This is a repository copy of Rethinking the existence of a steady-state Delta psi component of the proton motive force across plant thylakoid membranes.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79364/

Version: Accepted Version

Article:

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Rethinking the existence of a steady-state $\Delta \psi$ component of the proton motive force across plant thylakoid membranes

Matthew P. Johnson1* and Alexander V. Ruban2

1Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
2School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom.

*Corresponding Author: matt.johnson@sheffield.ac.uk

Light-driven photosynthetic electron transport is coupled to the movement of protons from the chloroplast stroma to the thylakoid lumen. The resulting proton motive force that is generated is used to drive the conformational rotation of the transmembrane thylakoid ATPase enzyme which converts ADP (adenosine diphosphate) and Pi (inorganic phosphate) into ATP (adenosine triphosphate), the energy currency of the plant cell required for carbon fixation and other metabolic processes. According to Mitchell’s chemiosmotic hypothesis the proton motive force can be parsed into the transmembrane proton gradient (ΔpH) and the electric field gradient ($\Delta \psi$), which are thermodynamically equivalent. In chloroplasts the proton motive force has been suggested to be split almost equally between $\Delta \psi$ and ΔpH [Kramer et al., 1999, Photosynth. Res. 60: 151–163]. One of the central pieces of evidence for this theory is the existence of a steady-state electrochromic shift (ECS) absorption signal ~515 nm detected in plant leaves upon illumination. The interpretation of this signal is complicated however by a heavily overlapping absorption change ~535 nm associated with the formation of photoprotective energy dissipation (qE) during illumination. In this study we present new evidence that dissects the overlapping contributions of the ECS and qE-related absorption changes in wild-type Arabidopsis leaves using specific inhibitors of the ΔpH (nigericin) and $\Delta \psi$ (valinomycin) and separately by using leaves of the Arabidopsis lut2npq1 mutant that lacks qE. In
both cases our data show that no steady-state ECS signal persists in the light longer than ~60 seconds. The consequences of our observations for the suggesting parsing of steady-state thylakoid proton motive force between (ΔpH) and the electric field gradient (Δψ) are discussed.
Introduction

Photosynthesis in higher plants involves the light-induced splitting of water by photosystem II (PSII) and the transport of electrons via cytochrome b$_{6f}$ (cyt b$_{6f}$) and photosystem I (PSI) to NADP$^+$, forming NADPH, a source of reducing power for the reduction of 1,3-bisphosphoglycerate to glyceraldehyde 3-phosphate in the Calvin cycle. Photosynthetic electron transport is coupled to the translocation of protons across the thylakoid membrane leading to their accumulation in the thylakoid lumen. Transmembrane electron transport and coupled proton translocation lead to differences in both the pH (ΔpH) and electric potential ($\Delta\psi$) between the lumen and the chloroplast stroma. The potential energy stored in these gradients is used to drive the synthesis of the universal energy carrier molecule ATP from ADP and Pi by the CF$_{1}$- CF$_{0}$ ATP synthase. The proton motive force (pmf) used to drive ATP synthesis is the sum of the ΔpH and $\Delta\psi$ given by the equation:

$$pmf = \Delta\psi + \frac{2.3RT}{F}\Delta\text{pH}$$

where $\Delta\psi$ and ΔpH represent the differences in the electric potential and pH respectively between the thylakoid lumen and stroma of the chloroplast, R is the universal gas constant, T is the temperature, and F is Faraday’s constant. According to Mitchell’s hypothesis the ΔpH and $\Delta\psi$ components of the pmf are thermodynamically and kinetically equivalent (Mitchell, 1961, 1966). In mitochondria the pmf is stored mainly as $\Delta\Psi$, due to the low permeability of the mitochondrial inner membrane to ions, with a ΔpH contribution of ~0.5 pH units (Mitchell, 1966). In contrast, in chloroplasts recorded values of ΔpH have varied depending upon the method of measurement employed. Using the distribution of 14C-labelled methylamine (Rottenberg et al., 1972), pH microelectrodes (Remis et al., 1986) and pH-sensitive EPR spectra of imidazoline- and imidazolidine-based nitroxide spin-robes (Tikhonov et al., 2007) gave ΔpH values between 1.8 and 2.1 at saturating light intensity. Whereas calibration of ΔpH using P700$^+$ reduction kinetics (Tikhonov et al., 1981) or quenching of the fluorescent dye 9-aminoacridine gave values of 3.0-4.0 pH units (; Schuldiner et al., 1972; Pick et al., 1974;; Solvicek and Hind, 1981). Such a large ΔpH would be thermodynamically incompatible with a significant contribution of $\Delta\psi$ to pmf in chloroplasts. Indeed, evidence from experiments involving electrode
impaled giant chloroplasts of *Peperomia metallica* and specific ionophores indicated that virtually all \(\Delta \psi \) component of the *pmf* was rapidly dissipated under continuous illumination leaving a steady-state \(\Delta \psi \) of \(<30\) mV (Bulychev et al., 1972; Vredenberg and Bulychev, 1976; van Kooten et al., 1986). Ion-specific electrode studies on spinach chloroplasts indicated that the thylakoid membrane was much more permeable to ions than the mitochondrial inner membrane with an influx of Cl\(^-\) and efflux of Mg\(^{2+}\) (and small amounts of K\(^+\)) accompanying the light-driven influx protons into the thylakoid lumen (Hind et al., 1974). Similar conclusions were drawn by Dilley and Vernon (1965) and Chow et al., (1976) using direct measurements of the ion contents of the thylakoid lumen before and after illumination and by Barber et al., (1974) using specific ionophores to dissipate \(\Delta \)pH. The ionic permeability of the thylakoid was explained in Patch-clamp studies on isolated thylakoid membranes which identified both voltage-gated anion (Schönknecht et al., 1988) and cation (Pottosin and Schönknecht, 1996) channels. Recently the genes encoding the voltage-gated ion channel proteins have been identified in plants (Marmagne et al., 2007) and cyanobacteria (Checchetto et al., 2012).

An alternative and far-less invasive method of monitoring the \(\Delta \psi \) compared to electrode studies is the use of the electrochromic shift (ECS) absorption change peaking at \(~515\) nm, described by Duysens (1954) and Junge and Witt (1968). The \(\Delta A_{515} \) signal is the result of a transient red shift of the chlorophyll and carotenoid Soret absorption bands in response to the \(\Delta \psi \) (Witt, 1971). This early work followed the rapid response of the \(\Delta A_{515} \) kinetics to brief flashes of actinic light that largely avoided the slow non-specific absorption changes. These slow absorption changes include cytochrome \(f \) oxidation/ reduction, zeaxanthin synthesis and so-called ‘light-scattering’. A single turnover actinic light pulse caused a rapid microsecond rise in the \(\Delta A_{515} \) signal in leaves or chloroplasts which then decayed on a millisecond timescale to the dark baseline (Witt, 1971). Using a diffused optics flash spectrophotometer, that pre-scattered the measuring light to minimise the contribution from the ‘scattering’ changes and the known kinetic differences between the various absorption changes, Kramer and co-workers attempted to separate their contributions to the \(\Delta A_{515} \) signal in *Solanum nigrum* leaves (Kramer and Sacksteder, 1998). Under continuous illumination Kramer and Sacksteder’s (1998) deconvoluted \(\Delta A_{515} \) signal showed the typical rapid microsecond
rise, previously reported in the flash spectrophotometry experiments (Junge and Witt, 1968), was followed by a rapid decay with a half-time of ~5 seconds. The decay of the ΔA_{515} signal was then followed by a secondary slow rise with a half-time of ~10 seconds to a steady-state level ~50% of the initial rapid response amplitude (Kramer and Sacksteder, 1998). When the actinic light was then switched off the ΔA_{515} signal showed a rapid (microsecond) decay below the dark baseline, which was followed by a slow rise back to the initial dark baseline within ~10 seconds (Kramer and Sacksteder, 1998). The rapid decay of the ΔA_{515} signal below the dark baseline upon switching off the light was attributed to the inverted Δψ formed by the continued efflux of protons from the lumen to the stroma via the ATPase despite the rapid cessation of electron transport. The subsequent slow rise back to the dark baseline reflects the movements of counterions down the membrane potential gradient from the stroma to lumen collapsing the inverted Δψ. These observations led Kramer and co-workers to suggest a significant fraction of the pmf in chloroplasts can in fact be stored as Δψ under steady-state conditions (Kramer and Sacksteder, 1998; Cruz et al., 2001; Kramer et al., 2003; Avenson et al., 2004; Takizawa et al., 2007).

In parallel with the developments in understanding the extent and duration of the ECS signal in plants much progress has been made in the last two decades on the origins of the so-called ‘light-scattering’ changes. The light-induced scattering changes peaking at ~535 nm in chloroplasts were first described by several groups in the 1960s (e.g. Neumann and Jagendorf, 1965; Deamer et al., 1966, Heber, 1969) and linked to ultrastucturual changes (membrane thinning and lumen shrinkage) in the thylakoid membranes that occur upon light-induced formation of the pmf (Murakami and Packer, 1970a, 1970b). Krause (1973) linked the scattering changes to the rapidly-reversible non-photochemical quenching of chlorophyll fluorescence (qE), a photoprotective process occurring in the light harvesting complexes of PSII (LHCII) induced by the build-up of the ΔpH across the thylakoid membrane (see Ruban et al., 2012 for a recent review). Two observations confirmed the link between light-scattering and NPQ per se, rather than ΔpH. Bilger et al., (1989) showed that light scattering was severely reduced when synthesis of the carotenoid zeaxanthin, known to promote qE (Demmig-Adams, 1990), was inhibited by dithiothreitol; while Horton et al., (1991) demonstrated that the
scattering changes were abolished if qE was inhibited with antimycin, despite ΔpH still being present. Horton et al., (1991) suggested that the membrane structural changes monitored by the light scattering change were linked to the process LHCII aggregation during qE. The similarity between the light scattering changes and the aggregation of the carotenoid zeaxanthin in solution led Ruban et al., (1993a) to speculate that the light scattering change may in fact belong to a true absorption change caused by a red-shift of zeaxanthin. Further evidence of xanthophyll involvement was provided by Noctor et al., (1993) who found that the absorption maxima was downshifted to ~525 nm when qE was induced in the absence of zeaxanthin. This was later confirmed by resonance Raman spectroscopy which showed that a light-induced resonance Raman change belonging to zeaxanthin could be detected with the 528.7 nm laser line (Ruban et al., 2002), that was absent in the Arabidopsis PsbS mutant that lacks qE.

The wide range of carotenoid mutants created by the groups of Niyogi and Pogson enabled the absorption changes associated with qE (previously referred to as light scattering) to be investigated in greater detail (Johnson et al., 2009). In addition to the absorption maxima peaking at 535 nm, a series of minima were observed at ~430, 465 and 495 nm (Johnson et al., 2009), the positions of all of these bands were sensitive to the composition of carotenoids present in the LHCII complexes in the various mutants. In the Arabidopsis npq1 mutant lacking zeaxanthin, qE is drastically reduced (Niyogi et al., 1998), the qE-related absorption changes were similarly attenuated in amplitude and the absorption maxima was downshifted to ~520-525 nm (Johnson et al., 2009). In the lut2npq1 mutant which lacks both lutein and zeaxanthin qE is completely absent (Niyogi et al., 2001) and no qE-related absorption change was observed (Johnson et al., 2009). In the present work we compared the absorption signals associated with qE and the ECS in wild-type Arabidopsis and in a mutant lacking qE to discover the extent of spectral overlap between them in an attempt to provide new information on the extent of the Δψ contribution to pmf.

Materials and methods

Plants and growth conditions
Wild-type *Arabidopsis thaliana* cv Columbia and lut2npq1 mutant (lacking lutein and unable to de-epoxidase violaxanthin to zeaxanthin) (Niyogi et al., 2001) were grown for 8-9 weeks in Sanyo plant growth cabinets with a 8-h photoperiod at a light intensity of 100 µmol photons m\(^{-2}\) s\(^{-1}\) and a day/night temperature of 22/15 °C.

Absorption changes in whole leaves

Absorption changes in the 410-560 nm region were measured using a SLM DW2000 dual wavelength spectrophotometer. Whole *Arabidopsis* leaves were detached from plants dark-adapted for 30 min and the petioles wrapped in moist filter paper. The leaves were inserted into a 1cm\(^2\) transparent cuvette at 45° to the DW2000 measuring light path. An optic fiber, at 90° to the DW2000 measuring light, delivered actinic light (700 µmol photons m\(^{-2}\) s\(^{-1}\)) illuminating the leaf at 45° and was defined using a Corning 2-58 filter. The photomultiplier was protected using a Corning 4-96 filter and an OCLl Cyan T400-570 mirror. The instrument slit-width was 5 nm and the scan rate was 4 nm s\(^{-1}\). \(\Delta A_{535}\) and \(\Delta A_{515}\) kinetics were recorded using the wavelength pairs 535-560 nm and 515-560 nm respectively, 560 nm being an isobestic point for the cytochrome f associated absorption changes (Bendall et al., 1971). The sample compartment was water-cooled to maintain the leaf temperature at 22°C. Where mentioned in the text, leaves were vacuum -infiltrated using a 50 ml syringe with 30µM valinomycin or 50 µM nigercin prepared by diluting 10 mM stocks of these ionophores dissolved in ethanol with a suitable amount of 10 mM HEPES buffer pH 8.0.

Measurement of ΔpH in intact chloroplasts.

Intact chloroplasts were isolated from the wild-type and lut2npq1 mutants according to Crouchman et al., (2006). 1.4 ml of intact chloroplasts was suspended in a quartz cuvette at a concentration of 35 µM chlorophyll under continuous stirring. Actinic illumination was provided by arrays of 635 nm LEDs to induce ΔpH. The reaction medium contained 0.45 M sorbitol, 20 mM HEPES pH 8.0, 10 mM EDTA, 10 mM NaHCO\(_3\), 0.1% BSA, 5 mM MgCl\(_2\), 1µM 9-aminoacridine (9-aa). ΔpH was determined from the measurement of 9-aa fluorescence using the Dual-ENADPH and Dual-DNADPH
modules for the Dual-PAM-100 chlorophyll fluorescence photosynthesis analyzer (Walz, Germany). Excitation was provided by 365 nm LEDs and fluorescence emission was detected between 420 and 580 nm.

Results

Individual dark-adapted leaves from wild-type Arabidopsis plants were illuminated at a light intensity of 700 μmol photons m⁻² s⁻¹. Following 15 seconds, 1 minute, 2 minutes or 5 minutes of illumination a spectrum was recorded of each leaf in the 420-560 nm region, the scan taking approximately 30 seconds to complete. Upon completion of the scan, the light was switched off and was followed by a 5 minute period of darkness after which a second scan was completed. Since the enzymatic epoxidation of zeaxanthin back into violaxanthin has a half-time of ~90 minutes (Yamamoto et al., 1962) the light-minus-dark recovery difference spectra are free from the contribution from zeaxanthin synthesis. Light-minus-dark recovery difference spectra are shown in Figure 1. The spectra showed a gradual red-shift in the positions of both the maximum above 500 nm and the minima below 500 nm. In the 15s difference spectrum the peak maximum was at 518 nm, with minima at 478 and 438 nm, consistent with the shape of the ECS spectrum previously reported (Duysens, 1954; Junge, 1977, Kramer and Sacksteder, 1998). The 1 min light-minus-dark difference spectrum was red-shifted with a maximum at 528 nm and minima at 425, 464 and 487 nm. The 2 min spectrum showed a further red-shift with a maximum positioned at 532 nm and minima at 497, 472 and a broad band at 425-438 nm. In the 5 min difference spectrum the maximum red-shifted to 535 nm, with minima at similar positions as the 2 min spectrum, at 498, 473 and a broad band at 420-440 nm (Fig. 1)

The spectra in Figure 1 illustrate the extent of the spectral overlap between the ECS and qE-related absorption changes. This issue is illustrated when monitoring the light-induced absorption changes using the wavelength pair ΔA535-560 nm (Fig. 2A), which shows a rapid rise as the light is switched on due to the contribution from the ECS signal, before falling as the ECS decays and then rising again in line with the formation of the qE absorption change. Similarly, upon switching off the light, the
\(\Delta A_{535} \) signal contains a rapid decay component attributable to the inverted \(\Delta \psi \) field and a slower decay component attributable to the relaxation of qE (Fig. 2A). Following a period of darkness, if the leaf was re-illuminated the rise in the \(\Delta A_{535} \) signal was accelerated to the extent that the ECS contribution to the signal was much harder to distinguish (Fig. 2A). This observation is consistent with the well known acceleration of the qE absorption change formation following light activation and zeaxanthin synthesis (Bilger et al., 1989; Ruban et al., 1993b; Johnson et al., 2009). When a measurement is taken using the wavelength pair \(\Delta A_{515}-560 \) nm the kinetics are dominated instead by the ECS signal, which shows a sharp rise as illumination commences before decaying to less than 50\% of its initial amplitude over the next 30 seconds (Fig. 2B). However, as with the \(\Delta A_{535} \) signal in Fig. 2A the \(\Delta A_{515} \) signal shows a slow rise component that saturates within \(\sim 100 \) seconds (Fig. 2B). When the light is switched off the ECS signal shows a sharp fall below the dark baseline as the \(\Delta \psi \) is inverted before returning to the dark baseline over the next 30 seconds or so (Fig. 2B). Previous attempts have been made to remove the contribution of the qE-related changes by ‘pre-scattering’ the measuring light. However, as previously noted this approach is inconsistent with the evidence discussed in the Introduction that these bands arise from specific xanthophyll absorption changes. An alternative approach is to vacuum infiltrate the leaves with ionophores that selectively remove the contribution of the \(\Delta pH \) (and so qE) or \(\Delta \psi \) (and so ECS) from the observed signals. Nigericin is a monovalent cation-transporting ionophore that acts as an electroneutral antiporter that equilibrates \(K^+ \) and \(H^+ \) across the membrane, dissipating \(\Delta pH \) but preserving \(\Delta \psi \) (Reed, 1979). By dissipating \(\Delta pH \), nigericin inhibits both qE and the associated absorption changes (Krause, 1973). The kinetics of the \(\Delta A_{515} \) signal in wild-type leaves infiltrated with nigericin are devoid of the ‘slow’ component seen in untreated leaves (Fig. 2C). In contrast the kinetics still showed the sharp rise and decay upon switching the light on and the sharp fall below the dark baseline when the illumination ceased (Fig. 2C). This result suggests that the ‘slow’ component of the \(\Delta A_{515} \) signal in untreated leaves depends on the presence of \(\Delta pH \). We attempted to further dissect the ‘fast’ and ‘slow’ components using the ionophore valinomycin that equilibrates \(K^+ \) across membranes collapsing \(\Delta \psi \) but leaving \(\Delta pH \) present (Reed, 1979). In leaves infiltrated with valinomycin the ‘fast’ component of the \(\Delta A_{515} \) signal was absent (Fig. 2D), or more likely the collapse of the \(\Delta \psi \) was so rapid as to render it undetectable with
our time-resolution. In contrast the kinetics of the ‘slow’ component in valinomycin infiltrated leaves seemed undisturbed and showed the same accelerated formation during the second illumination cycle as was observed for the ΔA_{535} signal in untreated leaves (Fig. 2D, arrow). When leaves were infiltrated with both nigericin and valinomycin both the ‘slow’ and ‘fast’ components were nearly completely eliminated (Fig. 2E). Taken together these data indicate that the ‘fast’ components in the ΔA_{535} signal arise from the $\Delta \psi$ dependent ECS absorption changes, while the ‘slow’ components arise from $\Delta \mathrm{pH}$ dependent qE related absorption changes.

Another way to distinguish the ECS and qE-associated absorption changes is by using an Arabidopsis mutant deficient in qE. The lut2npq1 mutant, which lacks lutein and is unable to convert violoxanthin into zeaxanthin; it therefore lacks qE and the associated absorption changes (Niyogi et al., 2001; Johnson et al., 2009). The npq4 Arabidopsis mutant that lacks the PsbS protein and thus rapidly-forming qE is still able to slowly form a photoprotective state resembling qE and still shows some absorption changes in the 535 nm region (Johnson and Ruban, 2010), hence this mutant was avoided. To check that the level of $\Delta \mathrm{pH}$ was unaffected in the lut2npq1 mutant compared to the wild-type we compared the quenching of 9-aminoacridine in lut2npq1 and wild-type chloroplasts (Fig. 3). The data confirmed that the lack of qE in lut2npq1 leaves could not ascribed to any reduction in the ability to generate $\Delta \mathrm{pH}$, since it showed similar levels of 9-aminoacridine quenching as the wild-type between light intensities of 0 and 700 μmol photons m$^{-2}$ s$^{-1}$ (Fig. 3). Light-minus-dark recovery difference spectra using the conditions for wild-type leaves in Figure 1 were recorded for lut2npq1 leaves (Fig. 4). The overall shape and amplitude of the lut2npq1 15s light-minus-5 min dark spectrum bears a strong resemblance to the wild-type 15s light-minus-5 min dark spectrum, and the well known ECS spectrum, with a maximum at 515 nm and minima at 420, 449, 479 nm. The slight differences in the position of the ECS bands compared to the wild-type likely reflect the altered xanthophyll composition in this mutant (Niyogi et al., 2001). However, the 5 min light-minus-5 min dark spectrum is essentially featureless in the 420-530 nm region, consistent with previous results indicating the complete absence of the qE-related absorption changes in this mutant (Johnson et al., 2009). To investigate the duration of the ECS signal following the onset of illumination, the light-induced absorption changes measured using the wavelength pairs $\Delta A_{535-560}$ nm and $\Delta A_{515-560}$ nm
were measured in *lut2npq1* leaves (Fig. 5A and B). The ΔA_{535} signal kinetics showed a sharp rise upon switching the light on followed by decay back to the dark baseline within ~ 30 seconds, when the light was switched off, a sharp dip below the dark baseline was just detectable above the noise level (Fig. 5A). The ΔA_{515} signal showed a much larger rise when the light was turned on reaching a peak within ~5 seconds before decaying back to the dark baseline within ~60 seconds (Fig. 5B). When the light is switched off there was a sharp decline below the dark baseline which then returned back to the same baseline within ~ 30 seconds (Fig. 5B). Comparison of the sharp rise upon switching the light on observed in the first illumination and second illumination cycles revealed that the ΔA_{515} signal decays much more rapidly in pre-illuminated leaves (Fig. 6). The half-time of the decay of the ΔA_{515} signal in the light was reduced from ~15 s in dark adapted leaves to ~5 s in pre-illuminated leaves, whereas the kinetics of the sharp decay below the dark baseline upon switching-off the light did not significantly change (Fig. 6). Multiple subsequent cycles of illumination and dark adaptation did not appreciably accelerate the kinetics decay of the further (Fig. 5B). In contrast to the wild-type no ‘slow’ changes were observed in the ΔA_{515} signal of *lut2npq1* leaves, providing further support to the theory that these changes arise from qE in the wild-type (Fig. 5B). Infiltration of *lut2npq1* leaves with nigericin did not appreciably affect the ‘fast’ component of the ΔA_{515} signal (Fig. 5C), while valinomycin infiltration removed the ‘fast’ component (Fig. 5D) and in combination neither ‘fast’ nor ‘slow’ components were observed (Fig. 5D).

Discussion

In this study we sought to distinguish between the ECS and qE-related contributions to the absorption spectra and kinetics in the 420-560 nm region using a combination of $\Delta \psi$ and ΔpH specific ionophores and an *Arabidopsis* mutant lacking qE. Kramer and Sacksteder (1998) have previously attempted to dissect the contribution of the ECS from the ‘scattering’ changes in *Solanum nigrum* leaves by pre-scattering the measuring light. They used this approach to show that a signal they attributed to a steady-state ECS could persist in the light for minutes. Using the wavelength pair $\Delta A_{515-560}$ nm the light induced absorption change kinetics we recorded on wild-type *Arabidopsis* leaves contained similar ‘fast’ and ‘slow’ components as those observed in *Solanum nigrum* leaves by
Kramer and Sacksteder (1998). Our data showed that the fast and slow components of ΔA₅₁₅ signal showed different sensitivity to the ionophores valinomycin and nigericin. The ‘fast’ component was sensitive to valinomycin and thus could be attributed to light-induced changes in the Δψ across the thylakoid membrane, but was insensitive to nigericin, and thus was unaffected by the absence of the ΔpH. In contrast, the ‘slow’ component was insensitive to valinomycin but was sensitive to nigericin. The similarity in the kinetics of the qE related absorption changes seen clearly with the ΔA₅₃₁₅ signal and the slow component of the ΔA₅₁₅ signal also suggests they share a common, qE-related and thus ΔpH sensitive origin. Consistent with this suggestion, in leaves of the lut2npq1 Arabidopsis mutant that lacks qE and the associated absorption changes, only the ‘fast’ component of the ΔA₅₁₅ signal was observed. There was no significant difference detected in the amount of ΔpH, as quantified by 9-aminoacridine quenching in isolated chloroplasts, between the wild-type and lut2npq1 that could account for the observed differences. We thus conclude that the slow component attributed by Kramer and Sacksteder (1998) as a ‘steady-state’ ECS signal observed is in fact the overlapping qE-related absorption change, the position of which varies depending on the xanthophyll content of the leaves between 525 and 540 nm (Johnson et al., 2009). We suggest that the attempt to remove its contribution by pre-scattering the light in fact would be unsuccessful because it is not light scattering but an electronic absorption. (Ruban et al., 2002; Illoiaia et al., 2011).

The accelerating effect of pre-illumination on the rate of decay of the ‘fast’ component of the ΔA₅₁₅ signal revealed in our data has, to our knowledge, not previously been reported for leaves under continuous illumination. Pre-illumination was previously shown to accelerate the decay of Δψ in flash-induced ΔA₅₁₅ experiments on Zea Mays (Morita et al., 1982), cucumber (Kramer and Crofts, 1989) and sunflower (Kramer et al., 1990) leaves and in electrode studies on chloroplasts of Anthoceros (Bulychev et al., 1984). In this case the accelerated decay of Δψ in the dark was attributed to the light-activation of the ATPase (Morita et al., 1982; Junesch and Gruber, 1985). However in our results under continuous illumination the accelerated decay of ‘fast’ component of ΔA₅₁₅ signal in the light probably reflects the light-activation of coupled photosynthetic electron transport due to activation of the Calvin cycle leading to a more rapid establishment of ΔpH and thus dissipation of Δψ. This explanation also suggests that the voltage-gated counterion channels in the thylakoid
membrane could be light-activated. Our results also show that under the high light intensity used in this study (700 µmol photons m⁻² s⁻¹) that the inverted ΔA₅₁₅ signal upon switching the light-off can be almost as large as the positive ΔA₅₁₅ signal when the light is switched on; suggesting significant post-illumination transient proton diffusion potential is built-up. The extent of the inverted ΔA₅₁₅ signal has been shown to depend upon light intensity and CO₂ concentration, consistent with its description of the size of the steady-state pmf in the proceeding illumination period (Avenson et al., 2004; Takizawa et al., 2007). Since the permeability of the thylakoid membrane to protons is much higher than other counterions above the threshold for ATP synthesis (Schönfeld and Neumann, 1977), such a transient proton diffusion potential would be expected when a significant steady-state pmf is present.

Our results lead to the conclusion that the Δψ contribution to the pmf in chloroplasts under the conditions used in our study is negligible. Instead our data favours the view represented in the earlier literature that the Δψ is rapidly dissipated in chloroplasts by counterion movements, particularly Mg²⁺ and Cl⁻. It was interesting to note that the ΔA₅₁₅ signal in lut2npq1 leaves thus strongly resembles the ΔA₅₁₅ signal previously recorded in isolated spinach thylakoids measured under ionic strengths above 10 mM where the ECS and thus Δψ was completely dissipated (Cruz et al., 2001). Our results therefore suggest that the ionic strength of the chloroplast stroma is probably above 10 mM as suggested in earlier studies (Barber, 1976; Schröppel-Meier and Kaiser, 1988) and consistent with the role of cations in thylakoid membrane stacking (Barber, 1982). Our results also explain why valinomycin was found to act as an effective uncoupler of ATP synthesis only during the initial onset of illumination (Ort and Dilley, 1976), when Δψ is still present and thus contributing to pmf. Nigericin in contrast was sufficient to completely abolish ATP synthesis in the light (Shavit et al., 1968). Kramer and co-workers have suggested that the pmf is differentially parsed into Δψ and ΔpH depending upon the light intensity and availability of CO₂ via dynamic regulation of the ionic concentration of the chloroplast, providing evidence that the contribution of the ‘slow’ component to the steady state ΔA₅₁₅ signal is smaller under low CO₂ conditions (Avenson et al., 2004). We note that low CO₂ conditions would also promote zeaxanthin de-epoxidation (Takizawa et al., 2007) and thus red-shift the peak position of the qE-related absorption change (see Fig 1 and Johnson et al., 2009), which would have the same effect of diminishing the contribution of the ‘slow’ component to the
ΔA515 signal. The suggested advantage of parsing the pmf between Δψ and ΔpH is to keep the lumen pH in a moderate range (pH ~5.8) optimal for the oxidation of plastoquinol at cytochrome b6f and the stability of the oxygen evolving complex of photosystem II (Kramer et al., 2003). We agree with the logic of Kramer and co-workers in advantages of maintaining moderate lumen pH but suggest in light of our results that it may be achieved in a different way. Using changes in the EPR spectra of pH-sensitive spin probes to measure ΔpH in bean chloroplasts Tikhonov et al., (2007) gave luminal pH values of 5.4-5.7 under conditions of qE induction and photosynthetic control and in the presence of an excess of ADP and Pi of >5.7-6.2. Tikhonov (2012) calculates that if the ΔG_{ATP} (phosphate potential) in chloroplasts is ~40-50 kJ mol⁻¹ as measured by Giersch et al., (1980), and the ratio of H⁺/ATP is either 4 as suggested by in vitro biochemical assays (Berry and Rumberg, 1996; Steigmiller et al., 2008) or 4.67 as suggested by the 14 c-subunits/ CF₀ revealed in atomic force microscopy structural studies of the spinach ATP synthase (Seelert et al., 2003), and the stromal pH is ~7.8-8.0 (Werdan et al., 1975), then the steady-state lumen pH under conditions of ATP synthesis would be in the range of 5.7-6.2 and the ΔpH 1.8-2.1 (~125 mV). Kaim and Dimroth (1998) have argued that some (~30 mV) Δψ is necessary for ATP synthesis since ΔpH and Δψ are not kinetically equivalent in their ability to drive ATP synthesis by the chloroplast ATPase when reconstituted into liposomes. We cannot rule out that such a small contribution of Δψ to the pmf is undetectable using the ΔA515 signal. However based on the calculations of Tikhonov (2012) it seems that moderate values of ΔpH are certainly capable of supporting ATP synthesis in the absence of a large (>25%) Δψ contribution to pmf.

It may be asked what the evolutionary advantage of storing pmf in chloroplasts entirely or almost entirely as ΔpH? It can be argued that since the external pH of the environment around a bacterial cell can vary so dramatically (indeed ΔpH can even be inverted in alkaline environments) that pmf must be stored mainly as Δψ, a feature which persists in mitochondria. In contrast, the photosynthetic membranes inside chloroplasts and possibly inside cyanobacterial cells are separated from the external environment and thus not subject to this limitation. However the photosynthetic membrane must cope with a different set of pressures, including the negative effect of Δψ in promoting charge recombination between P680⁺ and electron acceptors in the PSII reaction centre.
thus forming the P680 triplet state and sensitizing the cell to singlet oxygen formation and photo-oxidative damage (Bennoun, 1994). Indeed recently, a cyanobacterial mutant lacking the potassium cation channel in cyanobacteria was shown to suffer from photoinhibition in high light (Chechheto et al., 2012). Storage of pmf as ΔpH also allows photoinhibition to be avoided via concomitant regulation of the chlorophyll excited state lifetime of the antenna system of PSII by qE. Allosteric regulation of qE by the xanthophyll cycle de-epoxidation state (itself regulated by lumen pH) matches the pK of qE induction to the extent to which the lumen pH regularly exceeds the threshold level for ATP synthesis of ~5.9 thus acting as a molecular memory of the prevailing light conditions (reviewed in Ruban et al., 2012). A third possibility is that the regulatory effects of the counterion movements themselves, particularly Mg$^{2+}$, are indispensible for the proper regulation of the Calvin cycle enzymes.

Conclusions

The results of this study suggest that the ‘slow’ component of the ΔA$_{515}$ signal in wild-type Arabidopsis leaves that was previously used to support the notion of a steady-state ECS signal and thus steady-state ΔΨ component of pmf in chloroplasts actually belongs to the overlapping qE-related absorption changes peaking at 535 nm. Our data therefore supports the view that pmf is stored almost entirely as ΔpH in Arabidopsis chloroplasts.

Acknowledgments

The authors wish to thank the Royal Society, UK Biotechnology and Biological Sciences Research Council (BBSRC) and Engineering and Physical Sciences Research council (EPSRC) for funding and Professor Peter Horton (University of Sheffield, UK) for very valuable discussions.

References

Barber J, Mills J, Nicolson J (1974) Studies with cation specific ionophores show that within the intact chloroplast Mg$^{2+}$ acts as the main exchange cation for H$^+$ pumping. FEBS Lett 49:106-110

Kaim G, Dimroth P (1998) ATP synthesis by F-type ATP synthase is obligatorily dependent on the transmembrane voltage. EMBO J 18:4118-4127

Figure Legends

Figure 1. Light induced absorption spectra in the Soret region in wild-type Arabidopsis leaves.

Spectrum 1, 15 seconds light-minus-5 minutes dark relaxation; Spectrum 2, 1 minute light-minus-5 minutes dark relaxation; Spectrum 3, 2 minutes light-minus-5 minutes dark relaxation; Spectrum 4, 5 minutes light-minus-5 minutes dark relaxation. Light intensity used was 700 µmol photons m⁻² s⁻¹.

Figure 2. Light induced absorption changes in wild-type Arabidopsis leaves.

(A) ΔA₅₃₅ signal induced by light/ dark cycles as indicated by the black (light off)/ white (light on) bars. (B) ΔA₅₁₅ signal in untreated wild-type leaves (C) ΔA₅₁₅ signal in 50 µM nigericin vacuum infiltrated wild-type leaves (D) ΔA₅₁₅ signal in 30 µM valinomycin vacuum infiltrated wild-type leaves (E) ΔA₅₁₅ signal in 50 µM nigericin and 30 µM valinomycin vacuum infiltrated wild-type leaves. Light intensity used was 700 µmol photons m⁻² s⁻¹.
Figure 3. Effect of light intensity on 9-aminoacridine quenching in wild-type (black circles) and *lut2npq1* (white triangles) *Arabidopsis* chloroplasts. Data are average of 3 independent experiments ± S.E.M.

Figure 4. Light induced absorption spectra in the Soret region in *lut2npq1* *Arabidopsis* leaves. Spectrum 1, 15 seconds light-minus-5 minutes dark relaxation; Spectrum 2, 5 minutes light-minus-5 minutes dark relaxation. Light intensity used was 700 µmol photons m⁻² s⁻¹.

Figure 5. Light induced absorption changes in *lut2npq1* *Arabidopsis* leaves. (A) ΔA₅₃₅ signal induced by light/dark cycles as indicated by the black (light off)/white (light on) bars. (B) ΔA₅₁₅ signal in untreated *lut2npq1* leaves. (C) ΔA₅₁₅ signal in 50 µM nigericin vacuum infiltrated *lut2npq1* leaves (D) ΔA₅₁₅ signal in 30 µM valinomycin vacuum infiltrated *lut2npq1* leaves (E) ΔA₅₁₅ signal in 50 µM nigericin and 30 µM valinomycin vacuum infiltrated *lut2npq1* leaves. Light intensity used was 700 µmol photons m⁻² s⁻¹.

Figure 6. Comparison of ΔA₅₁₅ signal in dark adapted (thick black line) and pre-illuminated (thin black line) untreated *lut2npq1* leaves induced by light/dark cycles as indicated by the black (light off)/white (light on). Light intensity used was 700 µmol photons m⁻² s⁻¹.
Figure 1.
Figure 2

Wild-type

+ nigericin

+ valinomycin

+ nigericin + valinomycin
Figure 3

![Graph showing the relationship between light intensity and 9-aminoacridine fluorescence quenching percentage. The x-axis represents light intensity in \(\mu \text{mols photons m}^{-2} \text{ s}^{-1} \), and the y-axis represents the 9-aminoacridine fluorescence quenching percentage.]
Figure 4

Absorption, rel. vs Wavelength (nm)

Absorption, rel.

Wavelength (nm)
Figure 5

<table>
<thead>
<tr>
<th></th>
<th>lut2npq1</th>
<th>lut2npq1</th>
<th>+nigerin</th>
<th>+valinomycin</th>
<th>+ nigerin + valinomycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>+nigerin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>+valinomycin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td>+nigerin</td>
<td>+valinomycin</td>
<td></td>
</tr>
</tbody>
</table>