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Abstract: This paper presents a short survey of the key research work that has been 

undertaken in the application of parallel algorithms for Fractal image compression. The 

interest in fractal image compression techniques stems from their ability to achieve high 

compression ratios whilst maintaining a very high quality in the reconstructed image. The 

main drawback of this compression method is the very high computational cost that is 

associated with the encoding phase. Consequently, there has been significant interest in 

exploiting parallel computing architectures in order to speed up this phase, whilst still 

maintaining the advantageous features of the approach. This paper presents a brief 

introduction to fractal image compression, including the iterated function system theory upon 

which it is based, and then reviews the different techniques that have been, and can be, 

applied in order to parallelize the compression algorithm.
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1. Introduction 

Data compression is a ubiquitous feature of modern society, occurring in many forms and 

in many settings. The variety of compression techniques is also very diverse, ranging from 

lossless compression of quantitative data [1, 2] through to lossy compression of diffuse data 

such as audio, image and movie files [3, 4, 5, 6]. The advantage of lossy compression is that 

excellent compression ratios may be obtained by ignoring aspects of the data that are 

unimportant. For example, if the human eye is incapable of distinguishing between two 

images then it is reasonable to assume that any differences between them are not significant. 

It follows therefore that, by their nature, lossy compression algorithms tend to be designed 

with a particular application in mind; image data being a particularly common example. 

 

By far the most popular lossy compression algorithm for photographic types of image is 

the JPEG algorithm [7]. This is widely used in all areas of image storage and processing, from 

digital cameras through to photographic archives and libraries. For most purposes the JPEG 

algorithm is highly satisfactory in that it is fast and efficient, allowing a choice between 

moderate compression ratio with small loss of quality, through to large compression ratio with 

a more noticeable loss of quality. 

 

Other image compression techniques are available however [8, 9]. One such approach is 

based upon fractal image compression (FIC) [9, 22-32]. This technique seeks to exploit affine 

redundancy that is present in typical images in order to achieve high compression ratios, 

generally maintaining good image quality with resolution independence. The main drawback 

of FIC however is that there is a very high computational cost associated with the encoding 

phase [10]. This is no doubt the main reason that the approach has remained less popular than 

faster alternatives such as JPEG. Nevertheless, there are a number of reasons why FIC should 

not be ignored. Firstly, although the encoding is expensive, the decoding is fast and 

straightforward, and allows smooth images to be recovered at all levels of resolution. 

Furthermore, the compression ratios achieved can be very high [11] and so if data density or 

data transmission rates are of more importance than real-time compression then FIC may be 

advantageous. Finally, as computer hardware continues to increase in speed and decrease in 

cost, resources that once seemed prohibitive, for encoding large quantities of data, have now 

become widely accessible. 

 

In the light of the above discussion it seems timely therefore to revisit the FIC approach 

and consider its application in the context of modern computer architectures. Today�s 

commodity processors are cheap and the combination of fast networking and switching, and 

portable parallel message passing libraries such as MPI [12], mean that parallel computational 

environments are easily achievable in terms of both cost and the level of expertise required to 

maintain and program them. As will be demonstrated below, the fractal image compression 

algorithm itself is highly amenable to parallel implementation and so in this paper we are 

motivated to return to the FIC approach with a view to considering the main issues associated 
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with its application on parallel architectures. This can ensure that the compression phase need 

not be the bottleneck that it once was, and the positive features of fractal compression will 

become available without this major drawback. 

 

The purpose of this short paper is therefore to undertake a brief survey of prior research 

on parallel fractal image compression, and then to draw conclusions on what these techniques 

can offer in the future. The structure of the rest of the paper consists of an introduction to the 

iterated function theory that lies at the heart of FIC algorithms, followed by a brief description 

of the key aspects of FIC methods. This section sets the scene for the main contribution of the 

paper which is a survey of parallel fractal image compression. The paper then concludes with 

a discussion of what has been found and how it may be of importance in looking to the future.  

2. Iterated Function System Theory and Fractal Image Compression 

The basis for Fractal image compression is the construction of an Iterated Function 

System (IFS) that approximates the original image. An IFS is a union of contractive 

transformations, each of which maps into itself. Specifically, for a transformation W to be 

contractive, equation (1) must be satisfied: 

 

),())(),(( 2121 PPdPWPWd <
.                                               (1) 

This equation states that the distance 
),( 21 PPd

 between any two points in a metric space X 

is reduced by applying the transformation W which maps X into itself. For example, a metric 

to measure distance when 
),( 111 yxP =

 and 
),( 222 yxP =

 are in two dimensional 

Euclidean space is the standard Euclidean metric, given in (2): 
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In practice, for image compression algorithms we will work in a different space, consisting of 

blocks of pixels, and using an appropriate choice of metric such as that in (5) below. 

 

Provided that a mapping W is contractive, and maps all points of X into X, the 

Contractive Mapping Fixed Point Theorem holds, proving that there is one and only one 

attractor for W [13]. As an extension to this, [13], one may show that an IFS also has a unique 

attractor. Hence by defining an IFS on a space of images, any initial image will converge to 

one and only one final attractor (which depends only on the IFS that has been defined). With 

Fractal image compression therefore, the goal is to encode an image as the fixed point of a 

suitable contractive mapping, which must be constructed. 

 

In order to describe this in a little more detail, consider an arbitrary grayscale image, T, 

of size II ×  pixels. This image may be partitioned into blocks of pixels in two different 

ways: the range blocks and the domain blocks. The range blocks, R, are a set of 
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non-overlapping image blocks of size nnk ×= , which are denoted as 
RN

iiR 1}{ = . The number 

of range blocks is n

I

n

I
N R ×=

, and the original image T is the union of 
RN

iiR 1}{ = : 
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The domain blocks are also sub-blocks of the original image T, and they must cover the whole 

image. Unlike the range blocks however, the domain blocks may be overlapping (and usually 

are). Furthermore, the domain blocks should be larger in size than the range blocks. One way 

in which the domain blocks may be obtained is by sliding a window of size mml ×= , 

where nm > , throughout the image to construct the domain pool (the set of domain blocks). 

 

To encode a range block R, each of the blocks in the domain pool is scaled to the size of 

the range block, and is then compared to R with respect to intensity offset and contrast 

parameters, as well as the eight isometric transformations (the identity, reflections about the 

mid-horizontal and the mid-vertical axes, reflections about each diagonal, and rotations 

through 
°90 ,

°180  and 
°270 ). The set of contracted domain blocks is denoted as 

DN

iiD 1}{ = , 

where DN
 is the number of domain blocks in the domain pool. Each domain block has to be 

scaled and the eight isometries must then be applied. The resulting pool, C  say, of size 

DN×8 , is called a codebook pool. It is the domain block which has the closest match with R 

from the codebook pool which is selected as the best matched block. Details of this match are 

provided below however, for simplicity, we restrict this introduction to the special case where 

DN
 = RN

 = N. 

 

The overall form that the contraction takes is 
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where is
 controls the contrast and io

 controls the brightness of the transformation [10]. 
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The specific choice of parameters for the affine transformation iω  are determined by 

minimizing the following quantity: 

)( oIDsRRMSE +−=
 .                                                   (4) 

Here I denotes the Identity matrix of dimension N, and s and o are the above contrast and 

offset parameters, respectively, which must be determined in advance (see below) to calculate 

the distance between D and R. The contrast factor should ensure the contractility of the 

transformation. The metric 
⋅

 is the mean square error (MSE) metric. This metric expresses 

the distance between two images or two range blocks. Assuming two images or image blocks, 

S and S ′ , possess n�  pixels with intensities nSSS �21 ,,, �  and 
'
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The objective when determining s and o is to minimize MSER
. This is true when the 

partial derivatives of MSER
 with respect to s and o are zero. Then, after a little algebra [14, 

35], s can be found to be given by (6) and o to be given by (7): 
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Finally, by substituting (6) and (7) into (4), the distance MSER
 can be computed as (8): 
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The domain block which results in the smallest value of MSER  is then chosen as the best 

matched block, and the corresponding parameters for the transformations may be encoded and 

stored.  
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Note that it is possible to estimate the computational complexity of the encoding 

algorithm. Given an  II ×  pixel image to encode, where DN
 is the number of domain 

blocks and RN  is the number of range blocks, then the time required to compute the best 

mapping is given by: 

cRDdRDtRDs NNNNNN ττττ )18(88 −⋅+⋅+⋅= .                            (9) 

Here tτ  is the time to perform a transformation, dτ is the time to find the distance between 

two blocks, and cτ  is the time to compare two distances. Since DN
 and RN  are both of 

the order of 
2I , the overall computing time is at least )( 4IO . 

 

It is important to notice that each mapping exploits self-similarities that are present in most 

images at different scales. Thus, images with random content are not likely to be compressed very 

well as only few similarities of different size are likely to exist. Of course most images are not 

random and so the FIC approach tends to be much more effective. Not surprisingly there exists a 

significant amount of work that has been undertaken to develop variants on the basic algorithm 

above in order to improve performance [10, 11, 15, 16]. Generally, the attempts to speed up the 

fractal encoding consist of modifying the following aspects [11]: the composition of the 

domain pool, the type of search used in block matching, or the representation/quantization of 

the transform parameters. 

 

One of the most important techniques that is applied in conjunction with the basic 

algorithm described above, is the use of the quad-tree data structure [10]. The basic idea is 

that we begin with quite a small range pool and a small domain pool and seek to find a 

satisfactory match to each range block from the set of domain blocks. If the mean square error 

is less than a desired tolerance then the match is deemed to be satisfactory but if it is not then 

the range block is split into four new range blocks, based upon its four quadrants. This 

process is repeated recursively until a sufficient quality is obtained. The main advantage of 

the approach is that it minimizes the number of range blocks required by having them as large 

as possible within any given region of the image. As we will see below however, when a 

parallel implementation of the algorithm is required, it adds considerable complexity to the 

load balancing across the processors.  

 

Other research in Fractal image compression concentrates on investigating different 

transformations and improving search algorithms for matching transformations, each with the 

aim of decreasing the compression time [17, 18]. An additional technique that many fractal 

compression algorithms employ to decrease their execution time is to use a classification 

scheme, typically based upon simple statistics of the blocks. For example, a sub-image may 

be classified according to its average grey-value and the variance of its four quadrants. Firstly, 

the sub-image is divided into its four quadrants which are numbered. The pixel values in the 
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quadrant i of block r are 
i

n

ii
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2
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j

i

ji ArV ∑
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−= is computed for each quadrant. Members of the domain pool are then 

classified by their average and variance values and only a subset of these classes are searched 

for a match with each block in the range pool. The aim is of course to improve the speed 

without significantly affecting the quality of the compressed image. Apart from these attempts 

focusing on the coding speed, some hybrid coders, such as wavelet-based and DCT-based 

fractal encoders, have been developed [19, 20]. Various FIC side applications are  now also 

explored in other fields such as image database indexing [21] and even face recognition [17]. 

3. Parallel Fractal Image Compression 

A large number of different strategies have been considered for parallelization of the 

encoding stage of the fractal image compression algorithms outlined in the preceding section. 

The interest in using parallel computer architecture stems from the very high computational 

cost associated with fractal-based compression strategies. As has been explained above, for an 

II ×  pixel image, the cost of compression is )( 4IO  and so the goal of a parallel 

implementation should be speed up the compression substantially. The decompression 

algorithm is considerly faster to execute and so parallelization of this is of less importance: 

although this has received a small amount of attention in the literature. 

 

There are a number of papers that have attempted categorize and summarize the available 

approaches to parallel implementation of fractal compression. Perhaps the most noteworthy of 

these are [45, 49, 53], which each provide a description of a variety of parallelization 

techniques which are grouped together in different classes by these authors. In this review, our 

aim is not only to update these previous summaries, but also to present the available choices 

in the context of current computer architectures, which have developed significantly since the 

work of [49] for example. In addition, although heavily influenced by [45, 49, 53] our 

categorization is slightly different to any one of these. Finally, we will provide some thoughts 

on possible alternative parallel variants that are likely to be suited to modern parallel 

computing environments. 

 

3.1 Classification by granularity 

A very simple view of parallel algorithms typically classes them as being either �fine 

grained� or �coarse grained�. Interestingly however, for parallel fractal image compression, a 

range of algorithms have been developed over time that have far more that just two different 
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levels of granularity. At one extreme [52] proposes using 
2

n  processors for an nn× pixel 

image, with each processor working with a single pixel of the image. This is extremely 

fine-grained parallelism, where expressions such the sums appearing in equations (6) or (7) 

are computed in parallel. At the other end of scale, the image can be partitioned amongst the 

available processors for each processor to then simultaneously apply the sequential fractal 

compression algorithm on its own sub-image without any communication [45]. This 

embarrassingly parallel algorithm is extremely coarse grained but suffers from the drawback 

that the quality of the compressed image will be inferior to that obtained using the sequential 

algorithm. This is because each processor is only working with a subset of the complete 

domain pool and so will not generally get as good a match with its range blocks as will be 

obtained using the sequential algorithm. For the remainder of this review we will only 

consider parallel algorithms which are able to reproduce the compressed images that are 

obtained using accepted sequential algorithms. 

 

Intermediate levels of granularity may be found in the work of other authors. For 

example, [35, 45, 48] present descriptions of some relatively fine-grained algorithms. These 

involve individual processing units being responsible for calculations on small sets of pixels. 

For example �pixel processors� store 44×  pixel maps in [48]. Coarser grained algorithms 

tend to partition the range pool amongst the processors and then require each processor to find 

a suitable match to its own subset of the range pool from all of the available domains, e.g. [36, 

39, 41, 53]. In some cases the entire domain pool is directly available to each processor and in 

others it must be partitioned and communicated: this issue is discussed in more detail in 

section 3.2 below. A different slightly less coarse grained algorithm is presented in [44]. 

However, there it is assumed that the number of available processors is equal to the number of 

range blocks and the domain blocks are passed through the system in a pipeline, or systolic 

architecture. 

 

3.2 Classification by load-balancing algorithm 

In this section of the paper we describe the available parallel algorithms in terms of the 

techniques that they use to ensure that the parallel load is equally distributed across the 

available processing elements. These are described in terms of three general classes of 

algorithm however, as we will explain, these classes are not disjoint. We begin with a 

discussion of pipeline algorithms then discuss static load balancing based upon a partition of 

the range pool, and finish with a discussion of dynamically partitioning the range pool. 

 

The systolic architecture approach of [44] has already been introduced above. In this 

approach each range block is compared with a different domain block at any given step. Once 

the comparison step is completed the domain blocks are shifted to the next processor in the 

pipeline, for another comparison step. When all domain blocks have passed through the 

pipeline (which is actually a ring, so as to save any start-up overhead) the comparison step is 

complete for all range blocks. A similar technique is also adopted in [43]. Another pipeline 

approach is described in [48], which focuses on the design of a parallel image processing 
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architecture. In this case the pipeline is used to enhance the performance of the arithmetic in 

calculating the terms in the expressions (6) and (7) using fine-grained parallelism. 

 

Perhaps the simplest possible load-balancing approach that can be used is to equally 

partition the range pool across the available processors when using a coarse grained parallel 

algorithm, this is described in [41, 45] for example. If the time required to find the matching 

element of the domain pool is the same for each element of the range pool then each 

processor will automatically have an equal amount of computational work in the crucial 

matching stage. This is the case when the range and domain pools are fixed and we always 

seek the best possible match from the domain pool to each element of the range pool. In 

practice however, the most efficient fractal compression algorithms do not work like this 

since they either involve use of an adaptive quad-tree (for when no suitable matching domain 

block is found) or a matching tolerance (such that the search through the domain blocks stops 

once a suitably close match has been found), or both. This means that the time required to 

match a domain block to a given range block is not known in advance, and so static 

partitioning is likely to be unreliable. 

 

As a consequence of this, the majority of coarse-grained parallel algorithms that have 

been developed tend to use some form of dynamic load-balancing, e.g. [38, 39, 49, 53]. 

Typically this approach involves a master process and a large number of slave processes. For 

example, in [39] a master process divides the image equally amongst the slaves. Each slave is 

therefore responsible for its own subset of the overall domain pool. The master then transmits 

range blocks to any idle slaves and waits for them to return the best match from their subset 

of the domain pool. Depending upon whether this is a satisfactory match or not this range 

block may or may not be sent to another processor. Once all of the range blocks have been 

processed the master can then move onto the next level of the quad-tree if this is necessary. 

The master process ensures that all of the slaves are kept busy until the task is completed. 

This is typical of the master-slave approach to dynamic load balancing. In more general terms, 

the master keeps a queue of computational tasks and a queue of idle slave processes. 

Whenever the process queue is not empty the master seeks to give the next job on the task 

queue to the next process on the idle slave queue. 

 

Interestingly, some dynamic load balancing algorithms have successfully combined the 

master-slave paradigm with the use of pipelines. For example, in [43] the domain blocks are 

initially distributed amongst the slaves. Each slave is then assigned a range block by the 

master. Once the quality of the match between the range block and the subset of the domain 

blocks has been found on each slave one of two things happens. If the match on a slave is 

below the desired threshold, or if the range block has already been considered by all of the 

other slaves, the range block is returned to the master along with a note of the best matching 

domain block. Otherwise the slave passes the range block on to the next slave in the pipeline 

of slaves. Before the next matching step begins the master sends a new range block from its 

task queue to any slave processors who did not receive a range block from their predecessor 

in the pipeline. 
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3.3 Classification by data partition 

This appears to be the most widely used mechanism in the literature for classifying 

different coarse grained parallel algorithms, as in [35, 38, 42, 45, 47, 49, 50, 53] for example. 

Essentially, there are two main classes that may be considered: either each processor has 

sufficient memory to store a copy of the entire image, and therefore can access the entire 

domain pool without communication, or it does not. The former case either occurs when a 

shared memory parallel architecture is used, e.g. [47], or when a distributed memory 

architecture has a significant amount of memory available on each processor. In practice, in 

recent years memory technology has scaled sufficiently well to ensure that today�s distributed 

memory architectures will always have sufficient memory on each processor to store even a 

very high resolution image. This has not always been the case however, and so numerous 

publications in this field have focused upon algorithms for which the domain pool is 

partitioned across some or all of the processing elements. Examples include [38, 39, and 43]. 

These are not discussed in any detail here however since we believe them to be of limited 

value when sufficient memory is available on each processor. This view is consistent with that 

expressed in [45], where the replication of the entire image on each processor is found to give 

the best scalability. 

 

The approach of allowing each processor to have access to the entire domain pool is also 

used in [49], for example, where it is again found to be beneficial. In fact, [49] describes a 

number of algorithms that use this approach successfully. Parallelism is achieved by 

partitioning the range pool across the processing elements (either statically or dynamically, as 

described above) and so only a very limited amount of inter-processor communication is 

required. 

 

3.4 Modifications to the standard compression algorithms 

So far we have only discussed the parallel implementation of �standard� fractal 

compression algorithms. Typically these require each range block to be compared against the 

image of all domain blocks in the domain pool. If a satisfactory match is not found an 

adaptive quad-tree data structure will also be used. There are however a number of techniques 

that have been developed in an attempt to improve the speed of the sequential fractal 

compression algorithms without significantly reducing the quality of the compressed image. 

These complexity reduction schemes do have an effect on the quality of the compressed 

image however they are designed with the aim of minimizing this effect. A number of such 

techniques are described in [11]. Current interest in this topic appears to be as active as ever, 

e.g. [54, 55, 56]. 

 

A number of authors have attempted to combine such complexity reduction schemes with 

their parallel algorithms, as discussed in [50] for example. Typically these schemes are based 

upon the use of classification techniques such as that outlined in section 2, where the elements 

of the range and domain pools are assigned to different classes and range elements of a given 

class are only compared against the images of domain blocks from the same class. For 

example, in [37], this block classification approach is used to create 72 different classes based 
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upon the mean and variance values of the grey values in each block. Many other discrete 

feature methods exist however and can be incorporated within parallel algorithms, [50]. 

 

3.5 Related parallel algorithms 

Although this short survey has focused primarily on parallel algorithms for fractal image 

compression, it should be noted that many of the techniques discussed extend directly to the 

compression of video. This is well demonstrated in [51] for example, where a pool of 

three-dimensional range blocks (referred to as �range cubes�) is created by considering 

sequences of video images together. For example, a sequence of 16 images of 512512×  

pixels may be broken down into 8192 range cubes of size 888 ××  pixels. The parallel 

algorithms then partitions these range cubes across the available processors. 

 

Although less important than parallel image and video compression, it is also relevant to 

note at this point that a number of parallel algorithms have been proposed for fractal image 

decoding too. Examples include [33, 34, 46] although these are beyond the scope of this 

particular paper. Clearly the benefits from parallel fractal image decoding are not likely to be 

so great as with the coding algorithm, since the decoding algorithm is so much faster in the 

first place: this is one of the main attractions of fractal image compression after all. 

4. Discussion 

In this short communication we have attempted to review a number of the key ideas and 

algorithms that have been developed for parallel fractal image compression over the past 

decade or more. The motivation behind the use of parallel computer architectures in this 

context comes from the extremely high computational cost of the standard sequential 

encoding algorithms. A number of available techniques have been discussed from the 

viewpoints of granularity, load balancing, data partitioning and complexity reduction. In 

discussing these issues it becomes apparent that a significant amount of care and thought has 

gone into developing and implementing algorithms suitable for a variety of hardware 

platforms. It is worth observing however that many of the properties of today�s parallel 

hardware are not consistent with assumptions made in some of the past work. In particular, it 

is inconceivable today that a parallel processor would not have sufficient of its own primary 

memory to store its own copy of the entire uncompressed image (or even a sequence of 

uncompressed images in the case of video compression). 

 

For this reason, any future focus on improving parallel performance must surely assume 

that each process has access to the entire domain pool, as discussed in [45, 49] for example. 

An important issue that will arise in undertaking this work is that of load balancing. As 

discussed in the previous section, dynamic load balancing is likely to yield the best 

performances and so it may be that there is benefit to be gained from focusing on this issue 

more deeply. Typically, for the fractal image compression algorithms considered here, 

dynamic load balancing has been achieved through the master-slave paradigm. Whilst this is 

certainly a reliable and straightforward approach it does suffer from the overhead of requiring 
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the master process to execute in addition to the slaves: which are doing all of the �useful� 

work. There may therefore be some benefits in considering alternative dynamic load 

balancing strategies, such as those based upon asynchronous diffusion [57, 58] for example. A 

possible approach could be to allow each processor to have a copy of the entire image and 

then allocate itself (based upon its process number for example) an equal share of the range 

pool. As each processor works through its range blocks, successfully matching them with 

images of domain blocks, it communicates its remaining number of range blocks to process to 

its neighboring processors asynchronously. If the remaining load on any processors gets out 

of balance with its neighbors then the ownership of some of the remaining range blocks can 

be passed between processors to balance the remaining work dynamically. [59] provides a 

review of parallel dynamic load balancing algorithms, including this diffusion approach. 

 

It is clear that fractal image compression is unlikely to be as widely used as JPEG is for 

the general representation of photographic images. However it can play an important role for 

specific problems where compression ratio is more important than real-time compression, or 

where it is desirable to reproduce an image of realistic quality regardless of the resolution to 

which it is viewed. In these cases parallel FIC algorithms have a valuable role to play and 

efficient, portable implementations should be possible on modern computer architectures.  
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