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Neighborhood Detection and Rule Selection from Cellular
Automata Patterns

Yingxu Yang and S. A. Billings

Abstract—Using Genetic Algorithms (GAs) to search for cellular au-
tomation (CA) rules from spatio-temporal patterns produced in CA evo-
lution is usually complicated and time-consuming when both the neighbor-
hood structure and the local rule are searched simultaneously. The com-
plexity of this problem motivates the development of a new search which
separates the neighborhood detection from the GA search. In this paper,
the neighborhood is determined by independently selecting terms from a
large term set on the basis of the contribution each term makes to the next
state of the cell to be updated. The GA search is then started with a consid-
erably smaller set of candidate rules pre-defined by the detected neighbor-
hood. This approach is tested over a large set of one-dimensional (1-D) and
two-dimensional (2-D) CA rules. Simulation results illustrate the efficiency
of the new algorithm.

Index Terms—Cellular automata, genetic algorithms, identification,
spatio-temporal systems.

I. INTRODUCTION

A cellular automaton (CA) is a discrete system which evolves in dis-
crete time over a lattice structure composed of a large quantity of cells.
The states of the cells are discrete and are updated synchronously ac-
cording to a local rule operating on a given neighborhood. The study
of low-dimensional CAs has been the focus of attention from a wide
range of researchers [1]–[6]. One of the most important topics in CA
studies is the identification of the CA, that is, to extract the neighbor-
hood and the governing local rule from a given set of spatio-temporal
patterns produced by the CA evolution.

Ideally, the identification technique should be designed to produce
an optimal CA expression which consists of a clear, minimal neighbor-
hood structure and a correct local rule. In [7], although correct rules
were generated by applying a set of sequential and parallel algorithms,
the associated neighborhood was not clearly presented and the identi-
fication process was complicated and time-consuming. Genetic Algo-
rithms (GAs) were employed in [8] in search for a matching rule from a
large rule set of all possible rules. Again, no satisfactory neighborhood
structure was obtained. In [9], the minimal neighborhood problem was
addressed by introducing a second search objective to the GAs on the
basis of reformulating the CA rules into a uniform Boolean expression.
Because the assumed neighborhood which determines the run time is
usually much larger than the actual neighborhood, the search process
can be very long, sometimes taking several hours for a single run, even
for a very simple one-dimensional (1-D) CA rule (see [9, Table VI]).
However it might be possible to substantially reduce the run time if the
assumed neighborhood for the GA search was correct and minimal.
One way to achieve this would be to determine the neighborhood be-
fore starting the rule search and this is the main objective of the present
study.

In this paper, a new neighborhood detection technique is introduced
which is capable of extracting the correct and minimal neighborhood
from a large set of candidate neighborhoods without having to define
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Fig. 1. Examples of some of the most frequently used 1-D and 2-D neighborhoods: (a) the 1-D von Neumann neighborhood; (b) the 2-D von Neumann
neighborhood; and (c) the 2-D Moore neighborhood.

the rule at the same time. The algorithm is simple and easy to im-
plement and forms the first stage in a CA identification procedure. A
simple GA is then employed, starting with the obtained neighborhood,
to search for the best matching local rule. Separating the neighborhood
detection from the rule construction provides a new approach to CA
identification that overcomes many of the limitations of earlier methods
which were often restricted to low-dimensional systems.

II. NEIGHBOURHOODDETECTION

The notation and background to CA neighborhoods and rules is
briefly introduced below.

A. Cellular Automata

A cellular automaton is composed of three parts: a discrete lattice, a
neighborhood and a rule for local transitions. All cells in the lattice are
updated synchronously according to the local rule. The neighborhood
of a cell is the group of the cells which are able to directly affect the evo-
lution. Some of the most frequently used neighborhoods are illustrated
in Fig. 1. For simplicity, this paper only considers neighborhoods com-
posed of cells from time stept� 1, but the results are not restricted to
this case. There are various representations for a CA rule. In this paper,
Boolean expressions will be considered. From [9], every CA rule with
ann site neighborhoodfcell(x1); � � � ; cell(xn)g can be written as

snew(xj) = a0 � a1s(x1)� � � � � aP (s(x1) � � � � � s(xn)) (1)

whereP = 2n � 1, xj is the cell to be updated,s(xi) is the state
of cell(xi) at time stept � 1, snew(xj) is the next state incell(xj).
ai (i = 0; � � � ; P ) are binary numbers andai = 1 indicates that the
following term is included in the Boolean expression whileai = 0
indicates that the following term is not included.� and * represent
XOR andAND operators, respectively.

B. Neighborhood Detection

Define the vectorXOR operator� as

[b1 b2 � � � bn]�

c1

c2

� � �

cn

= (b1 � c1)� (b2 � c2)� � � � � (bn � cn)

wherebi andci (i = 1; � � � ; n) are binary numbers. Equation (1) can
then be represented as

snew(xj) = s� a (2)

where

a = [a1 a2 � � � aP ]
T and

s = [1 s(x1) � � � s(xn) s(x1)� s(x2)

� � � s(x1)� � � � � s(xn)]:

Applying b1 � b2 = b1 � b2, b1 � b2 = b1 + b2 � 2 � b1 � b2,
andbm = b (whereb1; b2; b are binary numbers andm is a positive
integer) to (2) yields

snew(xj) = s� a (3)

wherea is aP � 1 integer vector.
One way to detect actual cells in the assumed neighborhood

fcell(x1); � � � ; cell(xn)g of cell(xj) is to calculate the contribution
each cell makes tosnew(xj). Alternatively, since there is no direct
way to evaluate the performance of each cell, terms ins, such as
s(x1), s(xn), s(x1)� s(x2), s(x1)� � � � � s(xn), which are formed
from various combinations of all the possible cells, can be exploited
for this purpose. However, the effect each term has onsnew(xj)
is entangled ins, it is therefore not easy to assess the individual
performance directly from (3). The new procedure below is therefore
introduced to overcome this problem and to calculate each contribution
independently.

Equation (3) can be written as

snew = S� a (4)

where

snew = [snew(xj(1)) snew(xj(2)) � � � snew(xj(N))]T

S = [sT (1) s
T (2) � � � s

T (N)]T = [s1 � � � sP ]

s
T (t) = [1 s(x1(t)) � � � s(xn(t)) s(x1(t))� s(x2(t))

� � � s(x1(t))� � � � � s(xn(t))]

andsnew(xj(t)) is the updated state of cellxj at time stept, s(xj(t))
is the state of cellxj at time stept. Matrix S can be decomposed as
S = E � Q, where

E =

e1(1) � � � eP (1)
...

...
e1(N) � � � eP (N)

= [e1 � � � eP ]

is an orthogonal matrix

E
T �E = Diag [eT1 � e1 � � � e

T
P � eP ]
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(a) (b)

(c) (d)

(e)

Fig. 2. Evolution of 1-D CARule22 on various 3-site neighborhoods.

andQ is an upper triangular matrix with unity diagonal elements

Q =

1 q12 q13 � � � q1P

1 q23 � � � q2P
. . .

. . .
...

1 qP�1P

1

:

Equation (4) can then be represented as

snew = E�Q� a = E� ~a (5)

where~a = Q� a = [~a1 � � � ~aP ]T . Therefore,

s
T

new � snew = ~aT �E
T
�E� ~a: (6)

Due to the orthogonality of matrixE, the contribution each termsi
(i = 1; � � � ; P ) makes tosnew can be calculated from (6) as

[ct]i =
~a2i � eTi � ei

sTnew � snew
: (7)

The neighborhood selection is entirely dependent on[ct]i. The se-
lection process can be summarized as follows:

1) All the termssi (i = 1; � � � ; P ) are considered as candidates for
snew. For i = 1; � � � ; P , calculate

e
(i)
1 = si; ~a

(i)
1 =

e
(i)
1 � snew

(e
(i)
1 )T � e

(i)
1

;

[ct]
(i)
1 =

(~a
(i)
1 )2 � (e

(i)
1 )T � e

(i)
1

sTnew � snew:
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If [ct](j)1 = maxf[ct]
(i)
1 ; i = 1; � � � ; Pg, then thejth termsj is

selected. Lete1 = e
(j)
1 , ~a1 = ~a

(j)
1 and[ct]1 = [ct]

(j)
1 .

2) All the termssi (i = 1; � � � ; P; i 6= j) are considered as candi-
dates forsnew . For i = 1; � � � ; P; i 6= j, calculate

q12 =
e
T
1 � si

e
T
1 � e1

; e
(i)
2 = si � q12e1; ~a

(i)
2 =

e
(i)
2 � snew

(e
(i)
2 )T � e

(i)
2

[ct]
(i)
2 =

(~a
(i)
2 )2 � (e

(i)
2 )T � e

(i)
2

s
T
new � snew:

If [ct](k)2 = maxf[ct]
(i)
2 ; i = 1; � � � ; P; i 6= jg, then thekth term

sk is selected. Lete2 = e
(k)
2 , ~a2 = ~a

(k)
2 and[ct]2 = [ct]

(k)
2 .

3) Follow the procedure in (2) until either1��
P

i=1 [ct]i < coff ,
Pf < P or whenPf = P . coff is a desired tolerance value.

III. RULE SELECTION

The correct and minimal neighborhood can be detected from the
set of terms selected using the procedure in Section II-B (details are
presented in Section IV-A). Denote the neighborhood obtained as
fcell(xn ); � � � ; cell(xn )g, then the Boolean form of the rule to be
identified can be written as

snew(xj) =a0 � a1s(xn )� � � � � aP (s(xn ) � � � � � s(xn )) (8)

whereP1 = 2n �n +1 � 1, (n2 > n1). However, the selected terms
do not correspond to the terms in (8) due to the significant difference
between� and� operators. It is therefore necessary to use a GA to
search for the matching rule. However, now the number of rules the GA
can select from has been considerably reduced because the neighbor-
hood the rule is operating on has been determined by the neighborhood
detection procedure in Section II-B.

The GA used in this paper is composed of three parts: a population,
an evaluation function, and a reproduction process, these are described
below:

A. The Population

The GA search is designed to select the appropriate terms from a
term set which comprises all the possible combinations of states of cells
identified in the neighborhood detection procedure. Theith individual
in the GA population is therefore defined as an1 � P1 binary vector
ci. Each entry inci corresponds to a term in the set

ci(1)! 1; ci(2)! s(xn ); ci(3)! s(xn +1); � � �

ci(n2 � n1 + 2)! s(xn )

ci(n2 � n1 + 3)! s(xn ) � s(xn +1); � � �

ci(P1)! s(xn ) � � � � � s(xn )

whereci(j) = 1 indicates that the associated term has been selected
andci(j) = 0 otherwise. Define

ft = [1 s(xn (t)) � � � s(xn (t)) � � � � � s(xn (t))]

C = [c1 c2 � � � cm]
T

wherem is the population size andt indicates the position of the data
point. The starting population is generated by filling each chromosome
with a randomly generated binary vector ofP1 bits.

B. The Evaluation Function

The evaluation function is used to assess the performance of
each chromosome in regenerating the behavior of the observed
spatio-temporal evolution. Firstly, define the error function as
Error(i) = �SET

j jo(i; j) � ô(i; j)j, whereo(i; j) is the original
measured state at data pointj for chromosomei andô(i; j) = ci � fj
is the predicted state.

The evaluation function

eva(i) =
MAX(Error(i))�Error(i)

MAX(Error(i))�MIN(Error(i))

is then introduced to normalize the error function and act as the driving
force to minimize the error.

C. The Reproduction Process

The reproduction process contains two stages: parent selection and
genetic operation. The purpose of parent selection is to give more re-
productive chances, on the whole, to those chromosomes that are the
most fit. This paper uses the roulette wheel parent selection technique
in [10]. The selected parent is then used for genetic operations in the
breeding process. Crossover and mutation are the two most commonly
used genetic operators. Crossover produces new chromosomes which
have some segments of both parents’ genetic structure. Mutation ran-
domly alters one or more bits in a chromosome with a probability equal
to the mutation rate. For details, see [11] and [12].

When the GA is run, the population, evaluation function and re-
production process work in combination to affect the evolution in the
search for a matching CA rule. After initializing the population, each
chromosome is evaluated by the evaluation function and a series of
cycles of replacing the current population by a new population begins.
In each cycle, the evaluation, the parent selection, the genetic operation
and the insertion of the new population to replace the old population are
performed sequentially. The search process terminates when all chro-
mosomes in the new population converge to a single individual.

Compared to the algorithm in [9] where a multi-objective GA with
subpopulations was employed, the GA in this paper is much simpler
and easier to implement. The pre-determined minimal neighborhood
which is obtained in the neighborhood detection procedure enables the
second search objective to minimize the neighborhood structure in the
GA to be discarded. It is also possible to eliminate the subpopulations
designed for the multi-objective approach of the earlier method. These
simplications will therefore considerably accelerate the rule identifica-
tion process.

IV. SIMULATION STUDIES

Simulation results will be presented initially to illustrate the neigh-
borhood detection algorithm. The identified neighborhood will then be
used, in Section IV-B, as the input to the GA routine to determine the
CA rule.

A. Neighborhood Detection

1) Spatio-temporal patterns produced by 1-D CA Rule22 on
various 3-site neighborhoods: The spatio-temporal patterns produced
by 1-D CA Rule22 on various 3-site neighborhoods are shown in
Fig. 2. All of these were developed on a200 � 200 lattice with time
evolution from top to bottom and a periodic boundary condition. That
is the lattice is taken as a circle in the horizontal dimension, so the first
and last sites are identified as if they lay on a circle of finite radius.
The evolution started from an initial condition of a randomly gener-
ated binary vector. The neighborhoods ofcell(j) for (a) � (e) are
fcell(j�1); cell(j); cell(j+1)g, fcell(j�2); cell(j�1); cell(j)g,
fcell(j); cell(j+1); cell(j+2)g, fcell(j� 4); cell(j� 1); cell(j+
3)g, andfcell(j � 2); cell(j); cell(j + 2)g, respectively. Although
the patterns were all produced under the same rule, Fig. 2 clearly
shows the diversity induced by the different neighborhoods asso-
ciated with the rule. Fig. 2(a) was produced by the symmetric von
Neumann neighborhood and is therefore composed of inverted sym-
metric triangles of varying sizes. However, the triangle structures in
Figs. 2(b) and (c) only represent the left and right half of the triangles
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in Fig. 2(a). This is due to the left- and right-shift nature of the
corresponding neighborhoodsfcell(j � 2); cell(j � 1); cell(j)g and
fcell(j); cell(j+1); cell(j+2)g.The irregularity of the neighborhood
fcell(j�4); cell(j�1); cell(j+3)g produced the blurred and twisted
triangles in Fig. 2(d). The increase of the distance between neigh-
boring cells in the neighborhoodfcell(j � 2); cell(j); cell(j + 2)g
(compared tofcell(j� 1); cell(j); cell(j+ 1)g) is clearly illustrated
in Fig. 2(e) where the triangles are flattened.

2) Neighborhood Detection of 1-D CA Rule22: Assume initially
that the largest possible neighborhood is a 9-site neighborhood defined
by fcell(j); cell(j�4); cell(j�3); cell(j�2); cell(j�1); cell(j+
1); cell(j + 2); cell(j + 3); cell(j + 4)g. Define the neighborhood
vectornei as

nei = [cell(j) cell(j � 4) cell(j � 3) cell(j � 2)

cell(j � 1) cell(j + 1) cell(j + 2) cell(j + 3)

cell(j + 4)]T :

The candidate term setSET which is based on this assumed neigh-
borhood will initially be constructed as

SET =

1 0 0 0 0 0 0 0 0
...

1 2 3 4 5 6 7 8 9

where 1, 2, 3, 4, 5, 6, 7, 8, and 9 denote the elements innei. For
instance, entry 5 represents the fifth element innei and is therefore
associated withcell(j � 1), and so on. The fullSET consists of
P = 29 � 1 = 511 terms/rows. Each row inSET represents a candi-
date term which corresponds to ansi; i = 1; � � � ; P in matrixS in (4)
in Section II-B. For instance, the first row (1 0 0 0 0 0 0 0 0) represents
s(j) only while the last row (1 2 3 4 5 6 7 8 9) corresponds to a product
of nine statess(j)� s(j � 4) � s(j � 3) � s(j � 2) � s(j � 1) �
s(j + 1)� s(j + 2)� s(j + 3)� s(j + 4).

6 0 0 0 0 0 0 0 0 0:2578

1 6 0 0 0 0 0 0 0 0:0661

1 0 0 0 0 0 0 0 0 0:0734

1 5 0 0 0 0 0 0 0 0:1322

5 0 0 0 0 0 0 0 0 0:0608

1 5 6 0 0 0 0 0 0 0:0559

5 6 0 0 0 0 0 0 0 0:1059

(a)

4 0 0 0 0 0 0 0 0 0:1818

4 5 0 0 0 0 0 0 0 0:2078

5 0 0 0 0 0 0 0 0 0:1515

1 5 0 0 0 0 0 0 0 0:0836

1 0 0 0 0 0 0 0 0 0:1564

1 4 5 0 0 0 0 0 0 0:0430

1 4 0 0 0 0 0 0 0 0:1759

(b)

7 0 0 0 0 0 0 0 0 0:1867

1 7 0 0 0 0 0 0 0 0:1604

1 0 0 0 0 0 0 0 0 0:1265

1 6 0 0 0 0 0 0 0 0:1034

1 6 7 0 0 0 0 0 0 0:0471

6 7 0 0 0 0 0 0 0 0:2508

6 0 0 0 0 0 0 0 0 0:1250

(c)

2 0 0 0 0 0 0 0 0 0:0614

2 5 0 0 0 0 0 0 0 0:0915

5 0 0 0 0 0 0 0 0 0:1261

2 8 0 0 0 0 0 0 0 0:0604

2 5 8 0 0 0 0 0 0 0:1409

5 8 0 0 0 0 0 0 0 0:1191

8 0 0 0 0 0 0 0 0 0:2139

(d)

4 0 0 0 0 0 0 0 0 0:1333

1 4 0 0 0 0 0 0 0 0:2657

1 0 0 0 0 0 0 0 0 0:1211

1 7 0 0 0 0 0 0 0 0:0702

7 0 0 0 0 0 0 0 0 0:2059

1 4 7 0 0 0 0 0 0 0:0572

4 7 0 0 0 0 0 0 0 0:1466

:

(e)

Data extracted from the spatio-temporal patterns in Figs. 2(a)–(e)
were used in the neighborhood detection. For each pattern, 1000 data
points were used and the tolerance valueCoff was set as0. Applying
the neighborhood detection technique in Section II-B to each pattern
produced matrices(a)-(e). The last term on each row in each ma-
trix represents the contribution[ct]i; (i = 1; � � � ; 7) the term on the
same row makes tosnew(j). The maximum contribution is 1.0 so mul-
tiplying the last term in each row by 100 would give the percentage
contribution of the term on the same row.

The matrices above show that for each pattern just seven terms were
selected from the original set of 511 terms. For the patterns in Figs.
2(a)–(e), the positions of the cells in the neighborhoods as selected from
nei are (1, 5, 6), (1, 4, 5), (1, 6, 7), (2, 5, 8), and (1, 4, 7), respectively.
Referringbacktothedefinitionofnei, thecorrespondingneighborhoods
arethevonNeumannneighborhood,fcell(j�2); cell(j�1); cell(j)g,
fcell(j); cell(j+1); cell(j+2)g,fcell(j� 4); cell(j� 1); cell(j+
3)g, andfcell(j � 2); cell(j); cell(j + 2)g. These are the same as the
knownneighborhoodsused toproduce thepatterns andareall absolutely
correct.Despitethefactthatthethreeelementswhichconstitutetheseven
terms are all different for the five patterns, the way the seven terms are
formed is the same. This is because although the neighborhoods are dif-
ferent, theunderlying local rulesare thesame, that is,1-D3-siteRule22.
However, thecorresponding[ct]i ’sare largelydependentonthedifferent
dataset testedandarethereforenotnecessarily thesameineachcase.

Other 1-D CA rules with neighborhood sizes larger than three were
also tested using the same procedure and again these confirm the va-
lidity of the algorithm and the results are all correct. For simplicity the
results are not presented in the paper.

3) Neighborhood detection of a 2-D CA Rule: Data extracted from
the spatio-temporal patterns produced by the evolution of the two-di-
mensional (2-D)Rule(01 011 111 10 100 011 01 001 001 01 000 000)
on the 2-D von Neumann neighborhoodfcell(i � 1; j); cell(i; j �
1); cell(i; j); cell(i; j+1); cell(i+1; j)gwill be used to illustrate the
neighborhood detection procedure for the 2-D case. The initial neigh-
borhood was assumed to be a 2-D 9-site Moore Neighborhood de-
fined byfcell(i; j); cell(i+ 1; j � 1); cell(i+ 1; j); cell(i+ 1; j +
1); cell(i; j�1); cell(i; j+1); cell(i�1; j�1); cell(i�1; j); cell(i�
1; j + 1)g, and the neighborhood vectornei was defined as

nei = [cell(i; j) cell(i+ 1; j � 1)

cell(i+ 1; j) cell(i+ 1; j + 1) cell(i; j � 1)

cell(i; j + 1) cell(i� 1; j � 1) cell(i� 1; j)

cell(i� 1; j + 1)]T :
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TABLE I
SUMMARY OF RESULTSOBTAINED IN EVOLVING SOME 1-D CA RULES WITH VARIOUS SIZES OFNEIGHBOURHOODSUSING GA

The candidate term setSET for the 2-D rule was constructed ex-
actly as for 1-DRule22 but with entries pointing to different cells. For
example, entry 5 denotes the fifth element innei but is now related to
cell(i; j � 1) and similarly for the other assignments. So that for ex-
ample, the last row (1 2 3 45 6 7 8 9)representss(i; j)� s(i+1; j �
1)� s(i+1; j)� s(i+ 1; j + 1)� s(i; j � 1)� s(i; j + 1)� s(i�
1; j�1)�s(i�1; j)�s(i�1; j+1) in the 2-D case. A total of 1000
data points were used for the neighborhood detection and the tolerance
valueCoff was set as 0. Twenty terms were selected from the original
set of 511 terms and these are shown in matrix(f).

8 0 0 0 0 0 0 0 0 0:2324

1 3 5 6 0 0 0 0 0 0:0349

3 5 8 0 0 0 0 0 0 0:0276

1 0 0 0 0 0 0 0 0 0:0326

1 8 0 0 0 0 0 0 0 0:0547

1 5 0 0 0 0 0 0 0 0:0382

1 5 8 0 0 0 0 0 0 0:0422

5 8 0 0 0 0 0 0 0 0:0507

5 0 0 0 0 0 0 0 0 0:0344

3 5 6 8 0 0 0 0 0 0:0157

1 3 6 8 0 0 0 0 0 0:0240

1 3 6 0 0 0 0 0 0 0:0252

1 3 5 6 8 0 0 0 0 0:0123

3 5 0 0 0 0 0 0 0 0:0153

1 6 8 0 0 0 0 0 0 0:0038

1 3 8 0 0 0 0 0 0 0:0045

3 6 8 0 0 0 0 0 0 0:0087

1 3 5 0 0 0 0 0 0 0:0092

1 5 6 0 0 0 0 0 0 0:0096

3 5 6 0 0 0 0 0 0 0:0209

:

(f)

The last term in each row in the matrix represents the contribution
the term on the same row makes tosnew(j). These 20 terms cover

five elements (1, 3, 5, 6, 8), which referring back to the neighborhood
vectornei, represent the neighborhood given byfcell(i; j); cell(i +
1; j); cell(i; j�1); cell(i; j+1); cell(i�1; j)g. This identified neigh-
borhood is exactly the same as the original neighborhood which was
used to generate the data set.

B. Identification of the CA Rules

1) Selection of 1-D CA rules: The genetic algorithm described in
Section III will be used to identify the CA rules based on the neighbor-
hood structure which was obtained from the neighborhood detection al-
gorithm. The GA search was tested over a large set of 1-D CA rules with
neighborhoods of various sizes which were identified in Section IV-A2.
Some of the results are shown in Table I. For each rule, 100 trials were
conducted with different initial populations. The search was terminated
when 400 generations had been reached. For simplicity only the av-
erage and standard deviation (std.dev.) values are listed in Table I.

For Rule22 the data points for the GA search can be extracted
from any of the five spatio-temporal patterns in Fig. 2. This is
possible because all the patterns were produced underRule22,
although over different neighborhoods. Now the neighborhoods have
been determined it will not make any difference which pattern is
used in the GA search. This also applies to the other rules. Assume
the neighborhood forcell(x2) is fcell(x1); cell(x2); cell(x3)g,
the Boolean form ofRule22 is then identified assnew(x2) =
s(x1) � s(x2) � s(x3) � (s(x1) � s(x2) � s(x3)). In Table I, only
rules with small neighborhoods are enumerated. This is due to the fact
that the numerical label and the truth table form of the rules can be
very cumbersome when the neighborhood size is larger than 4. Each
identified rule in Table I produces a correct truth table which, together
with the pre-detected minimal neighborhood, defines a minimal and
correct Boolean rule for the corresponding spatio-temporal pattern.

It can be seen from Table I that the average run time depends largely
on the size of the neighborhood. For each rule, the average run time
in Table I is considerably smaller than in [9, Table VI], where without
using the neighborhood detection algorithm the solutions had to be se-
lected from a substantially larger set of possible rules. For example
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TABLE II
THE TABULAR FORM OF THE IDENTIFIED 2-D BOOLEAN RULE

TABLE III
SUMMARY OF RESULTSOBTAINED IN EVOLVING THE 2-D CA RULE WITH GA

for the 3-site 1-D rules the rule set for the GA search without the
initial neighborhood detection algorithm would comprise a massive
2
2

= 1:3408e + 154 rules. In comparison, the rule set for the GA
search based on the algorithm introduced in this study and which gen-
erated the results in Table I consisted of a substantially reduced search
over just22 = 256 rules. In addition since the pre-defined neighbor-
hood is minimal the GA used above evolves with consideration of only
one objective, to minimize the matching errors, while the GA without
neighborhood detection involves a second search objective, to mini-
mize the structure of the neighborhood.

2) Selection of 2-D CA rules: The neighborhood obtained in
Section IV-A3 will be used for the GA search of the 2-D CA rule
in Section IV-A3. A total of 100 trials were tested with different

initial assignments. For each trial the search was terminated after 400
generations.

The tabular form of the identified Boolean rule is shown in Table
II. The search results are shown in Table III. The Boolean rule is
the � combination of the selected 12 terms fromB to M . As
can be seen from the second column in Table II, which matches
the rule definition (01 011 111 10 100 011 01 001 001 01 000 000)
exactly, this truth table is correct. Therefore, together with the pre-
identified minimal neighborhood, the� combination ofB to M

defines the desired correct and minimal Boolean rule. The average
run time in Table III is very similar to the the run time for 5-site
1-D rules in Table I and is considerably shorter than the time in
[9, Table IV]. Again this is because the neighborhood detection
algorithm was used to predetermine the neighborhood for a full GA
search. The main element that determines the search time is the
size of the neighborhood rather than the position occupied by each
cell in the neighborhood. This means that the dimensionality of the
CA does not have a crucial impact on the search. A GA search
over a large set of 2-D rules was conducted using the results from
the neighborhood detection routine. Because of the insensitivity to
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the dimensionality of CA, the results were very similar to the 1-D
case in Table I and are not listed in the paper.

V. CONCLUSIONS

A new CA identification technique has been introduced which
breaks the identification of CA rules from given patterns of data
into two problems. First a new neighborhood detection procedure is
used to establish the correct neighborhood. Then using this identified
neighborhood a GA search is conducted to determine the minimal CA
rule.

The new approach can yield significant improvements in efficiency.
For example a full GA search for a 3-site 1-D rule would comprise
a search over a huge22 = 1:3408e + 154 possible rules. But by
using the neighborhood detection procedure to prune the GA search
this can be reduced to a search over just2

2 rules. Simulation results
for both 1-D and 2-D CAs clearly demonstrate the performance of the
new algorithm.
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Texture Classification Using Rotated Wavelet Filters

Nam-Deuk Kim and Satish Udpa

Abstract—In this paper, we propose a novel approach to the texture clas-
sification problem using a new set of two-dimensional (2-D) wavelet filters
that are nonseparable and oriented for improved characterization of diag-
onally oriented textures. Channel energies are estimated at the output of
both the new filter bank and a standard discrete wavelet frames (DWF)
filter bank. Classification results obtained using each individual method
and in combination are presented. The results show that the oriented filter
set results in finer discrimination providing complementary texture infor-
mation to the DWF by making use of its orientation selectivity. As a result,
a combination of the features from the output of two filter banks improved
the classification accuracy significantly with a smaller number of features.

Index Terms—Discrete wavelet frames, rotated wavelet filters, texture
classification.

I. INTRODUCTION

The past few decades have witnessed a substantial interest in the
analysis of textured images. The interest has been motivated in large
part by the huge number of applications in such diverse areas as remote
sensing, robot vision, medical image analysis, and quality inspection.
While considerable research has been carried out in the texture anal-
ysis domain, the problems related to texture processing have still only
partially been solved and active research is continuing.

Among the many texture analysis algorithms proposed in the liter-
ature, statistical approaches [1] and model-based approaches [2], [3]
are some of the more commonly used methods. Recently, multiscale
filtering methods have shown significant potential for texture classifi-
cation and segmentation [4]–[9], where advantage is taken of the spa-
tial-frequency concept to maximize the simultaneous localization of
energy in both spatial and frequency domains. The notion of spatial-fre-
quency analysis is also supported by experimental research on human
and mammalian vision [10]. Multiscale filtering approaches were orig-
inally motivated by Gabor-filter models of neural architecture in the vi-
sual cortex [4]. The approach to texture analysis is intuitively appealing
because it allows us to exploit differences in dominant sizes and orien-
tations of different textures.

In this paper, we propose a novel approach to the texture classifica-
tion problem using a new set of two–dimensional (2-D) wavelet filters
that are nonseparable and oriented for improved characterization of di-
agonally oriented textures. Channel energies are estimated at the output
of both the new filter bank and a standard discrete wavelet frame (DWF)
filter bank. Twenty-eight textures are used in the classification exper-
iment using a Bayes classifier. The results show that the information
provided by the oriented filterbank can be used to complement infor-
mation generated by a standard DWF filterbank. The discrimination
performance obtained with the combined filterbank is superior relative
to the performance obtained using the DWF filterbank alone.

In the next section, we briefly review the wavelet theory and sum-
marize prior work on the application of wavelet-based algorithms to
texture analysis applications. Then, we introduce the newly designed
rotated wavelet filter set in Section III. Section IV describes the experi-
mental design and classification algorithm. In Section V, we present the
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