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Plant latex, the source of natural rubber, has been of interest to mankind for mil-

lennia, with much of the research on its rheological (flow) properties focused

towards industrial application. However, little is known regarding the rheology

of the native material as produced by the plant, a key factor in determining latex’s

biological functions. In this study, we outline a method for rheological compari-

son between native latices that requires a minimum of preparatory steps. Our

approach provides quantitative insights into the coagulation mechanisms of

Euphorbia and Ficus latex allowing interpretation within a comparative evol-

utionary framework. Our findings reveal that in laboratory conditions both

latices behave like non-Newtonian materials with the coagulation of Euphorbia
latex being mediated by a slow evaporative process (more than 60 min), whereas

Ficus appears to use additional biochemical components to increase the rate of

coagulation (more than 30 min). Based on these results, we propose two different

primary defensive roles for latex in these plants: the delivery of anti-herbivory

compounds (Euphorbia) and rapid wound healing (Ficus).

1. Introduction
Natural latex is a material of significant scientific and commercial interest. It is a

milky white, yellow, red or colourless fluid stored in specialized cells through-

out the plant known as laticifers [1] and can be found in more than 20 000

species from some 40 families [2,3]. The ubiquity of this material attests to its

biological significance; however, its diversity and function in nature are yet to

be fully understood. Currently, there is no evidence that latex performs a meta-

bolic role. Instead, it is most likely used by the plants in defence against

herbivory deploying two separate defensive mechanisms: biochemical and

mechanical. Several studies have investigated latex biochemistry, finding it to

be a complex aqueous mix of alkaloids, phenolics, proteases and chitinases

to name but a few (see [4] and references therein). In terms of mechanical

defence, a component of latex that has received particular attention over the

past 100 years is cis-1,4-polyisoprene, more commonly known as rubber.

Rubber can be found in the latex of some 300 genera and eight plant families

[5,6] often in high concentrations (e.g. up to 40% dry weight in Hevea brasiliensis
[7]). Upon coagulation latex is able to seal wounds, preventing infection and

further fluid loss or act as an adhesive by snaring insects or blocking their

mouthparts [8,9]. Therefore, by probing the biochemical and mechanical prop-

erties of latex from a range of different families and species, it should be

possible to gain greater insights into the range of selective pressures these

materials are under and deduce their primary biological functions.

& 2013 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original
author and source are credited.
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We propose that rheology, the study of deformation and

flow, can offer new insights into latex mechanics, and thus into

the evolutionary processes acting upon this material. From a

rheological perspective, latex behaves like a complex colloidal

suspension of a polymeric substance in an aqueous medium.

Rheological studies on latex have been undertaken since the

1950s; however, the focus has been primarily on industrial

latex, and as such these systems are difficult to draw relevant

biological conclusions regarding latex’s natural function.

Non-synthetic industrial latex is produced by concentrating

natural latex through centrifugation, evaporation or creaming

and subsequent dilution and preservation using additives

(e.g. ammonia) [10]. These studies have demonstrated that

many factors influence the viscosity and stability of industrial

latex, including concentration, particle size and distribution,

biochemical components, chemical environment and storage

time (for a review see [11]). However, in addition to significant

processing of these materials prior to testing, they have been

limited to a few key agricultural species, namely H. brasiliensis
(Euphorbiaceae), Parthenium argentatum (Asteraceae) and Ficus
elastica (Moraceae) [12].

This study examines the rheological properties of microli-

tre samples of latex from a range of species within minutes of

extraction. We have selected species that are not cultivated for

their latex to ensure biological relevance, although the species

chosen are closely related to industrial cultivars for commer-

cial relevance (i.e. the Euphorbiaceae Euphorbia characias,

Euphorbia myrsinities and Euphorbia amygdaloides, and the

Moraceae Ficus benjamina). We demonstrate distinctive differ-

ences in the rheological properties of the different latices and

interpret these findings from a mechanical and biochemical

perspective in order to unveil potential selective pressures

acting upon these materials and their respective roles in

plant defence.

2. Material and methods
2.1. Plant material
Materials from mature, free-rooted, F. benjamina L. (grown in

a temperate glass house) and E. characias L. (grown outside)

were collected from Oxford University Botanic Gardens. Euphorbia
amygdaloides L. and E. myrsinites L. plants were purchased from a

commercial nursery in Freiburg and in the same growing season,

they were potted, stored outside and taken to the laboratory for

testing. All plants were well watered.

Given it was impractical to transport whole plants into the

laboratory for testing, we adopted an approach to ensure that

sufficient material was removed from the plant to be comparable

with that of an intact plant. For sample preparation, whole stems

(more than 60 cm) were cut from the base of the plant, with sev-

ered ends instantly placed into water filled 15 ml centrifuge tubes

in water and sealed with Parafilm. The whole severed stems were

then returned to the laboratory for immediate latex extraction

and testing.

Latex extraction involved using a razor blade to make a shal-

low lateral incision across the stem until latex began to ooze out.

Exuded latex was quickly removed via pipette and collected onto

Parafilm. In scenarios where one stem was used several times to

collect latex, great care was taken to ensure that cuts were suffi-

ciently far apart to ensure consistency in sample preparation

(i.e. that latex exudate amount and laticifer pressure was compar-

able and samples were not becoming depleted or diluted). Once

a sufficient amount of latex was collected, aliquots were taken for

further analysis.

2.2. Thermogravimetric analysis
Single aliquots of 10 ml of fresh latex from E. characias and

F. benjamina (with type II water as a control) were spread onto

8 mm diameter platinum pans for thermogravimetric analysis

(TGA) and then tested in a Q50 thermogravimetric analyser

(TA Instruments, USA) under isothermal conditions for

120 min with an N2 purge gas at 50 ml min21.

2.3. Rheological testing and parallel concentration
measurements

For rheological testing, 10 ml aliquots of fresh latex were transferred

onto the bottom plate of the rheometer and spread out into a dro-

plet of 8 mm in diameter. Owing to differences in the drying

environment in the TGA instrument compared with the rheometer,

in order to determine sample concentration as a percentage dry

weight at the time of rheological testing, 10 ml aliquots were

placed onto a piece of aluminium foil, spread to the same size

(8 mm diameter), massed for initial weight and then placed next

to a rheological testing sample. For samples from Freiburg, concen-

tration was measured directly from parallel concentration sample.

For samples from Oxford, these parallel concentration samples

were massed at specific time intervals and pooled to construct a

generic drying curve for each species and used to determine rheo-

logical sample concentration (figure 1 with each datapoint

representing an average of eight repeats for E. characias and

owing to sample limitations up to three repeats for F. benjamina).

To determine absolute dry weight, samples were air dried for at

least 3 days then freeze dried for a further 24 h and massed.

For F. benjamina and E. characias, rheological testing was per-

formed on a Bohlin Gemini 200 HR nanorheometer (Malvern

Instruments, UK) located in Oxford and for E. amygdaloides and

E. myrsinites testing was performed on a Physcia MCR 301

(Anton Paar, Germany) located in Freiburg. Both rheometers

were regularly serviced, fully calibrated and performed exactly

the same test methods using a parallel plate geometry (8 mm diam-

eter) at 258C. A plate–plate set-up was chosen to ensure that the

samples completely filled the gap upon testing, and to ensure con-

sistent loading a constant compressive force of 0.5 N was applied.

Two rheological tests were conducted: (i) an initial oscillation test

within the material linear viscoelastic region (between 155 and
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Figure 1. Average latex concentration versus time for Euphorbia characias
(n ¼ 8, circles and dotted line) and Ficus benjamina (n ¼ 3, squares and
solid line) dried side-by-side with rheology samples in standard laboratory con-
ditions (258C, 40% relative humidity). Error bars are standard error, although the
number of samples differs per time-point for F. benjamina, and thus should be
used as an indicator of data quality only. (Online version in colour.)
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0.623 rad s21 (25–0.1 Hz) at 0.02 strains) followed by (ii) a stepped

shear viscosity test (between 0.01 and 100 s21). For certain samples,

low-viscosity, high-frequency datapoints that fall outside the sensi-

tivity/accuracy limit of the rheometers are not reported (as defined

by the instrument software).

2.4. Data analysis
Data were recorded and processed using instrumentation soft-

ware (for TGA, Thermal Advantage Q Series, TA Instruments;

for rheology, Bohlin, Malvern Instruments, UK and Rheoplus,

Anton Paar, Germany) or in the case of weight measurements,

data were entered directly into EXCEL (Microsoft, USA). Further

analysis was performed in EXCEL, and linear regression and

figures created in ORIGIN v. 7 (Origin Labs, USA).

3. Results and discussion
3.1. Drying kinetics
The dry weight concentrations of fresh latex saps not only

vary within species but also within individuals (G Bauer,

C Friedrich, C Gillig, F Vollrath, T Speck, C Holland 2012,

unpublished data) and perhaps even by time of day and/or

locality. In order to relate sample concentration to rheological

properties, the drying kinetics of the latices studied was

investigated (see Material and methods). TGA was initially

used to determine sample drying kinetics and dry mass

(see electronic supplementary material, figure S1). Upon com-

parison with water, chosen as an evaporative control as it is

the main solvent of latex, we observed that Ficus dries

rapidly, adopting the same drying profile until nearly com-

pletely dry. This suggests a standard mechanism of

evaporation with little interaction between the water and

the solid contents/particles of the Ficus latex. This is in

direct contrast to the Euphorbia latex, which dries more

slowly, suggesting that the water is better retained in this

material (perhaps owing to interactions with specific com-

ponents of this latex).

The observed difference may be attributed to the size distri-

bution of latex particles in these species. G Bauer et al. (2012,

unpublished data) revealed large differences between the latices

of F. benjamina and that of Euphorbia spp.: the latex of F. benja-
mina exhibits a widespread bimodal latex particle distribution

(with peaks at about 0.9 and 3.6 mm and a range from 0.3 to

9.4 mm), whereas Euphorbia species used in this study have

been observed to display a narrower distribution of much smal-

ler particles resulting in a higher packing density (with a peak at

approx. 0.2 mm and a range from 0.1 to 0.5 mm—depending on

species). It is not unreasonable to suspect that the slower evap-

oration rate observed in E. characia’s latex may be attributed to

an increased surface area between the smaller more densely

packed particles and water, which served to either increase

hydrophilic interactions or exposed surface area and as a

result lower the evaporation rate.

Figure 1 further highlights the differences in average

drying kinetics for two species tested, F. benjamina and

E. characias. Initial latex concentrations differed by 10% dry

weight, with F. benjamina having the lowest (approx. 30%

versus E. characias 40%). However, F. benjamina was approxi-

mately five times quicker to dry to a constant mass, doing

so in 50 min compared with E. characias which failed to dry

completely during the time tested (more than 240 min).

However, despite the TGA being highly accurate and com-

parable between samples tested, the flow of the purge gas in

the TGA furnace resulted in samples drying faster than

those used for rheological testing, rendering concentration pre-

dictions invalid if based on TGA residence time. Therefore, we

adopted side-by-side parallel concentration measurements for

the latex samples (see Material and methods; figure 1; and

electronic supplementary material, figure S2).

From looking at figure 1, we can infer that the rapid

drying time of F. benjamina latex (less than 60 min) may

have undergone selection for first and foremost mechanical

defence (i.e. wound healing; see [13]) and the relatively

slower drying time of E. characias (more than 240 min)

being a result of optimization for biochemical protection,

ensuring that the latex remains liquid in order to more effec-

tively transfer anti-herbivory compounds to a predator [4,8],

yet still ultimately drying and providing mechanical protec-

tion. However, it is unlikely that any of these protection

mechanisms is a sole selective pressure on plant latex func-

tion, especially when anti-herbivore compounds, such as

proteases and chitinases, can be found in both genera (Ficus
and Euphorbia) [14–16] (overview in [4]).

Additionally, we must remember that these drying rates

were obtained under controlled laboratory conditions. In

the field, F. benjamina is native to regions with high humidity

and precipitation, whereas especially E. characias and E. myr-
sinites prefer dry and warm habitats [2]. Thus, when

compared with coagulation rates in the laboratory, Euphorbia
latices may in fact coagulate faster in the field owing to being

found in conditions which promote faster evaporation. Such

an area is worthy of further study in order to determine

environmental influences on the biological function of plant

latices in the field.

Finally, it is also worth considering the effect of inter-

specific differences in quantity and drop sizes of the

exuding latex on the drying rates in the field. However,

while our experimental design negated this factor by asses-

sing latex droplets of the same size (10 ml in volume, 8 mm

diameter, see Material and methods) an examination of typi-

cal latex drop sizes and their influence on the latex drying

rate might be of interest in the future.

3.2. Rheological properties
For each species, three factors were investigated: (i) the mech-

anical properties of fresh latex at the point of extraction, (ii) its

coagulation mechanism, and finally (iii) a comparison

between species. For all samples, two tests were performed.

The first was an oscillation test that measures modulus,

essentially testing how the latex stores or dissipates energy

over different time scales. The second was a viscosity test,

which determines the latex’s flow properties at different

shear rates [17]. Overall, all samples tested exhibited non-

Newtonian flow behaviour (where viscosity is dependent

on shear rate, unlike water or oil [17]), which is also seen in

high concentrations of industrial processed latex [11].

Figure 2 compares latices from two species at the same time

post-extraction (figure 2a,b) and at similar concentrations

(figure 2c,d). Comparing samples just after extraction allows

us to investigate the properties of fresh latex. Owing to F. benja-
mina undergoing a rapid change in mechanical properties

within the first few minutes, a time-point of 10 min post-extrac-

tion is shown (figure 2a,b). Our results showed clear time-
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independent differences in the rheological properties of the

latices between species. From the oscillatory tests shown in

figure 2a, both plant latices appeared to behave like liquids

with G00 (loss modulus) dominating G0 (elastic modulus); how-

ever, E. characias was two orders of magnitude lower in moduli

compared with F. benjamina. For viscosity measurements, both

latices displayed a yield stress and shear thinning behaviour,

with F. benjamina having the highest viscosity. For E. characias,

the shear thinning was more pronounced and the sample

became unstable in the shear test post-0.5 s21 (figure 2b). This

we attribute to a combination of sample modulus and viscosity

at these rates that created an unstable flow profile [18]. For both

species, normal force (thrust) readings did not rise during

measurements, supporting the yield stress measurements and

suggesting the shear thinning phenomenon was most likely

the result of a breakage of a weakly bonded network of latex

particles within all samples.

Comparing samples at different times post-extraction but

with similar concentrations (63% F. benjamina time ¼ 30 min

and 66% E. characias time ¼ 90 min) suggests that differences

between these species cannot be attributed to drying time or

concentration alone (figure 2c,d). In general, the trends are as

before, with F. benjamina latex having higher modulus and

viscosity readings than E. characias latex. At this concen-

tration, F. benjamina has coagulated into a stiff gel indicated

by G0 dominating G00 during the frequency sweep, unlike

E. characias which is yet to fully coagulate. Taken together,

these observations explain the apparently unusual increase

in normal force observed when E. characias is sheared

(figure 2d ). Here, the combination of lower modulus and vis-

cosity enables the sample to store recoverable elastic energy

as it is being deformed, leading to an increase in normal

force that may be attributed to either the Weissenburg

effect [18] or flow instability [19]. However, while this is unli-

kely to have any direct biological relevance, this effect is of

particular note for industrial processing of these materials.

In summary, figure 2 demonstrates that the differences

observed in species can be attributed to the molecular con-

stituents of the samples and not merely to concentration or

drying time, a finding which is consistent with observations

and explanations provided by [12] for industrial latex.

3.3. Coagulation mechanism
To deconvolute the coagulation mechanisms present in the

different latices, two generic rheological parameters were
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chosen to aid comparison. First is the elastic modulus reading

at low frequency (G0 at 0.623 rad s21, G00.6), which represents the

inherent strength/stiffness of the latex network, and second is

the basal shear viscosity (h at 1 s21, h1), which represents the

dissipative losses (e.g. friction) between latex particles as they

flow past one another (figure 3) [17].

The changes in rheological properties for both Euphorbia
and Ficus follow the same trends as their respective drying

kinetics (figure 1). This confirms that drying is associated

with an overall increase in latex viscosity and modulus,

which we define as coagulation. However, while it takes

just over 50 min for Ficus to dry to a constant mass it only

takes 20 min to reach the maximum of its rheological proper-

ties (Euphorbia does not appear to plateau within the time

tested). This insight alone highlights the value of direct mech-

anical property measurements of latex samples; it appears

that coagulation of latex in Ficus occurs 30 min before drying

is complete.

Moving beyond drying times and investigating coagulation

as a function of concentration, it is possible to incorporate data

from latex samples that have not been subjected to precisely

the same drying environments as well as determine whether

coagulation is due to simple evaporation or if there are

additional biochemical drivers (figure 4 and viscosity measure-

ments in the electronic supplementary material, figure S3).

Taken together, our data suggest that for any given concen-

tration, Ficus latex has a much higher value of rheological

properties than Euphorbia latex. However, both latices appear

to be convergent at low and high concentrations, suggesting

that the material is generally constrained in mechanical proper-

ties within the plant and when fully dry outside the plant.

Therefore, differences between the species tested are most

likely owing to the coagulation process itself.

Within the Euphorbia the latices of all three species tested

appear to adopt the same linear trend (on log-scale plot,

h1 ¼ 22.67 þ 0.08C, R2 ¼ 0.87, and G0.6 ¼ 20.96 þ 0.06C,

R2 ¼ 0.85, where C is dry weight concentration). This implies

that the coagulation mechanisms of latices produced by these

species are similar and (we believe) most likely to be

mediated by evaporation rate which is consistent with obser-

vations in industry [11,12]. This agrees well with our

hypothesis that the primary defensive role of Euphorbia
latex is delivery of anti-herbivory compounds as selection

would favour slow drying (see electronic supplementary

material, figure S1) and coagulation times (figure 4) to

ensure that predators are exposed to these chemicals for as

long as possible (a matter of hours). While this exposure

may not be of significance to large organisms, for example

grazing mammals, whose residence time on a plant is a

matter of seconds, a prolonged exposure to a free-flowing,

uncoagulated latex would be of particular use in deterring

parasitic predators, for example insects (e.g. aphids).

This strategy appears to be in direct contrast with obser-

vations for Ficus latex which coagulates at 40% concentration.

Two possible explanations exist for this phenomenon: passive

particle packing or active biochemical processes. Particle

packing may account for these results, as Ficus’ larger latex

particles with their wider distribution may pack more efficiently

than Euphorbia’s smaller and narrowly distributed particles. This

would enable an interconnected coagulated gel with a higher

water content in Ficus [12,20] (G Bauer et al. 2012, unpublished

data). Alternatively, an active biochemical explanation may act

to increase a latex’s mechanical properties (through a curing/

cross-linking reaction) that occurs in the latex upon damage.

Recent microscopic observations appear to support a

biochemical explanation; in addition to latex particles,

even larger, but collapsed structures have been reported

(G Bauer et al. 2012, unpublished data), similar in size and

concentration to lutoids in H. brasiliensis ([20] and citations

therein, [21,22]). In Hevea brasiliensis, latex coagulation is

mediated by the protein hevein, which is released upon rup-

ture of lutoids after injury, which acts to cross-link any latex

particles [23,24]. Thus, a stable coagulated network could be

created even in the presence of quite high amounts of water,

whereas a further evaporation would not increase the
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Figure 3. Property – time plot of exuded latex of Euphorbia characias (circles)
and Ficus benjamina (squares) (elastic modulus at 0.623 rad s21 (0.1 Hz),
dark grey; viscosity at 1 s21, light grey (red and green respectively in
online colour version)). Datapoints represent individual samples from each
species. (Online version in colour.)
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cias (circles), E. amygdaloides (stars), E. myrsinites (triangles) and Ficus
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modulus or the viscosity significantly. Regardless of the

specific coagulation mechanism, our observations suggest

that the primary defensive role of latex in Ficus may be

wound healing, as selection would favour mechanisms that

achieve a rapid increase in mechanical properties over the

shortest period of time.

4. Conclusion
Our rheological measurements have demonstrated that it is

possible to perform detailed quantitative studies on the flow

characteristics of microlitre samples of native latex. The data

provide a new window onto the mechanical properties of

latex from which we can begin to infer the biological function

and evolution. Specifically, we have investigated latices from

two plant genera, Euphorbia and Ficus, and suggest that

their coagulation mechanisms rely on either evaporative or bio-

chemical processes which are finely tuned towards adaptation

for anti-herbivory or wound healing, respectively. In the

future, we envisage the application of microrheological

techniques to continue to help elucidate the true nature of

these multi-functional materials, leading us forward in both

fundamental understanding and industrial applications.
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