is based on Maxwell’s concept of an effective medium
describing the ceramic as a collection of similarly shaped,
coated spheres. Each one represents a grain core, which is
coated with a shell to describe the grain boundary. The
spheres are packed, either filling or partially filling an effec-
tive medium, which is then given the material properties of
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the grain core and grain boundary. The system can then be
solved for the conductivity as a function of volume fraction
of the grain cores. This method has been successfully used to
determine the electrical response of heterogeneous ceramics
and to extract values for grain-core and grain-boundary con-
ductivity and permittivity. One major drawback is the model
does not resemble the real microstructure of a ceramic.13

Simulating the IS response of an electroceramic using
finite element modeling can overcome the deficiencies associ-
ated with the methods discussed earlier. The finite element
method (FEM) is a powerful tool widely used for numerical
modeling and simulation in many areas of science and engi-
neering. The idea of using the FEM to model IS data is not
new, and has been successful in describing highly resistive
grain boundaries16–18; however, this approach has been lim-
ited to two-dimensional models and a comprehensive treat-
ment of granular three-dimensional samples is still lacking.

Here, we present a finite element package, developed in-
house to simulate IS data for electroceramics using realistic
microstructures. We then apply this FEM to various electri-
cal microstructures to simulate IS spectra. Using an appro-
priate equivalent circuit to extract the resistance and
capacitance of the electroactive grain and grain-boundary
components, we apply a bricklayer method to estimate the
corresponding conductivity and permittivity of the compo-
nents. These values are then compared with the input data of
the simulations to highlight the appropriate and limiting con-
ditions of this method for data analysis.

II. Three-Dimensional Finite Element Approach

When an alternating voltage is applied across a material it
generates a time-varying electric field, causing the propaga-
tion of charge carriers such as electrons, holes, or ions that
generate a current through the material. The temporal evolu-
tion of an electrical field can be established by solving Max-
well’s equations in time and space. Here, we highlight how
this can be achieved within a finite element framework. We
assume the material properties to be isotropic, linear, and
time independent allowing the problem to be simplified. We
also assume that, in the mHz-to-MHz frequency range,
inductive effects are negligible when compared with the
capacitive behavior. This allows the relationship of the time-
dependent electric displacement to the electric field to be
simplified to

D
!
ðr; tÞ ¼ eðrÞE

!
ðr; tÞ (1)

where E
!
ðr; tÞ is the local electric field and D

!
ðr; tÞ is the elec-

tric displacement at time t and position r. As no time disper-
sion is considered, the electric permittivity e(r) is a function
only of position.

Using the differential form of Maxwell’s continuity equa-
tion:

oq
ot

þr � j
! ¼ 0 (2)

where j
!

is the current density and q is the charge density.
The current density can be written as:

j
! ¼ rE

!þ oD
!

ot
¼ j

!
c þ j

!
d (3)

where r is the conductivity, j
!
c is the differential form of

Ohms law, and j
!
d the displacement current density.

Assuming the isotropic case, such that D
!ðr; tÞ ¼ eðrÞE!ðr; tÞ,

the current density can be written such that impedance, Z,
can be written as:

j
!ðr; tÞ ¼Z�1 E

!
ðr; tÞ

Z�1ðr; tÞ ¼ rðtÞ þ ixeðrÞ
(4)

with a real conductivity, r(t), and imaginary susceptibility,
ixe(r), where i = √�1 and x is the angular frequency. Using
the differential form of Gauss’s law that:

r � E
!
¼ q

eo
E
!
¼ �r/ (5)

where u is the electric potential and eo is the permittivity of
free space. Combining Eqs. (4) and (5), we transform Max-
well’s Eq (2) into

r � j
!ðr; tÞ ¼ �r � ðrðrÞruðr; tÞ þ eðrÞ o

ot
r/ðr; tÞÞ ¼ 0

(6)

Using a time-domain finite element method (TDFEM) allows
us to approximate the electric potential, u(r,t), in Eq. (6) as
a function of space and time. This permits the current den-
sity to be calculated by integrating over the whole sample,
and thus in turn allows simulation of the IS response of an
electroceramic. Implementing Dirichlet boundary conditions
at the electrode–air interface fixes the electric potential. We
assume that the displacement currents crossing the free sur-
face of the material are zero by using Neumann boundary
conditions.

A powerful aspect of this approach is that it allows the
complete microstructure of the electrochemical system includ-
ing contacts, grain boundaries, and grain cores to be created,
meshed, and analyzed for their influence on IS data. Each
grain and grain-boundary phase can be assigned its own
unique time constant (i.e., intrinsic conductivity and permit-
tivity) and we can therefore create heterogeneity within the
ceramic microstructure. This model can then be calculated
using the FEM package, without the requirement of an
equivalent circuit consisting of a combination of R, C, and
CPE elements. It should be noted that while the electrical
response of the system can be solved using this package, it
cannot account for any change due to a chemical or charge
transfer process.

III. Results and Discussion

(1) Model Setup
For our model design we base our technique on previous
granular structure generation for magnetic simulations.19 We
first distribute an array of seed points, representing the cen-
ters of the grain cores within a cube. A Voronoi tessellation
is then performed to generate a three-dimensional structure,
filling the volume of the box. The arrangement of the seed
points defines the structure of the system so that, if the
points are distributed upon a regular grid and tessellated, a
regular arrangement of cubic bricks is generated. Postpro-
cessing on the Voronoi tessellation is then performed, elimi-
nating any extremely small surfaces, to allow the structure to
be discretized with tetrahedron elements with no complica-
tions. If required, the volumes can be shrunk toward their
center point from thin gaps between individual volumes.
These are then filled with prism elements that can represent
very thin volume regions and can be assigned their own dis-
tinct material properties. This method allows for much
higher volume ratios of differing thicknesses to be calculated.
This then allows a volume ratio of the grain-core domain to
the grain-boundary domain to be assigned, which we denote
here as Vgc:gb.

Applying material parameters of conductivity and permit-
tivity to these regions, we solve using our FEM package to
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simulate the frequency response of a defined sample. Typi-
cally, we consider a frequency range 0.01 Hz–1 GHz using a
potential of 100 V applied on a contact material with con-
ductivity of 10 k/Sm.

(2) Response of Idealized Microstructures
To verify the capabilities of the FEM package we designed,
simulated, and compared two simple structures; a simple lay-
ered structure shown in Fig. 1(a), and an encased structure
depicted in Fig. 1(b). Each model is based on a cube with
lateral dimensions of 1 lm and meshed using a combination
of 250 000 tetrahedron and prism elements.

We first consider a simple layered system. A cube is divided
into two distinct layers where the conductivity, r, is selected
so that each region represents a grain core (gc) or grain
boundary (gb) with rgc = 100 l/Sm and rgb = 0.1 l/Sm,
respectively. The permittivity is held constant with a relative
permittivity of er = 100 for both the core and boundary
regions. The thicknesses of the gc and gb are chosen to
be identical, forming equal volumes of each material and
Vgc:gb = 1 as shown in Fig. 1(a). Here, the boundary makes
up 50% of the total height of the cube.

A general analytical formulation can be written to describe
this system using a BLM model with two RC elements in ser-
ies, such that the total resistance R and capacitance C of the
system are given by the combined total thickness, l, and
cross-sectional area, A, of the different phases:

R ¼ l

Ar
; C ¼ e0erA

l
(7)

Using the intrinsic dimensions and material properties, the
analytical values of resistance and capacitance for the grain-
core and -boundary phases are calculated to be Rgc = 5 GΩ
and Cgc = 1.77 fF, and Rgb = 5 TΩ and Cgb = 1.77 fF,
respectively.

Using the FEM package we can solve this model to gener-
ate IS data that can be plotted and analyzed in all four
immittance formalisms allowing values of resistance and
capacitance to be extracted. The simulated IS data are shown
here in the form of a Z* plot, Fig. 2(a), with the associated
M″ spectroscopic plot in Fig. 2(b). To extract the values of

resistance and capacitance for both the grain core and
boundary, we apply an equivalent circuit fit of two parallel
RC elements connected in series. The extracted values using
this method give Rgc = 5 GΩ and Cgc = 1.75 fF and
Rgb = 4.99 GΩ and Cgb = 1.76 fF for the grain-core and
boundary phases, respectively. This shows excellent agree-
ment with the values predicted analytically. Using the FEM
IS data, the Z* arc for the layered structure also has no mea-
sureable depression angle and therefore exhibits a near-ideal
Debye-like response with a measured FWHM of 1.15 dec-
ades in the corresponding M″ spectroscopic plot. It should
also be noted that the two peaks in the M″ spectroscopic
plot are of equal height indicating equal volume fractions of
the two phases as expected from the BLM where the permit-
tivity of the grain-core and -boundary phases is assumed to
be the same.

We now compare this to an encased structure, where the
grain-boundary material surrounds the grain core as shown
in Fig. 1(b). We maintain the same volume ratio of Vgc:

gb = 1. To achieve this requires a grain-core cube of length
of 0.794 lm to be encased by a boundary layer with a thick-
ness of 0.103 lm. This gives a total lateral thickness of the
boundary as 0.206 lm or 20.6% of the total thickness of the
system. From the IS data in Figs. 2(a) and (b) a number of
differences are observed. Although the volume ratio of the
two materials is maintained, the grain-boundary response in
the Z* plot is reduced from 5 to 2.25 TΩ. The M″ spectrum
shows a drop in the peak height of the grain-boundary
response and an increase in the peak height of the grain-core
response indicating a volume ratio more in the order of
Vgc:gb = 5 than the true fraction. There is also an associated
increase in the FWHM of the M″ Debye peak for the

(a)

(b)

Fig. 1. A schematic representation of the two idealized structures
with the same grain-core/grain-boundary volume fraction as a (a)
layered and (b) encased system. Each system is meshed using a
combination of 250 000 tetrahedrons and prism elements.

(a)

(c) (d)

(e) (f)

(b)

Fig 2. Impedance spectroscopy simulations for the layered (open
symbols) and encased (closed symbols) models. The responses are
shown as complex impedance, Z* plots (a, c, e), and electric
modulus, M″ spectroscopic plots (b, d, f) for Vgc:gb ratios of 1 (a, b),
10 (c, d), and 100 (e, f).
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grain-core response to 1.23 decades signifying an apparent
electrical homogeneity in the sample.

We extend this study to increased volume ratios where for
simplicity we focus on two other ratios, that of Vgc:gb = 10
and Vgc:gb = 100 with dimensions shown in Table I.

As the volume fraction is increased to Vgc:gb = 10 the Z*
arc associated with the grain-boundary response remains less
than half that of the layered structure, Fig. 2(c). The M″ De-
bye peak associated with the grain-core response, Fig. 2(d),
however, decreases in FWHM to 1.18 decades indicating
a more homogenous grain-core electrical response than for
Vgc:gb = 1, while the M″ peak height becomes comparable
with that obtained from the layered structure. The trend con-
tinues for Vgc:gb = 100 where although the Z* arc associated
with the grain-boundary response remains lower for the
encased model, Fig. 2(e), the grain-core M″ spectroscopic
response shown in Fig. 2(f) is comparable for both models
and is that of a near-ideal Debye-like response.

To explain this apparent electrical heterogeneity at low
volume ratios we use the power of the FEM model to plot
current density through the various models, as shown in
Fig. 3. Figures 3(a)–(c) show the current density through the
layered structures for Vgc:gb = 1, 10, and 100, respectively.
The current density is homogenous through each layer, indi-
cating a linear flow of current through each phase, and as
such resulting in the Debye-like responses in the simulated IS
data. This does not occur for the encased structure. Fig-
ure 3(d) highlights that the current does not have to pass
through the highly resistive grain boundaries whose normals
are orthogonal to the current flow to reach the lower con-
tact. These areas can be avoided, resulting in a near-zero cur-
rent density within these regions. This leads not only to an
increase in the current density through the grain-core regions
(by over a factor of 3) but also in electrical heterogeneous
behavior of the current flow. The IS data of the grain core
thus results in an apparent electrically heterogeneous
response with a FWHM in the M″ spectrum that exceeds
1.14 decades, even though the grain-core properties are
homogeneous. This is also true at larger volume ratios,
Figs. 3(e) and (f). These effects, however, are reduced as the
grain boundary contributes less to the system as whole and
thus smaller departures of the grain-core response from an
ideal Debye-like response are observed.

To observe the effect of this change in microstructure on
the extraction of the material properties we use the simulated
IS data and the known lateral dimensions of the grain-core
and -boundary regions to allow for the effects of sample
geometry to obtain the intrinsic material properties. The
parameters extracted from the layered structures for conduc-
tivity and relative permittivity (shown in Fig. 4 for a range
of volume ratios) are all within 1% of the input parameters
for both grain core and boundary. When the encased struc-
ture is analyzed in a similar way there is a strong dependency
on the volume ratio. The resistance and capacitance of the
core and boundary regions at large volume ratios agree with
the true value; however, as the volume of the boundary
region is increased, not only is the grain-boundary resistance
underestimated by up to ~50% but the grain-core resistance
is also underestimated by up to ~40%, Figs. 4(a) and (b).
The permittivity for both the grain core and boundary is

underestimated by 10%, Figs. 4(c) and (d). These results
highlight how a small change in microstructure can signifi-
cantly influence IS data and give rise to potential issues with
extracting material properties using the BLM.

(3) Response of Complex Microstructures
Although complex phenomena are observed in these simple
structures, the idealized brick-shaped grains do not represent
the true complexity of ceramic microstructures. In the BLM,
the connectivity between neighboring brick-shaped grains is
exactly 6 facing and 12 edge paths between adjacent grains.
Realistic grains do not obey this rule precisely due to their
complex structural geometry and so the number of grain
boundaries that are transversed changes, which therefore
affects the impedance spectra.

We now expand our analysis from a simple two-compo-
nent system, to systems that incorporate 512 individually
addressable grains and associated grain boundaries arranged
in an 8 9 8 9 8 configuration. To highlight the significance
of microstructure we considered three designs. The first sys-

Table I. The Dimensions Required to Maintain a Consistent Volume Ratio for a Layered and Structured Model. The Grain-Core

(gc) and Grain-Boundary (gb) Thicknesses are Shown with the Percentage of the gb Thickness also Provided

Volume fraction Vgc:gb

Layered structure Encased structure

gc (lm) gb (lm) gb thickness (%) gc (lm) Total gb thickness (lm) gb thickness (%)

1 0.5 0.5 50 0.794 0.206 20.6
10 0.909 0.091 9 0.9687 0.0313 3
100 0.9909 0.0091 1 0.9967 0.0033 0.3

(a) (d)

(b)

(c) (f)

(e)

Fig. 3. Current density plots for layered (a, b, c) and encased (d, e,
f) structures as shown in Fig. 1. Here, the differences in conduction
paths are highlighted through samples with Vgc:gb = 1 (a, d), 10 (b,
e), and 100 (c, f). The scale next to each image indicates the current
density scale in Am�2.

888 Journal of the American Ceramic Society—Dean et al. Vol. 97, No. 3



tem uses a simple layered structure of two materials to form
a specific volume ratio. The second is based on the encased
structure, featuring a regular brick–mortar system as shown
in Fig. 5(a). The second builds upon the complexity of this
using irregular shaped grains created by a Voronoi tessella-
tion of random seed points. We maintain the average volume
of each region at 1 lm3, however introduce a distribution
with a standard deviation of 0.5 lm3. The typical volume
spread in the Voronoi model is shown in Fig. 5(c). These
individual volumes are then shrunk down around their indi-
vidual centers to form the desired volume ratio, where the
remaining volume is discretized to account for the grain
boundaries. Due to the relatively low number of grains in
each model compared with experimental samples, the results
are averaged over 10 simulations.

Simulated IS data of the layered, brick–mortar, and Voro-
noi models for volume ratios of Vgc:gb = 1, 10, and 100,
respectively, are shown in Fig. 6. As with the simple study,
the layered structure shows a much larger grain-boundary
response in the Z* plot due to the current path being forced
through the whole layer. A reduction in the magnitude of the
grain-boundary Z* arc is again observed when the grain-
boundary material surrounds the grain core. In all cases
shown here, the reduction is of the order of a third, corre-
sponding to the fraction of grain-boundary regions that are
avoided. The Z* response of the grain boundary for the
complex microstructure of the Voronoi model also decreases
by a further 5%, whereas the core remains relatively unaf-
fected. Figure 6(b) highlights the effect on the M″ spectrum,
where the peak height of the grain-core response increases
with the complexity of the microstructure and therefore
the current pathways. As the volume ratio increases from
Vgc:gb = 1 to 100, the M″ peak associated with the grain core
for the brick–mortar and Voronoi models begins to converge
to that of the layered structure, indicating, as before, a more
ideal Debye-like response. As shown in Fig. 7, at high vol-
ume ratios the grain-core response in the brick–mortar sys-
tem shows a near-ideal Debye response where the FWHM is
1.15 decades. This is in contrast to the Voronoi model struc-
ture which still indicates significant nonideality with a
FWHM of 1.20 decades. As the grain-boundary region
becomes larger, the M″ Debye peak FWHM increases to
1.25 and 1.32 for the brick–mortar and Voronoi models,
respectively. Current density plots at low frequency are
shown in Figs. 8(a), (b), and (c) for Vgc:gb = 1, 10, and 100,
respectively. It is clear from these that a combination of

irregular shaped grains with higher resistance grain bound-
aries influences the associated current flow around these
areas, resulting in a large nonlinear response of the current
density in the grain cores. At each volume ratio, an inserted
image of a typical grain exhibiting significant nonlinearity of
the current is shown. At equal fractions of grain core and
boundary, the current density through a single electrically
homogenous grain can be as large as 90% of the total. A
similar but reduced effect (60% and 45% of the total cur-
rent) is also observed at larger volume fractions (Vgc:gb = 10
and 100, respectively).

We can use this FEM to predict the effect of microstruc-
ture on IS data and therefore comment on the confidence of
using the BLM for such systems. We follow the standard
experimental procedure to analyze the results of the model.
First, we create a cross section of the model, similar to the
images in Fig. 8, and use a line-scan method to estimate the
percentage thickness of grain boundary and grain-core thick-
ness for the system. Various slices through the model were
used, finding that on average these values agreed well with

(a)

(b)

(c) (d)

Fig. 4. Extracted material parameters for layered and encased
models obtained from the simulated impedance spectroscopy spectra
in Fig. 2 and the known geometries of the various models. (a) and
(b) show grain-core and grain boundary conductivity, respectively.
(c) and (d) show grain-core and -boundary permittivity, respectively.
A line for the eye is overlaid for each data set.

(a)

(b)

(c)

Fig. 5. The designed 512 granular systems with grain boundaries
formed from prism elements (inset). A comparison between (a) a
brick–mortar system and (b) a Voronoi-tessellated model. (c)
Highlights the distribution of the grain-core volumes in the Voronoi
model.
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the percentages shown in Table I for the various volume
fractions. Using these values we correct for the geometry and
extract the conductivity and permittivity of the grain-core
and -boundary components. As shown in Fig. 9, the micro-
structure affects both the grain-core and -boundary response.
At high grain-boundary volumes (boundary accounts for
20% of the thickness) a deviation of over 60% from the
expected (input) values is obtained for the conductivity and
over 10% for the relative permittivity. As before, this con-
verges to the expected grain-core material properties as the
volume fraction of grain core is increased. At values of Vgc:

gb > 20, the extracted values are all within 10% of the
expected values. Thus, the use of the BLM method is shown
to predict the correct values to within 10% for homogenous
granular structures, when the grain boundary contributes
~1% of the total thickness of the sample. Care should be
taken with the grain-boundary material properties; however,
as even at this ratio, the extracted properties are overesti-

(a)

(c) (d)

(e) (f)

(b)

Fig. 6. Simulated impedance data for a simple layered system and
the brick–mortar and Voronoi models. The responses are shown as
Z* plots (a, c, e) and M″ spectroscopic plots (b, d, f) for Vgc:gb = 1
(a, b), 10 (c, d), and 100 (e, f).

Fig. 7. The full-width half maximum of the M″ Debye peak
extracted from the simulated impedance data for the brick–mortar
and Voronoi models with various Vgc:gb. A line for the eye is
overlaid for each data set.

(a)

(b)

(c)

Fig. 8. Current density plots for a Voronoi model with Vgc:gb = 1
(a), 10 (b), and 100 (c). Inset: Expanded views of the grains highlight
the nonlinearity of the current density due to the microstructure. The
scale next to each image indicates the current density scale in Am�2.

(a)

(b)

(c)

(d)

Fig. 9. Extracted material parameters for the brick–mortar and
Voronoi models using the bricklayer model. (a) and (c) show the
grain-core and -boundary conductivity, respectively. (b) and (d)
show the grain-core and -boundary permittivity, respectively. A line
for the eye is overlaid for each data set.
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mated by ~12% for the conductivity and ~20% for the
permittivity.

IV. Conclusions

A fast and efficient FEM framework has been developed and
used to allow a comprehensive study of IS data for three-
dimensional heterogeneous ceramics. In the model presented
here we incorporate contacts, grain boundaries, and grain
cores to replicate the microstructure of realistic ceramics;
however, the flexibility of this code allows us to simulate
virtually any microstructure such as a porous, nano-sized,
and multiple-phase electroceramics. We show that an electri-
cally homogenous grain core can give rise to an apparently
heterogeneous IS response due highly resistive grain-bound-
ary regions. Using the BLM (based on input materials
parameters where the grain-boundary resistivity is four
orders of magnitude larger than the grain-core resistivity but
the permittivity of the two phases is the same) with its associ-
ated equivalent circuit to extract material properties (conduc-
tivity and permittivity) from IS data can lead to potential
discrepancies of up to 60% of their true values based only
on changes in microstructure.
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