The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of Transputer Benchmarks and Performance Comparisons with
other Computing Machines.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79347/

Monograph:

Cornish, I.J. and Zalzala, A.M.S. (1993) Transputer Benchmarks and Performance
Comparisons with other Computing Machines. Research Report. ACSE Research Report
467 . Department of Automatic Control and Systems Engineering

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

- 6298 (S)
& S

\d
&N\
\,

TRANSPUTER BENCHMARKS
AND PERFORMANCE COMPARISONS WITH OTHER COMPUTING
MACHINES

Ian J. Cornish and Ali M. S. Zalzala

Research Report #467

February 1993

TRANSPUTER BENCHMARKS
AND PERFORMANCE COMPARISONS WITH OTHER COMPUTING MACHINES

1. J. Comnish and A. M. S. Zalzala

Department of Automatic Control and Systems Engineering,
University of Sheffield,
P. O. BOX 600, Mappin Street, Sheffield S1 4DU, United Kingdom
Email: ali@uk.ac.sheffield

ABSTRACT

Since engaging in the actual implementation of a computer-based control application can be an
expensive and time consuming procedure, engineering researchers need to assess their needs and
choices before starting the job. This paper provides a performance index for a variety of
hardware/software combinations to ease the decision making process. In addition, the
transputer, as a single block in a multi-processor network, has been used successfully for a
number of applications, where large computational power is needed. Thus, the performance of a
single transputer, and of a network of transputers is compared with that of a variety of Von
Neumann type processors. The effect of the choice of language on a system performance is also
observed and assessed.

I. INTRODUCTION

For many years, scientists and engineers have demanded faster and better computers capable of
performing complex mathematical tasks quickly. Recent technological developments have seen
an explosion in the range of processors available off the shelf, ranging from the CISC based Intel
80386, to the RISC based SPARC range of processors.

The introduction of the Inmos transputer in 1985 has led to increased use of parallel and
distributed processing, which has the potential to offer considerable performance improvements
over traditional sequential processors. One notable work has been reported [1] comparing the
transputer with other processors using a number of different algorithms. Though it presents a
comparison between a limited range of processors, it does not concentrate on implementing a
specific algorithm on a wide range of processors, or using a range of programming languages.

I1. COMPUTERS IN ENGINEERING APPLICATIONS
11.1 CONVENTIONAL OR VON NEUMANN COMPUTERS

These computers are based upon a sequential processor, executing one instruction after another.
There are essentially two variants of the Von Neumann Architecture. The first is the RISC
processor, which is true to the original proposal, has a small instruction set and aims to be able
to execute all instructions in one clock cycle. The CISC architecture, a derivative of the original
Von Neumann proposal, has a larger instruction set at the expense of increased execution time.
The aim of extending the instruction set is to make the processor easier to program using high
level languages. However, the comparison between RISC and CISC processors is much more
complex, and is adequately covered elsewhere [2].

The common Personal Computer comes into this class, as do the Sun Workstation range
and the majority of Super-computers. For this paper, the following processors were used: 286,
486, Sun ELC, Sun IPC and Sun SPARCServer. To consider the power of super-computers, the
Convex C220 at ULCC (University of London Computing Centre) was used.

I1.2 PARALI FL. COMPUTERS

Paralle] machines constitute a number of on-board computers, each with its own CPU and
communication links, and shared or local memory, which gives it the capability to operate as
distributed structures. The ability to execute several instructions at once gives a considerable
performance improvement over equivalent Von Neumann processors, taking into account the
proper utilisation of a well scheduled distributed algorithm [3].

The transputer is a good example of a parallel processor, with 4 communications links,
and on-chip memory. However, the protocols involved in the serial communications can severely
degrade the system performance [6]. The transmitter must first ascertain whether the receiver is
ready to receive, which requires two transmissions. Then the data itself must be sent, followed
by two further transmissions to signal the end of communication. If a large array of data must be
sent, the above protocol (i.e. sending one element at a time) can seriously affect the overall
algorithm performance. However, sending the data in one large block is a better alternative,
dramatically reducing the required communications time. Therefore, communications efficiency
is one of the issues considered in this paper.

One major and common problem in using parallel processors is the occurrence of the
dreaded deadlock. Time dependencies between processes can also cause problems for the
uninitiated, but can be avoided by providing proper scheduling and distribution of the algorithm.

II1. BENCHMARKS

The ideal benchmark for a processor is one that makes effective use of the processor and it's
available resources, and reflects the typical workload of the processor. However, the benchmark
should not test peripheral units such as mass storage, or display systems, as the performance of
these can be variable.

There are a number of standard tests that fit these requirements, such as the Dhrystone
(integer operations) & Whetstone tests (floating point operations), and Livermore Loops (loops
with both integer and floating point maths) [4]. However, the Whetstone, Dhrystone, &
Livermore Loops tests execute a pre-defined sequence of instructions, and bear no direct
resemblance to any engineering problem. Also, the accuracy of the results are of no apparent
consequence, and the test depends on the compiler/hardware combination, of which there are
many variants. This latter point is one that cannot be eliminated easily, without resorting to
assembly level programming, which is both tedious and impractical. Another drawback of the
tests is that they only use small one-dimensional arrays, whereas many engineering problems
employ large multidimensional arrays.

Therefore, it is required to find a simple, computationally intensive engineering related
algorithm to use as a benchmark, such as the solution of a system of simultaneous linear
equations using the Gaussian elimination [7]. The coefficients of the equations used contains

function such as sine() and cosine() to exploit the processor performance fully. In addition, the
Gaussian elimination is a relatively simple convert to a parallel algorithm for the transputer.

The machines tested and reported on in this paper are as listed in table 1 where any
hardware extras are indicated. This is not an exhaustive list of all the processors used, where
others are included in the final report [5].

Machine Processor Typical Cost
IBM AT IBM 80286 8MHz £500
Viglen 486 Intel 80486DX 33MHz £1,500

Sun ELC 40MHz SPARC RISC processor £3,500
Sun IPC 25Mhz SPARC RISC processor £4,000
Sun SPARCServer 2 SPARC processors £35,000
2/670MP + 2 Weitek Co-processors
Convex C220 >> £35,000

Table 1. Sequential processors used for the benchmark tests

Both the Sun SPARCServer and the Convex are multi-user systems, and thus the results
would be affected by system load. To allow for this, the test was run a number of times, at
different times of day (and night), and an average taken. Although the SPARCServer is equipped
with two processors, it must be emphasised that they do not operate in a distributed mode.

II1.1 RESULTS WITH CONVENTIONAL PROCESSORS

Table 2 shows a selection of the results obtained by running the algorithm on the sequential
processors listed above (the detailed results table runs to about 4 pages [5]). The MFLOP
ratings shown in table 2 are derived from dividing the time taken for a given section of the
algorithm divided by the number of real operations in the section. For example, if the instruction
LET x=x*10 takes 1 second to execute, then it is 1 FLOP(=0.001 MFLOP).

The performance results of programmes written in FORTRAN and C are shown in
figure 1 in terms of MFLOP ratings, where it can be seen that FORTRAN produces the best
overall results compared to C. In addition, figure 2 shows the times taken by the processors for
the individual sections of the benchmark algorithm.

Figure 2 shows that the Intel 486 processor performs better than the Sun IPC, whilst not
as good as the Sun ELC. The Convex gives excellent performance with FORTRAN. However,
without compiler vectorization, the Convex performance is rather poor, but with maximum
vectorization its performance is much enhanced.

111.2 PARATIFL RESULTS

This section includes the results obtained when running the benchmark algorithm on the
transputer, showing the results obtained using the Inmos Ansi-C toolset. In addition to a
sequential execution, a distributed Gaussian elimination algorithm was developed on two
processors (see figure 3) and executed in both multitasking (on a single transputer) and parallel

(on two transputers) forms, with the results reported in table 3. However, the back-substitution
part of the benchmark is kept in its sequential form. The utilisation of the two processors is
approximately 80% and 70%, respectively. Nonetheless, although not employing an optimal
scheduling scheme, the paralleled algorithm serves the purpose of this work, and presents a
significant improvement over the sequential version.

Considering table 3, the two parallel transputers operate far more efficiently when only
computations are assessed. Once communications are included, the performance decreases
drastically, as discussed in section II.2. All the performance results obtained for the transputer
are included in figures 1 and 2 for comparison.

Processor Language | Compiler | Gaussian | Backsub- Average
Elimination | stitution MFLOPS
IBM 286 Fortran Prospero 434.02 2.08 7.01
i80486dx Fortran Salford 1.95 0.0199 1034.1268
Sun SPARCserver| Fortran Sun 0.39 0.01 3471.9632
2/670MP
Sun IPC Fortran Sun 8.89 0.32 369.3375
Sun ELC Fortran Sun 0.61 0.01 2471.6656
Convex C220 Fortran Convex 0.69 0.001835 5934.3243
IBM 286 Ansi-C MicroSoft 542 5 351
i80486dx Ansi-C Gnu 4 0 525.0315
Sun SPARCserver| Ansi-C Gnu 3 0 3055.626
2/670MP
Sun IPC Ansi-C Gnu 14 0 184.968
Sun ELC Ansi-C Gnu 3 0 1827.126
T800 Ansi-C Inmos 6.73 0.035 417.544
Convex C220 Ansi-C Convex 0.78 0 5064.95
i80486dx Modula-2 | Logitech 5.16 0.06 183.45833
180486dx Pascal Sheffield 9.752 0.0448 290.46076
Table 2. Results for sequential machines (Seconds)
Processor | Language | Compiler| Execution Gaussian Back- Average
mode Elimination | substitution | MFLOPs
1 T800 Ansi-C Inmos Sequential 6.73 0.035 417.544
1 T800 Ansi-C Inmos Multitasking 8.00 0.053 296.438
2 T800 Ansi-C Inmos Parallel (no 5.03 0.053 436.771
communications)
2T800 Ansi-C Inmos Parallel (with 9.11 0.053 294.902
communications)

Table 3. Parallel processor Results (Seconds)

Communications efficiency was assessed by sending the array element by element, and
then repeating the exercise by sending the data in rows and as a single batch. The resulting times
are shown in table 4 for both the multitasking and parallel forms.

Sending method Multitasking on a Parallel on
single transputer two transputers
Element at a time (126x127 elements) 2.9087 3.0892
Row at a time (127 elements) 2.1475 2.7244
Whole matrix 1.588 1.803

Table 4. Communication times of a 126 by 127 matrix (Seconds)

IV. DISCUSSIONS AND CONCLUSIONS

Using the solution of a system of simultaneous linear equations as a benchmark algorithm
represents a good performance index for engineering applications to assess and compare
different processors. The algorithm satisfied the requirements of being computationally intensive,
and demanding in terms of memory requirements. The performance results obtained from
sequential tests shows that the Sun SPARCServer produced the best timing, followed by the Sun
ELC. The Convex gives a far better performance with the clear drawback of a very high price.
The performance of the transputer, as a single sequential processor, comes between the Sun IPC
and the Sun ELC. Considering a distributed formulation, the inter-processors communications
between the two processors burden the parallel performance to a large extent, and renders the
two transputers to perform less than the IPC. However, once the computations are considered
on their own, the two transputers performance holds its position between the IPC and ELC,
although a better performance is expected on a larger network [7]- In addition, communications
assessment showed a tremendous speed up by sending the data as one batch rather than
individual elements.

Further tests are performed on variations of these computing machines, and employing
Occam, parallel 3L FORTRAN and C versions of the software, and are included in the final

report [5].
REFERENCES

1. Stiles, G.S., 'How the Transputer stacks up to other Processors: A comparison of
performance on Several Application Programs', Mailshot, SERC/DTI Transputer Initiative,
November 1989.

2. Hwang, K. and Briggs, F.A., Computer Architecture and Parallel Processing, McGraw Hill,

1987.

Lewis, T.G. and H. El-Rewini, Introduction to Parallel Computing, Prentice-Hall, 1992.

Curnow, H.J. and Wichmann, B.A., 'A Synthetic Benchmark', Computer Journal, Volume

19, No. 1, February 1976, PP.43-49.

5. Comish, 1.J., Transputer Benchmarks and Performance Comparisons with other Computing

Machines, Final year thesis, Department of Automatic Control and Systems Engineering,

University of Sheffield, 1993.

Inmos Ltd, Transputer Reference Manual, Prentice-Hall International, 1988.

Roberts, Y. The impact of Vector and Parallel Architectures on the Gaussian Elimination

algorithm, Manchester University Press, 1990.

e

=

027 X9Au0)

13A195DYV IS
ung

008L
odl ung

98¢ W4l

3unoy JOTIW

Figure 1: MFLOP ratings for selected C & FORTRAN results

e 2

N
0 5 AN
ALEMEEN L

14+

2
101
8
]
4
2

o

(spuooes u]) ewy)

Orisuy Odi ung
(swwo) 0ogL.2
ueslod Ddj unsg

O-isuy 0081

(swwop
ON) 008L.2

O-isuy Xpggros!
Orisuy

: lealegonedg ung

O-fsuy 9713 ung

ue o4 Xpsgioe|
O-isuy

0220 XeAuoD

uB4io
0220 X@AUOD

uBIO4 O3 UNg

uegio4
lentegoneds ung

Figure 2: Execution times on processors (seconds)

Host

~
|

f
J

Transputer 1

-

Supervisor
Process

Subtractor 1

|
i
J

Divider

T . | it] T T Y

Subtractor 2

i
I

Figure 3: The Distributed Algorithm

