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S. A. BILLINGS and Q. H. TAO

Department of Control Engineering
University of Sheffield
Sheffield S1 3JD, UK

ABSTRACT

Time series model validity tests based on general correlations are presented in
this paper. It is shown that the tests Cbgg(‘t). anz(‘t) and ¢§§§('tl,1:2) can only
detect a subset of any possible unmodelled terms in the residuals E, whereas
¢’§z'§z'('t) detects all possible terms. These basic results are then extended to include
functions of process or residual terms as entries in the correlation. Simulation studies
are included 10 demonstrate the effectiveness of the tests when applied to estimated
models of both simulated and real data sequences.

1. Introduction

Time series analysis and prediction is important in the study of a wide class of
signal processing problems where applications range from the analysis of marketing
data, brain wave patterns, signals from vibration testing of mechanical structures

_through to speech processing. In each case a model which is considered as the best
possiEIe approximation to the dynamic system is estimated based on observation data.
Model validation is usually conducted as a final procedure after the model has been
identified and the parameters estimated, with the aim of checking if the completed
model adequately fits the data and is unbiased. Model validation is a critical pro-
cedure in signal processing and time series modelling. If the model validation
methods are not properly designed there is a strong likelihood of accepting an inade-
quate and a biased model. This means that whilst the fited model will predict well
over the estimation set it is a poor descriptor of the process and will probably yield
poor predictions over other data sequences.

One of the important methods of validation is to diagnostically examine the
whiteness of the residual sequence, to detect if any terms in the residuals will cause
bias in the parameter estimates. If the underlying process is linear so that it can be
described by a linear model, there are celebrated results based on the second order
covariance. Box and Pierce (1970) obtained the distribution of the residual autocorre-
lation function for ARMA (Auto-Regressive Moving Average) models and applied a
chi-square statistic to check the lack of fit for these models, and Davies, Triggs and
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Newbold (1977) and Ljung and Box (1978) later gave 2 modified version of this 1est.
Box and Jenkens (1976) used model validation based on the residuals to suggest
modifications to the fitted model and to iterate towards a final unbiased estimate.

If the process under study is nonlinear, however, the aforementioned diagnostic
checking of the residual sequence using the second order covariance is unfortunately
no longer sufficient to test the adequacy of the fitted model. In fact, model validation
based on the second order covariance can only detect a subset of possible nonlinear
terms which could be present in the residual sequence. As time series analysis has
been extended to the nonlinear case various nonlinear models (see e.g. Priestly 1985,
Chen and Billings 1989b) have been proposed, and there is an increasing need to
develop methods for validating fitted nonlinear time series models. Several authors
have addressed this problem for the nonlinear case. Granger and Andersen (1978) sug-
gested the autocorrelation function of the squared residuals as a means of detecting
bilinear terms in the residuals. Mcleod and Li (1983) introduced the chi-square statistic
for the autocorrelation function of the squared residuals for ARMA models. Subba Rao
and Gabr (1984) introduced a test based on a subset of the third order moments.
Lawrance and Lewis (1985) showed that the second order covariance can not deger-
mine the independence of the residual sequence of the NEAR(2) (Nonlinear Auto-
Regressive in Exponential variables (2nd order)) model, although this has a second
order autoregressive correlation structure like the ARMA model, and suggested a third
order moment of the residuals as a validity test. Recently Kumar (1986) also con-
sidered a test based on the third order moments and showed that this could distinguish
bilinear time series from an independent sequence.

The present study considers model validation for a general class of nonlinear time
series or signal processing models and is an attempt to provide clarification and a
unification of previous work in the area. By taking the NARMA (Nonlinear Auto-
Regressive Moving Average) model (Chen and Billings 1989b) as a basis, a sys-
tematic analysis of nonlinear validation is constructed to determine which tests can be
expected to detect when the residual sequence is unpredictable from all past linear and
nonlinear combinations of values irrespective of what form of model is estimated. The
selection of the form of the test is studied in detail and it is shown that the particular
tests @ge(t), Pgex(t) and Pgze(T),T2) can detect certain types of terms out of all the
possible unmodelled terms in the residuals, and ®p2g2(1) can detect all possible terms.
These basic results are then extended to include other functions of process or resigual
terms as variables in the correlations. Simulation studies are included to demonstrate
- the effectiveness of the tests when applied to identify and validuaic some nonlinear time
series models including the bilinear model, the nonlinear AR model, as well as an
example of real time series.




2. Correlation based validation

Under some mild conditions a discrete time nonlinear stochastic control sysiem
can be described by a unified representation called the NARMAX (Nonlinear Auto-
Regressive Moving Average with eXogenous inputs) model (Leontaritis and Billings
1985, Chen and Billings 1989a). Selecting the input terms in the NARMAX model for-

mulation to be zero gives the following NARMA model (Chen and Billings 1989b)
description:

X =FO 1 X " s X By By €p) + € 2.1

where (x,} denotes a measured time series or signal, (g,} is an unobservable zero
mean i.i.d. sequence and F(.) is some nonlinear function. A typical choice for F(.) in
eqn (2.1) is a polynomial expansion but this is only one choice and F(.) can take on
many other more complex forms. This model is chosen because it provides a unified
representation for a broad class of nonlinear stochastic processes and is about as far as
one can go in terms of specifying a general finite dimensional nonlinear relationship
(Chen and Billings 1989b). Various existing time series models, such as the bilinear
model (Granger and Andersen 1981), state-dependent model (Priestly 1980) and

exponential autoregressive model (Ozaki 1985), etc. are particular parameterizations of
the NARMA model.

The conditions for {x,} to be stationary and invertible are investigated in Chen

and Billings (1989b ) and will not be repeated here. But the following assumptions
will be made:

Assumption 1
It is assumed throughout the analysis that {x,} satisfies the following conditions:
(i) x, is strictly stationary and ergodic.
(ii) x, is invertible.

Remark:

Strictly stationarity is assumed because higher order moments are essential in the
nonlinear case and second order stationarity is obviously inédequate. However in prac-
tice this requirement may be weakened by assuming stationarity to a certain order
according to the particular system under study.

Let model (2.1) be parametrized with a parameter vector © of dimension ng
x; = F( x‘_lg x‘-2| LR -Il—n_'; g:—](e)’ g:—z(e)r T, g,[—ne(e);a)
+&(8) (2.2)

where 6cDy and Dy is a subset of ng-dimensional Euclidean space, and
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(£(0)), 1= 12,.., are the model residuals at ©. Identification consists of selecting a
model (a parameter vector 6) within Dy, which best describes the recorded data.

Assume the following null hypothesis:
Hy: A true parameter vector @) exists which reduces the residuals &,(8)lg_5, to an i.i.d.
sequence €;.

Without loss of generality, it is assumed that the parameters © are estimated using
the prediction error method (Ljung 1987) by minimising a loss function,

.. N
8 = argmin Y E4(0)
8 =1

E(8) = x, — %_,(8) 2.3)

to yield the estimates 0, where £,,_,(8) is the optimal (in the mean square sense) pne
step ahead prediction of x,.

Let the vector y'(é) contain all the process terms and all the residuals at 8 up to
the time t

4 -1
¥®) = L,’i (é)] 2.4)
where

=lhx ool

E'(®) = [8) E1(®) - -+ &N (2.5)

Now introduce a correlation based test

r=g= Eiz,(e) El8) (2.6)
where Z,(8) is a vector of dimension s and depends only on the vector ,

z,8) = 2" (6 2.7)
and &/(8) is some smooth function of &,(8) with ‘the mean deleted

Ef@) = fE(8)) — EIfE«B)) (2.8)
in which typically

O =¢ (2.9)

or

G =2 (2.10)
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according to the particular case. If f{{) = , r reduces to the test introduced by Bohlin
(1978), Leontaritis and Billings(1987) and Stderstrbm and Stoica (1988). Define

& = E/(0) lyp, = fe) — Efte) ' @.11)

When f(£) = {, Sbdersdm and Stoica (1988) have shown that under H, r con-
verges almost surely to the normal distribution with mean zero and covariance matrix

¥, = M@, — Oy, Dy) (2.12)
where '

A= E@E ' (2.13)

@, = E[Z{80)Z] (8))] (2.14)

Dy = ElyyT] | (2.15)

Y, = —(%IMJT (2.16)

@, = E[Zy]] = &), | | @2.17)

It can also be shown that in the general case when f{.) is some smooth function, for
the parametrized NARMA model (2.2), under H; and assumptions (i), (ii), r converges
almost surely to the normal distribution with zero mean and covariance matrix similar
to (2.12). When typically fi{) = {2, the covariance matrix is equal to

¥, =0, (2.18)
where

A3 = E[E) (2.19)

Thus correlation based validity tests can be constructed using the above asymptotic

distribution. Define

T M@y, = S @1 1, D =

o o [i'%"i}zz]-l r, iff(‘:) = §2 (2.20)
where
4= i~ et 2.21
L= Nz_;,e, 221
§2_1 N o2
=N = ‘ 2.22)

. 1N_ A7
D,; = =3 Z(8)Z;(8) (2.23)
N =1



& N .
by = %z IOVHC) 224)
[:

v = —zz,«a) 16 = &, 225)

t-l

So that p is chi-square distributed with s degrees of freedom under Hy, that is
Tl (1) (2.26)

If the value of W is within the acceptance region for a given level of significance a,
that is

H < Kg(m) (2.27)

where xy(m) is the critical value of the chi-squared distribution, the null hypothesis
holds and the fitted model is accepted with a risk of o Otherwise the model is
rejected. Note that the new term &, 1 ®,, is included in the covariance matrix ¥,
in eqn.(2.12) when f({) = { and the corresponding chi-square test |4 is an exact gest
compared with the approximate test which arises if this term is omitted, in the sense
that the former has exactly the first type of risk o (Sbderstrbm and Stoica 1988).
Notice that the derivatives of the residuals y(z,6) and &);,L are computed as part of the
prediction error parameter estimation algorithm, and the inversion of the matrix ¢.W
can be obtained, for example, by the Choleski factorisation method.

Another way of implementing the correlation based test r as defined in eqn.(2.6)
which is computationally simpler than the chi-square tests is to directly employ the
asymptotically normal distribution property of r. With a significance level of 0.05,
every element of the normalised r should fall within a confidence band of +1.96/NV2,
The tests using this method which are usually referred to as correlation tests are how-
ever severe and occasionally a few correlations can exceed the confidents limits even

when the model is valid (Leontaritis and Billings 1987). The chi-square method is
therefore preferred.

3. Formulating the tests
3.1 Preliminaries

The problem remaining from the last section is how to choose the vector Z_,(é)
and how to decide the form of f{.) in the general correlation based test (2.6). It is evi-
dent that the traditional linear method corresponds to a choice of the vector Z,(é) and
f(E,(8)) given by

Z(0) = &1 ®) Eo®) -+ &, O @)

where 7, is the maximum delay in the correlation, and




fELD)) = E(®) : (3.2)

respectively. In the nonlinear case correlation tests or the corresponding chi-square
tests based on the second order covariance fail to detect all possible missing terms in
the residuals because they can not distinguish between some nonlinear terms and an
independent sequence, and is therefore not sufficient for nonlinear time series valida-
tion. Generally the elements of the vector of Z,(é) will need to be nonlinear in the cle-
ments of the vector , and the function f{.) may take linear or nonlinear forms. Vari-
ous nonlinear forms can be taken for Z,(é) and f(.), but tests based -on combinations of
some particular choices, just like the traditional linear method, may have insignificant
power. This occurs because every element of such constructed r tend to be zero when
ideally some of them should be nonzero and therefore, the correlations tests or the
chi-square tests based on r fail to give the correct information. The problem therefore
is to determine a set of tests which are sufficient to detect all possible linear and non-
linear terms of whatever form in the residuals. When the tests are satisfied the residu-
als should be unprédictable from all linear and nonlinear combinations of past residuals
and process terms. There are probably many possible tests, or combinations of tests
which would satisfy these objectives and therefore it is important to search for the
smallest set of tests which are easy to compute and interpret.

It can be argued that at the model validity stage little will be known about the
residual sequence. The residuals (£,(8)) (written as E, hereafter) may contain some
unmodelled terms. The number and form of these terms, the lags or the type of non-
linearity and the form of probability distributions will all be unknown and conse-
quently the model validity tests that are derived must work for the worst possible com-
bination of properties.

The following general case assumptions will be made throughout the following
analysis:

Assumption 2

(@) £y = 0, that is, the residual sequence contains any or all possible terms in
the NARMA model (2.1)

&= X = FXyy Xpg " s Xion Eo1s €120 " " 7 En) + & (3.3)

(i) if the sequence (g} is distributed symmetrically all even moments exist and
odd moments are zero.

(iii) if the sequence (g} is distributed asymmetrically all even moments and odd
moments exist but it will be assumed that Eg, = 0.

To derive the tests it is necessary to select a form of F(.) in egn (3.3). In the
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present study a Volterra series parameterisation is adopted such that (3.3) can be
expressed as

&= Yokt 22 Byt c 0 b (3.4)
u=1 w=]v=1
where g, , g, » ... » are the Volterra kernels. Notice that this choice does not restrict

the application of the results to just the Volterra model. The results will hold for all
analytic nonlinear systems whatever form of model is used to parameterise the system.
The choice of the Volterra model just simplifies the derivation of the results.

Using the operational notation developed by Brilliant (1958) and George (1959),

with obvious extensions to describe the time series case, eqn (3.4) can be represented
as

g = iG,,[E,] +§= iGn(E? ) + E, (3.5
n=1 =1

where the square brackets indicate the G operates on g, while the parentheses depict
the actual relationship.

Any term in eqn (34) g,, ... €., * * *+ Will be defined as an even term, if the
time-lagged monomial in g, can be expressed as

i i
Mo = EIL:,E:-z-:, S Pl (3.6)
in which the time lags = 1, - -- =1, >0, the powers iy, iy, - - -, i, are all even,
and ¥ = 2n, n=1, ..., =, For example, a typical even term n3, might be Ke2 & 62,
where K is the corresponding Volterra kernel.

A term will be referred to as odd, if the time-lagged monomial in €, can be
expressed concisely as

e = E:l-r,e:-z-:z T E:::_ﬂﬁu' (3.7

where time lags 1= % -+ - #1, > 0, the powers iy, iy, - « -, i, are all odd, 1<m<n ,
N3y is a possible even component in the odd term, 0S2n'<n , and ¥j +2n’ = n, where
n=1, - - -, . For instance, a typical odd term 12 might be K;€,,€> 5 or K,e2 163 ¢4 5,
where KK, are Volterra kemels.

It should be noted that the definitions of even and odd are based on the powers of
the € monomials, not on whether the Volterra kernels are odd or even.

By using the even and odd definitions, Eqn (3.5) can be further denoted as

E b +E e = El Gole+ 3 G2le] + &,

n=1




= ZG (e?")+2c;°(e;=) +E,

n=1

where &f = ¥,G5,[e] contains all even terms defined before
n=1

Snl€l =2 X - Zg ha.o b E:—rle:z—:; : E:::,. (39)

where Blifa... fn AT the corresponding Volterra kernels. All odd terms are contained
1

in & = ¥ G?%[e,] where
n=1

Glel=3 3 - Zs b ety ity " € M (3.10)
ti=li=1 :

The second to forth correlations of the residuals expanded as a Volterra series can
now be evaluated with the objectives of finding the smallest subset of tests which
detect all possible omitted terms from the model. Notice that the following analysis of
correlations of the residuals applies to both correlation tests and chi-square tests which
are based on these comelations, because a correlation test and its corresponding chi-
square test are based on the same correlation structure. As the chi-square method has
statistical advantages compared with correlations, only the chi-square method is
cmployed in this study.-All tests in the following context, therefore, should be referred
1o as the chi-square tests which are constructed using the corresponding correlations,

3.2 Autocorrelation of the residuals (D;;g(‘t)
Define

q’gg(ﬂ = E[(gt - E@:))(E.u—t ™ E(E.u))] (3.11)

If Hy holds, &, will be an independent sequence {g), ¢§§(1:) = ¢8(t), where ¢ is a con-
stant. Ideally ®g(t) # O for some 10, if any term other than €, remains unmodelled
in the residual sequence. Substituting the residual sequence &, expressed as odd and
even terms from (3.8) into (3.11) gives

Dee(t) = EIE, — EENE,r — EE]
= E[(§ — EGEP) + & ~ EE)) + ey (B2, — EE)) + &2 — EED + £.)]
= Qgee(T) + Dozo(1) + ‘bg.g.(‘t) + Qpor(7)
+ Depe(T) + (Dgnp,a('t) + Qpoge(T) + d>§.§,(t) + <D§=§=(t) (3.12)
where the polynomial correlation (1) is defined as

Dyep(T) = E[(EF — EEN)(EL; — EEN]
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= E{(}'i1 Goled - E{ 3G50ed))X X Gonlers] — E( SGoe1)))
n= n=1 =1 n=1
= E((GSle)] - E(GLE)Gyle,.] ~ EGe)))

+ (Gile,] - E(GileD)(Gile, ) — E(Gile]) + -~ - ) (3.13)

and Q;.:g.(t) is a polynomial crosscorrelation between odd terms and the prediction
erTorT §;

Dgepe(r)= E[(E? — EENer-)]

= E((E6%e] - E((EGelNE)
n=1 n=1

= E{(Gy[e]-E(G,[e)))(e.) + (GaleJ-E((G3[eD)(€)r)) + - - - )(3.14)

The other terms are defined in a similar manner.

The following sections consider each group of polynomial correlations which are
induced by either even or odd terms only, or by both even and odd terms together,
plus correlations caused by the prediction error term €, which are always present in
the residuals because all identification procedures aim to reduce the residuals to an
independent sequence.

If the probability density function of the residual sequence is asymmetrical such
that all even and odd moments except E(g,) exist. Then it can be shown that

@) q’r;-r;(") + ¢§=g:(1) + (bﬁt(t) # 0, when =0, for any possible single even term.
That is, any single even term can be detected by ®gx(7). '

(i) tbg.go(t), d)gag.('c) are crosscorrelations between even and odd terms which are
neglected in the analysis, as any single even term can be detected.
(iii) ¢§p§a(t) + dJEfE(t) + q)gzgo('r) # 0, where 1=0, for any possible single odd terms,
except the type of single odd terms of the form
Ky s, * * "By B, ELME (3.15)
which will not be detected, where K is the corresponding Volterra kernel, p>m>2,

{ps1s--alp = 0 or 0dd(>1), and M7 is a possible even component in the odd
term, g 20.

(iv) Dgx(t) can detect a group of two odd terms defined by (3.11) in the residuals

’ - R .!."‘11-'-."?' e,
K €8, &1, Epm.y E,_;Pﬂq (3.16)

i i
e wg waw wp Ml L L. p PmME
K’ ;& ;€ &7, E-1Ng




e

where K’ and K” are the cormresponding Volterra kemeéls. p>m>=2, and

+ sr apF

Pmats " Upd mers *+ i =0 or odd(>1). ng, Mg~ are the possible even
components in the odd terms, ¢’,¢” 20, and

;;-:;:;;—;Z=---=;_l—;;= = b (3.17)
For example,
= PBei€gtia+ -+ (3.18)

where the single odd term Pe,_,&, 525 which is of the type described by (3.15) fan
not be detected by ¢§§(1:). But ¢§§(t) works in the case of

& = Bi&ciBip + BoEiabia - + (3.19)

where the two terms [,€._;8.5 . Bo€.38,4 are as described by (3.16) and can be
detected together by ¢§g(t). But two such terms can not be found in superdiagonal

bilinear type models as discussed in Granger and Andersen (1978), and Kumar (1986).
For example,

&E=PeEate (3.20)
which can be represented by the Volierra sequence

=g +Pe g o+ Ple 18 bz + (3.21)
where each single term in (3.21) belongs to terms of the type in (3.15) which can not
be detected by @g(t). Therefore as a whole Dge(T) fails to distinguish the superdiag-
onal bilinear term from an independent sequence. This result can be generalised to
conclude that QJgg(t) can not detect any single odd term in which there is one or more
superdiagonal bilinear components e,_,li,_,z, where 1, < t,. For example, Kg,_,&, €24,
where there is a superdiagonal bilinear component €,_5§,_s in the term.

If the probability density function of the residual sequence is symmetrical all
moments of odd terms are zero. This puts a more severe condition on the terms which
can be distinguished by the test. In a similar way it can be shown that
6)) ¢'§.§.(1:) + ¢§.§:(t) + ¢§.§.(t) # 0, when 10, for all possible single and groups of

even terms except the following cases:

(a) when there is only one isolated even term like

Ke?, (3.22)
where K is the Volterra kernel, and i; is even.

(b) more than one isolated term as defined by (3.16) but each term with the
same time lag
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i
Kgl,

v
Kze‘lf 1

il’
K 38,_}.1

N g

(3.23)

o

where K, Ky, K3 are the Volterra kemels, and iy, iy, i3 are all even. In the

above two cases, the test d)ga(t) does not distinguish unmodelled terms from an
independent sequence.

(H) Dpopo(T) + Dope(t) + Qpepe(t) # 0, when 120, only in the following cases:
§% Xy 35
(a) when there exists a single odd term in the residuals

KejL,me (3.24)

where K is the corresponding Volterra kemel, and i; odd. 77 is the possible
even component in the odd term, ¢ 20; (b) when there exists a group of two
odd terms in the residuals

UL S S
K'e;e, €Ny

. . (3.25)
et gl gl me
K, ;& ly €l mg

where K" and K" are the corresponding Volterra kernels. 1, NG+ are the possi-

ble even components in the odd terms, ¢',9" 20. iydy, -+, 1y I'pi's -0y i
are all odd, and
N=h=h=0= " S~ L=y~ I, , (3.26)

(iii) (Dg‘gg(t). ¢€o§¢(‘t) =0, when T=#0. So that these componerits make no contribu-
tion to the test.

For example,
= Pelsel, + - +g (3.27)

where the single odd term Bej3e2; can be detected by ®g(1). It is obvious that any
single linear term is a special case of (3.24) where the even component in the odd
term does not exist. Linear terms are therefore detected by computing the autocorrela-
tions of the residuals. However ¢§§(t) can not distinguish between an independent
sequence and residuals of the form

& =EL e, +¢ - (3.28)

for all r,s odd, and p>g. Terms like ﬁf_PEf_q can be viewed as an extension to the
superdiagonal bilinear type. Following the same argument as in the asymmetrical




o "

“\n

« 1 =

residuals case, it can be shown that @g(t) can not detect any single odd term which
contains one or more components of the form &;’_psf_q. where p>q, r, s odd.

The above results can be summarized by
Lemma 3.1

Consider the residual sequence defined by eqn (3.4), if ¢, is distributed asymmetr-
ically, @ge(t) detects any possible single even terms, any possible single odd terms
except the type of single odd terms defined by (3.15), as well as a group of two terms
defined by (3.16). If g, is distributed symmetrically, ®ge(t) will detect any possible
single or group of even terms, except those defined by (3.22) and (3.23), but only sin-
gle odd terms defined by (3.24) and a group of two terms defined by (3.25).

Therefore ®gx(t) works properly for the linear case, but it is only valid for the
nonlinear case for even terms and the majority of odd terms if the residual’s praba-
bilistic asymmetry holds. The major failure of the test is in the cases of single odd
terms with a superdiagonal bilinear component and some even terms and the majority
of odd terms when the residual sequence has a symmetrical probability density func-
tion.

3.3 Third order correlation function

Define the third order correlation function

Dggr(tyT) = ElEr = EG) G, = EENEinr, — EEN)] (3.29)
which reduces to
Pgea(t) = EI(E, — EE)Er - EE)] ' (3.30)

when t; = 1,. These two cases will be considered separately.

3.3.1 ¢§§2(T)
By definition

Qgea(t) = E[E, — EENEr — EEN)
= E[(&7 - EGD + & — EGD) + e) €y - EES) + &L, - EED) + .
= 'I’g.g.a('t) + Dy t() + @ T) + d)&,z(t)
+ Dpepen(T) + Dgopen(T) + ¢§,§,z(t) + tbg,ﬁ,:(t)
+ Dprpoa(T) + Ppegea(T) + Dpea(t) + Deopeen(T)
+ Dgepon(T) + Pgogon(T) + (Dg:g(an(t) + tbg,%,:(t)
+ ¢§°§¢z('r) + ¢§=§,1(1:) (3.31)
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where polynomial correlation Dpopon(T) is defined as

Peopeal®) = E[E? — EENEL, — EEDNEL, — EED)]

= E( (éazte,l - §E<G:[e,1))< 20315,41 - E‘,}E(G:[e,m
(26 [e) - ):E(G o)
= E{(Gile)) - E(GS(eD)GSled - EGeDNGHlerd — EGHe)
+ (Glle) - EGRED)(GSle, - GSLel)(Gife] - EGHeD)

— (3.32)

and d)e.g(m(‘l:) is defined as
Peegen(T) = E[(EF — EGDEL: — EED)E-)]

=E {(ZG" (e] - ZE(G‘ [e,]))(ZG"[a,_,;] EE(G:[E:D)(E;-:)]

n=1 n=1

= E{(G3le]] = E(G5le))G]le.] — E(GileD)(E o)}

+ (Gile)] — E(Gile))(GAle,] - EGie))E) + -} (3.33)

with the other terms defined in an analogous manner. ¢§§z(‘l:) = ¢8(1), where ¢ is a
constant, when g, is a zero mean independent sequence. If Dpea(t) were an ideal test,

then ®gea(t) # 0, when ©> O for the case of any possible unmodelled terms in the resi-
dual sequence.

Next consider each group of correlations which exist when either even terms or
odd terms, or both even and odd terms remain unmodelled in the residuals.

If , is asymmetrical, it can be proved that

@) ¢§,§,z(‘t), q)E_,‘g"z(t)' q’g:gtu)('t), (D;’:éu.:)(t), ‘bgzé(nﬂ(f), d)g‘&‘z(t) =0, when 120
These correlations do not contribute to the test.

(ii) 5'5_,"(‘:) + @ .g.z(t) + @gegen(t) # 0, when T # 0. These correlations are induced

by any possible even terms in the residuals, so that any single even terms can be
detected. ;




(i) Dyl) + Dgrgon(®) + O

(i)
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éaz(‘l:) # 0, when t= 0 only on the following conditions:

(2) when there exists a single odd term in the residual
Ke, 8, €08 (3.34)

where K is the corresponding Volterra kernel, and is,...i,,, m2 2, = 0 or all odd (
>1). 'n; is the possible even component in the odd term, g 20. Or equivalently
®ge2(T) fails when the term contains one or more of the superdiagonal bilinear
components &_,&,_,, ) < 1.

(b) when there are two odd terms together in the residuals

L oL i
Ke 18y, " ' " €y By Bt Bin, * ° * B TE
L . (3.35)
’ ey gle3 L L. g .me :
K& r i, " Br B4 B, &G
where K, K’ are the corresponding Volterra kemnels.
lge2s Bz ** 0 dp igey, * Iy =0 orodd(>1), a 21, b 23, and NENZ are pos-
sible even components in the two odd terms.
h=h=h=L= """ Sl 1~ L=, (3.36)
4 .
a1 =h =1y
(c) when three odd terms coexist in the residuals
-
i i e
Ke " e85, " 5:—1,5:::_, SR P 14
B I r,
K& p&ip, " Ep B0 57, &Ny [ (3.37)
14 § l'"b" § l‘”
K&, Ser., ErvB1™y, e:-f'":n;"

where K.K'K"” are the three corresponding Volterra kemels, ag21, b22 and
Ipt1s vees Bgh Upats vt pstoeni”’e =0 0r 0dd (>1). Mm%, NG NG are the possible
even components in each of the three odd terms, ¢, g,, ¢” 20.

’

h=h=h—h= """ Sl =L=l 1, (3.38)

=lon] “ta2 Tl " 2= 0 S~ B = - b
If €, is symmetrical, then it can similarly be shown that

(DEEJ(T), q)egez('f), d)gegto.el(‘f). d)aegt-#)('t), (Dé".";' (1), q)ﬁzz(f), ¢§’§'2(T)’

(Da,gg;('c) =0, for all T # 0. These correlations do not contribute to the test.




(i)

(iif)
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d>§,§,z(1) + ¢g,€,z(t) + (bg.g(en(‘t) #0, when T#0. So that any single even term
can be detected.

q)g,g,z(t) + d’goé(ul(t) # 0, when 7 0 only on the following conditions

(a) when there exist two odd terms together in the residuals

iy i
Ke el - €285 ng

LT P (3.39)
K E‘*f'e‘-f'z %R el:!’,ng'
where K. KX’ are the corresponding Volterra kemnels.
I, 0, = g gy i'a 0 =+ 1’y are all odd, @21, and MENS are possible
even components in the three odd terms, g, ¢’ 20.
h=h=h=—h= """ S~ L=, @40
a1 =0 = 1) '
(b) when three odd terms as follows in the residuals
i L i i
KE"l"l. t vt E[’_!‘E‘_:l‘_l et E[:I;n;
i i, i
K’E,_‘(ls,_z,rz Wit » E'_‘!‘n;! (3.41)
i, i
K'e2p gip - & Ng”

where K K'.K” are the three comresponding Volterra kernels, a21, b22 .
Mg » N Ng» are the possible even components in each of the three odd terms,
9.4,q" 20.

H=[=h—0B= " S 1= L=l -1,
" L ” ” (3.42)
Slal =L 2=l 2= T Eha ="

Lemma 3.2

Consider the residual sequence defined by eqn (3.4), if ¢, is distributed asymmerr-

ically, q)gg:(‘l) detects any possible single even terms, single odd terms defined by
(3.34), .and a group of two terms defined by (3.35) or three odd terms defined by
(3.37). If g, is distributed symmetrically, Dpea(T),Ty) will detect any possible single
even terms, none of any single odd terms, and a group of two defined by (3.39) or of -
three odd terms defined by (3.41) in the residuals.

For instance, no single or group of linear terms belong to the category of terms
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which can be detected by d’g&z(‘t). Dgza2(7)-does not detect the superdiagonal bilinear
types terms defined by egn (3.20). :

332 ¢§§§(Tl ,12)
By definition

Der(11,%2) = E[(§; — EGDIE e, — EED)Eir, — EG)]
= E[(§F - E(ED) + &7 — EED) + e) (&, ~EEf) +52., ~EEN+ £,y
"G, = EGD) + Elx, = EGD) + £11)]

= Qpepepe(T1,Tp) + Dpogope(T1,Ty) + Ppepope(T), o) + Dpepope(T1,1))
+ Dpopal(11,Ty) + Pgopepe(T),Ty) + Dpegope(T),Tp) + Dpepepo(T),T2)
+ Dpepepe(T1,T2) + Dgepere(T1,T7) + Depepe(T1,T9) + Peepeee(T1,T)
+ ¢§¢§,§.(tl,-:2) + Qpezepe(17,7) + ¢§a§o§:(11,12) + nggcga(‘tl,’tz)
+ Dpopepe(T1,Tp) + Dpepope(T1,T7) + Dpopopo(T), o) + Dopero(11,T)
+ Qpezope(T),T2) + Deepero(T,77) + Propepe(T1,70) + Dpopese(T1,T2)
+ Qpegepe(T1,72) : (3.43)

where the polynomial correlation d’"-g'g-(‘fl:'fz) is defined as

Dgrpope51,%9) = EI(E — EENNEL, — EENEL, — EEDN]

- E{(ics,,[s,l - }:E(Gin[ea»( '}F:IGz[e,_t,J - éE(G:[ea»
(}_;Gg,,[s,_ﬁ] zE(G le))
= E((Gle] ~ EGHeD)GHlers,) ~ EGIeD)GHler,) ~ EGHeD)
+(G I§] - EG [§DXG [§ J-EG [§ )G I§ Ji- EG [§1)

#. 8 8E ] (3.44)

and ¢§¢§:§-(‘51.12) is defined as
Deepege(11,%2) = E[EF — E(ED)) (€1 ) Elr, — EED)]

= (5G] - 3 EGHENEe (S Coler ] — 3 EGEIED))
n=1 n=1 =1 n=]
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= E((G [Egl - E(G [Eg]))(eg-gl)(G [E:-TJ E(G [E;]))

+ (Gile] - E(GE{E,]))(E,_fl)(Gﬁ[E,.fz] - E(G3le)) + - - - }(3.45)

Others are defined in an analogous manner. If the residual sequence is independent,
¢§§§(1:,":2), = ¢8(t), where c is a constant, but ideally if any unmodelled terms exist in
the residuals, then it is required that Dgee(Ty,7), # 0, when 1), T # 0.

@

(ii)

(iii)

(iv)

W)

If g, is asymmetrical, it can be proved that

q’&‘g‘&“(tl.tz)' ¢§'§‘§‘(tl.12)' ‘Dézg-g-(tl.tz), ¢§:§oga(‘tl.12). ¢§‘§'§"(tl.12) =0, for any
T1,T2 # 0. These correlations do not contribute to the test.

Deepepe(T1,Ty) + Dgegee(T1,T2) # 0, when 1,1, # 0, for any possible even terms. So
that any single even term can be detected.

(bg'a"ﬁ"(‘tl.'tz) + ¢§°§°Ef(tl."2) =f ¢€n§:§a(11.'f2) + ¢§a€|§:(11l12) + (b‘;’-g.ﬁ:('r,__tz)

+ Qgepero(T) T) # 0, when 1Ty, 75 # 0 for all possible odd terms except the case
when there exists a single odd term in the residuals

Ke, &y, " " " &y AR E:’..,,nf, (3.46)

m =1

where K is the corresponding Volterra kernel, m23, i,,,.,l,...,ip =0 or odd (1)
and mg is the possible even component in the odd term, ¢ 20. In this case, the
test does not distinguish between single odd terms and an independent sequence.

@zpx(1;,7,) can detect a group of two odd terms of the type of (3.46) together in
2330 L) group
the residuals
)
Ke, €, - E:—:,E:-:,_let-t‘,.zer'—:’ <P EEME
; ) (3.47)
' gl L. gl ne
Ke p€r, " Eur E:‘-:'; Er=t,n E:tt,, c

where K, K’ are the corresponding Volterra kemnels. a 23, i, is odd,
g2 bvas * " Up iae, "+ ip=0 or odd(>1), and nEnS are possible even
components in the three odd terms.

h—h=h—-h= """ a~1—1a = ‘a—l l, (3.48)

Drex(1,Ty) detects a group of tree odd terms of the types defined by (3.46)

-

ey L ke e
Ke,, €1 By, €i-1,€11,, € Ng

B g

i i
K’E,_,-IE,_,’I T ez-r’,er-bf‘l_,er:f't.z vi et—‘t’;ﬂs' (3.49)

i p—_— l.”5'1 E— v e
K'er Bt Crr ity E‘_?';ﬂq"




(@)
(ii)

(iii)

= 10 =

where K.K'.K” are the three corresponding Volterra kemels, g3, b25 and
Ipa1s s B Upats v et Upstoed”c =0 01 0dd (>1). M§,NJ NG~ are the possible
even components in each of the three odd terms, g, g,, ¢” 20.

h=h=fh=h= " Sl = =,
[ " " L (3-50)
fat) “ a2 =lap1 ~ 2= * " Sl =B =y =0

If €, is symmetrical, similarly it can be shown that

Perp(nh), Perp ), o2, Pegrpe(t 1), Pty ©) =0, for all
T),%2 # 0. These correlations do not therefore contribute to the test.

Deepepe(Ty,Tp) + Ppepepe(T) Tp) # 0, where 1,,1, # 0, for any possible even terms. So
that any single even term can be detected.

Deogoza(Ty Tp) + Progope(Ty,T2) + Qpopepa(T),72) + Dgoppe(Ty Tp) + Dpsgops(T1,T)
+ Qpezezo(T),T5) # 0, for some T, T, only on the following conditions:
(a) when there exists a single odd term in the residuals

Kel el ne (3.51)
where K is the corresponding Volterra kernel, i, i, odd and Mg is a possible
even component in the odd term, g 20.
(b) when there exists a group of two odd terms

o

if, I v, i
K’EI-'I’|EI-21’2 e el""f el—?:uﬂ?

a

/i i"l i"= “l' E (3.52)
K ei—l";el-lng U EI—?'.TIQ”

where K',K” are the comesponding Volterra  kernels. a22,

Vot U9 o gl g i1 879 =+, i", are all odd, and Ng.Ng- are possible
even components in the three odd terms. '

C1=Ca=t =t"= o =l — =t -1, (3.53)

(c) when there exists a group of three odd terms

i i i i W

Kezl-:, e~ o AL Erg-r,,ﬂ;
i1 i ’

K'al-lflef-z'l'z e El—‘f’.ng" § (3'54)

sy e
r1at a1 e r— e
K", 7 &7, & Ny

where K, K’ K” are the three corresponding Volterra kemnels, a3, b25 and
B 0 gy By s Bt g i i’ are all odd. Mg Mg Ng» are
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the possible even components in each of the three odd terms, ¢, ¢', ¢ 20.

h—hslh—h= """ Slhg—L=l1~1,

(3.55)

loel “lan2 = lg)1 = 1g2= " Sl =B =0 — b

These three categories of single or group of terms can be detected by Deee(T1,T2).
Lemma 3.3

Consider the residual sequence defined by eqn (3.4), if €, is distributed asymmetr-
ically, ®gg(t),7,) detects any possible even term, all possible odd terms except the
type of single term defined by (3.46), a group of two odd terms defined by (3.47) or
three odd terms defined by (3.48). If g, is distributed symmetrically, Deze(1,7))
detects any possible even terms, one type of odd terms defined by (3.51), and a group
of two odd terms defined by (3.52), or of three odd terms defined by (3.54) in the
residuals.

For instance, no linear terms can be detected by ‘Dgga(‘tl-"z)- But for the superdi-
agonal bilinear type terms as defined by (3.20) and (3.21), it is seen that there exisis a
group of two odd terms €, ;€,, , €.1€,5€,.3 Which are of the type defined by (3.47)
when g, is asymmetrical, or by (3.52) when ¢, is symmetrical, and can be detected by
Deee(71,72).

The third order correlations ¢¢§§(1:), including ¢'€§z(‘t), therefore provide very
similar information as the autocorrelation function ¢§§(1) for even terms. Dree (1)
detects a wider class of odd terms including bilinear types of terms, but with more
computation than @¢pa(t). Consequently the third order correlations cannot be used to
provide a general validity test for nonlinear systems.

3.4 Fourth order correlations

Only the special subset of fourth order correlations (Granger and Andersen 1981)
needs to be considered. Define

Dezga(7) = EIEE — EGHIER, - EED)]
= E[(Ef + B2 + &,)% —~ E(E + E2 + £)%)
G+ B + 8)% — EE! + E7 + £))]
= (bg‘rg,z'(t)-ﬁd?g,z'g,r(‘t)+d)§,z'§,r(‘t)-l-¢€,z'&;{ﬂ-'-¢:r«)gt«)(f)
+ tbg‘“,g,z(r) + ¢§(,,,§‘z(r) + tbg,rg‘,,(t) + Cbg,z'g(“,(‘t)

+ ‘Dcs'g,r(t) + ¢’§.r§.1'(t) + ‘D&zrg.z{'t) + ¢§.r§=='(‘f) + ﬂ’g.rg.r(t)
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¢ l:r g(w)(t) + d’g(ﬂ)é:z (T) <+ ¢§r2.§(u)(t) + ¢E}¢,§‘z‘(‘[) -+ ¢§°f§("‘9('t)
m—a’(‘t) + ‘bﬁ‘riw(t) + d>§‘ 2(1) + ¢§'z§“°(t) + ¢§"“§‘r(t)
+ (I)g,l‘gm(‘t) + ¢§(¢)§a2‘(‘t) + (Dg,rg(,,,(t) +@® e ng.,-(-:) (3.56)

where polynomial correlation @, 2 E‘,,(1:) is given by

Dy o™ = EIED? ~ E(ED)(ELEL) — EEED

= E{[(gczte,nz - E((iG:[e,nzn

I(}:G [s..Tl)ch [edd) - EuzG [e,n(zc [eD})
= E{[(G[e))® — E((GSle))IGS[e,G5le—) — E(GSIe1G5[E]] -
+ [(GSle])? - E(GSIe)DGH e, 1G4, 1] — EGHIe]GiIED]

+ -} (3.57)

and the others are defined in a similar manner. It is easy to see that if £, is indepen-
dent, ¢§t§z'(‘t) = ¢d(t), where c is a constant. If any unmodelled terms remain in the
residual sequence, therefore this should be indicated by d’gz’gz'('t) 20, when T 0.

By analysing eqn(3.56) it is sufficient to consider only the polynomial square
autocorrelations of even and odd terms and their square crosscorrelations with the
prediction error €, (Dg,z'g,z'(‘l.‘), @E";g,z(t), ¢E’,_.r§cz-('r), (bg‘z'g,_.z{‘t), ¢'§:r§,r(1:), ‘b&,z'g,r(ﬂ,
d’ge’gt"(t)' Any other polynomial correlations will be neglected in the analysis
because whether they are zero or non-zero does not affect the results of the analysis.
When ¢, is distributed both asymmetrically and symmetrically, it follows that
i) §,r§,z'(‘l:) + Q ‘zgg(‘t) + (Dezg,r(‘t) + cbg,z-a,z-(r) #0, when =0, for any possible
even terms. So that any kind of single even terms will be detected.
(ii) ¢§,z'€,z'(t) + ¢§,z'§,z(1) +d>§,1§,z(t) 4+ ¢ez‘§=r(‘t) # 0, when 1 # 0. That is, any sin-
gle odd term will be detected by ®gzz2(7).
Lemma 3.4

Consider the residual sequence defined by eqn (3.4) ®.--(T) detects any possible
terms that could be present in the residuals.
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3.5 Summary

The results obtained above under the assumptions defined in Section 2 are briefly
summarised in Fig.3.1, in terms of the unmodelled single term which can not be
detected by the corresponding test. The relationships between these tests and the Z,(6)
and f{.) can be easily established. For example, ‘Dgrgr(‘l:) corresponds to the choice of
Z,(0) equal to

Z(B) = [E;, &25, .. X T (3.58)

where  represents mean deleted, and f{.) is defined by eqn.(2.10). It is seen that in the
worst possible case when all odd moments are zero, any single even term can be
detected by d’ag:(‘t) and by ngz‘gz'(t), which  All the correlation functions except
‘I’g:’gr(‘t) in Fig.3.1 can only detect some odd terms out of all possible kinds of single
odd terms in the residuals. There are of course many other possible choices for Z,(8), a
general and convenient choice is the monomials of the elements of the vector y’(é) for
Z,8) (Leontaritis and Billings 1987)

Z®) = [m, my_g, o 7 (3.59)

where 1, as defined before is the maximum delay, m, is a monomial of elements of the
vector ¥, such as &,_;€,2e24 and f.) is defined by (2.9) or (2.10). These general
monomial correlations tests involve measurements of moments or cumulants to a cer-
tain order and can be viewed as an extension of the tests based on the second to the
fourth order correlations investigated above. Therefore some of the properties obtained
for the tests based on the second to the fourth order correlations can be apllied to the
the tests based on general monomial correlations. For example, it can be concluded
that like @gzpz(T), d)gzgc(‘t) will detect any possible terms. In a similar way assyme
that the p.d.f of the residuals is symmetric, then to detect a single odd term

i By, - - &, My defined by eqn.(3.7), a sufficient choice of m, for Z,(8) would be
m, = E.a-:.gx—:z T gt—t,. (3.60)

with f(.) defined by eqn.(2.9).‘ Tests thus formed are generalisations to Dpex(71.15),
where 7,7, take some particular values. The monomial form of the elements of y/(8)

defined by eqn.(3.59) in the correlation tests can be further extended to include other
functions, such as
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(abs(t,)

sin(E,)

cos(E,)

) exp(,)
exp(-E) Lt

atan(&,) -

sinh(§,)

| tanh(&,)

It is seen that tests based on correlations of these functions are combinations of the

monomial ones, and their properties are therefore decided by those of the correspond-
ing main monomial correlations. For example, '

S
I

‘Dgz‘sin‘l'(g)(‘r) = (bgl'az‘('f) + 1/9 ‘Dé!‘gﬁ'(‘t) 4 2 ’ (3.62)

with properties similar to ‘Dérgr(t), so that this choice will be a useful alternative to
(DE‘TE‘:'(T).

If there are clues regarding the kind of terms which could be unmodelled in the
residuals, from knowledge of the system under study perhaps, or certain types of terms
are of special interest, a sufficient test can be designed according to the above results.
For example, ®gee(1),T;), where 7,,1, take some particular values, can be employed to
detect bilinear terms. However if nothing is known about the residuals, a necessary and
sufficient choice is ¢§r§z'(17) which is the correlation of lowest possible order that can
detect any possible single term in the residuals. It should be noted however that
¢§z-§r(t) and related tests are aggregated tests in the sense that they are based on the
correlations of the squared residuals which is an aggregated measurement and on a few
occasions the tests can present so small a value that this can not be distinguished from
zero for some missing terms whose coefficients are very small. In these situations the
other tests derived in this study should be used to complemem d)gzgr('r) For example,
for residuals generated by

g, = 0.13,_15,_2 + E; (3.63)

the test tI)ggg(tl,'tz) has larger power than ¢§z-§r('t). As a result, it is advisable to use a
combination of several forms of test consisting of d)gzér(‘l:), d)ggz('t), and tests defined
by eqn.(3.60) which include the test @gz(t). Pgzg(7) is employed for general checking,
and if necessary ®ggx(t), the test of lowest possible order that can detect all possible
single even terms, is used to detect omitted even terms with small coefficients and a
number of tests defined by eqn.(3.60) are used for small odd terms. For example,
Dge(1) should be used to detect linear terms and Dgees(T1,T,,T3) for odd terms like




-24 .

[36,.,,(—:,_,,18,_,;,. where the coefficient p may be small. Generally digrgr(t) alone is

sufficient, but other specific tests can be added according to the particular require-
ments.

Fig. 3.1 Correlation based model validity test: A summary

Cases when the tests fail
Tests
Odd terms Even terms
P.df. is Crphoit, " Y
- £ :.gt 13 Nome
Asymmetrical R )
Pz(®) » ,.
P.df. is Bkl "~ €Ly, i) even
Symmetrical <t p,qodd
P.df. is €t Bar "
. :—-—:,gx fy Wone
Asymmetrical ne<n
(D‘-;E..!(T)
P.df.is A N
n ne
Symmetrical y %
P.df. is
Asymmetrical oty T None
De::(T T7) "
g‘,a % 2 P-d-f- iS 5:1_3‘8:2_128:’_,! sl e 8 NOne
Symmetrical | orel, - - , iy, iy, i3 0dd
Pdf.is
. None None
Asymmetrical
‘Dgi‘g:‘(’t)
Pdf.is
) None None
Symmetrical
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4. Simulation studies

The parameters of all models used in the simulation studies have been estimated
using a predicton error method based on Newton’s method with line search. The ini-
tal values of the parameters were obtained by using an orthogonal least square estima-
tor. The predicton error method combined with an orthogonal least squares estimator
is both accurate and fast for nonlinear tme series modelling and will be reporied in
forthcoming publications.

Example 1

A data sequence of 500 points was generated from the following bilinear time
series model

x; = 04x,_; - 0.25x,5 + 0.3x,_3 = 0.5x,.38, 5 + &, (4.1)

where g, is an i.id. Gaussian sequence with zero mean and unit variance. This sej of

data is illustrated in Fig, 4.1.

Fig. 4.1 Simulated data of Example 1

"MW«, ﬂ MJM\"WW i

4

-4.3F 0 ) ' 500

The following parameter estimates were obtained:

terms estimates stds
Xt 0.39742¢+00  0.21892¢-01
Xea -0.28580e+00  0.23297¢-01
X3 0.30859¢+00  0.29220e-01

X 3€  -0.49137e+00  0.23160e-01

where stds stands for the standard deviations of the estimates, and the variance of rgsi-
duals is 1.0323. It is seen that all the above estimates are unbiased, for the true values

of the parameters are all within one or two standard deviations of the estmates. The
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adequacy of the fitted model is confirmed by various forms of validity tests shown in
Figs4.2.1 and 4.2.2, including the aggregated test Dgzer(T), similar tests such as
Deos?(E)eos?(@)(T)» as well as other forms like Dpee(T1,Ty) which are designed to
efficiently detect some very small even terms.

If the superbilinear term x,_3€,; is deliberately omitted from the estimated model
structure the parameter estimatés become

terms estimates stds

X1 0.41477e+00 0.42336e-01
Xpn -0.26507e+00  0.44619e-01
X3 0.31423e+00  0.42333e-01

where the variance of residuals is 1.5793. This error in the model structure should be
reflected in the correlations of the residuals. As expected the results illustrated in
Fig.4.3.1.a-d indicate that the bilinear term x,_3€,_, which is missing from the figted
model will not be detected by D:(1), ¢§§z(1) and other forms of tests which are
extensions or generalisation of these, such as ‘Dg,em@t‘f) and Pgn3z)(T). This missing
term can be detected by Cbézaz(‘t), (Dgg;.‘(tl,'rz), and other similar forms of tests shown in
Fig. 43.1.e.f and 4.3.2a. ‘

Example 2

A data sequence of 500 points illustrated in Fig. 4.4 was simulated using the npn-
linear MA model

x, = 02g,_; — 0.36¢,_, + 0.15¢,_1€, 5 + 0.25e2 | + 0.18e2,€, 5 + €, (4.2)

i

where g, is an i.i.d. Gaussian N(0,1).

Fig. 4.4 Simulated data of Example 2

i
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The following parameter estimates were obtained:

terms estimates stds

€1 0.19306e+00  0.30563e-01
€2 -0.39001e+00  0.32384e-01
€2, 0.23603e+00  0.15924¢-01

€ 165  0.84242¢-01  0.34385¢-01

e2,6,.2  0.13752¢+00  0.19285¢-01
where the variance of residuals is 1.0451. The independence of the residuals associated
with this model is shown by the validity tests of various forms in Figs.4.5.1 and 4.5.2.

When the even term €2, is excluded from the fitted model structure, the follow-

ing parameter estimates were obtained:

terms estimates stds
€1 0.90149¢e-01 0.37004e-01
.2 -0.35204e+00 0.45926e-01

€162  -0.47061e-01  0.23771e-01
€2,6,3  0.62660e-01  0.11845¢-01

where the variance of residuals is 1.3061. As pointed out in the theoretical analysis,
this inadequate model will not be detected by Cbgg(t), cbgg:(‘r). and Qggne)(T) shown in
Fig. 4.6.1.a,b,c; but is clearly indicated by the specific tests ®ge(t), Pgge(t) ), and
similar types of tests, such as ¢¢m©(t) shown in Fig. 4.6.1.d,e,f. Alternatively the
omitted term will be indicated by ¢)§:-§:-(‘r.}, ¢§:'€4‘(‘C), and other similar types of aggre-
d b 85 Opgunl® md Bualt) T 16 noiel that By 2eile) and
ated tests such as an ; is” no at @z 2(T) an
¥ Wosrnkes R g o 50 X &)
dlgz-,m.@(t)[fail to detect this model deficiency, probably because these correlations

are very small, though they are non zero theoretically.

Now consider the case when the odd term e2,¢, 5 is omitted from the model

structure. The following parameter estimates were obtained:

terms esrimate_s stds
€1 0.20795e+00 0.39687e-01
€2 -0.44589e+00 0.35819e-01

€-182  0.46160e-01  0.38555c-01
2, -0.18971e+00  0.16552e-01
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where the variance of residuals is 1.1382. The missing odd term wiil not be deteczed
by ¢>===( T1,Ta) and similar kinds of tests such asq). - .>(~.\,iilusa-ated in Fig.4.7.1.2-c.
The omirted term will be disdnguished from an mdenendcnt sequence by D:=z(T).
‘DE.sm(F,)(T) and simnilar tests such as ®:. e-ane)(%) @S shown in Fig., 4.7.1.d-f; or aggre-

gated tests Qrr:x(1),Perze(t), and other related tests such as Pz, 0z (7) 2s shown in

Fig. 47.2.3-e. It is also noted that some aggregated tests exhibit small power probably
because of the small correlation values such as ‘Dﬂ'cosf(g)(“) as shown in Fig. 4.7.2.f.
b ] %

Example 3

Consider a sequence of 389 monthly unemployment figures for West Germany for
the period January 1948 to May 1980 illustrated in Fig.4.8.a. Subba Rao and Gabr
(1984) built models for the first 365 data and then forecast the remaining 24 values.
They fitted a full linear model, a best subset linear model, and a best subset bilinear
modei to the differenced data, with difference operator (1-B)(1~812%), where B is
defined as the backward shift operator. The differenced dara is plored in Fig. 4.2.b.

Fig. 4.8 Unemployment figures in West Germany

2 '] M \W (a) raw data
U\JLV\ MUU‘LMA K AN , o
S.4L 4 365
5E (b) differenced data
5. 5
| i
(iasai] I"ﬁi“f\lw}“"“*"*"“ﬁ“%w---—-w-'-m.,f-m
i | .
-9.%7E & | X

If the best subser linear and bilinear model smuctures of Subba Rao and Gabr
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(1984) are employed on the first 365 data samples, the estimates were obtained in
Table 4.1 using a prediction error routine:

Table 4.1 Subset linear model

terms estimates stds

X1 -0.97011e-01  0.49505e-01
X -0.13650e+00  0.45779e-01
X9 0.76754e-01  0.42572e-01
Xe 11 0.30321e+00  0.43307e-01

i}

X -0.37413e+00  0.46728e-01

where the variance of residuals is 0.81831e+10. These estimates were identical with
Subba Rao and Gabr’s. Applying a combination of validity tests of both aggregated
and specific forms yields the results shown in Figs.4.9.1 and 4.9.2, and clearly indi-
cate that the above best subset linear model is an inadequare fit to the differenced data.

Estimating a model with the same structure as Subba Rao and Gabr’s subsei pil-
inear model provided the results in Table 4.2.

Table 4.2 Subset bilinear model

terms estimates stds
const. -0.45936e+04  0.35902e+04
X 0.87436e-01  0.55230e-01
Xpa -0.12609e+00  0.14883e-01
X9 0.42629e-01  0.16984e-01
X 0.25571e+00  0.28816¢-01
X 12 -0.50658e+00  0.32749¢-01
X-1€-10  0.13150e-04  0.50550e-06
X, 6.5  -0.12787e-05  0.17777e-06
X564  -0.37868e-06  0.10722e-06
Xenn€-7  0.19025e-05  0.43059¢-06
X126y 0.15129e-05  0.20153e-06
X126 -0.22638e-05  0.32680e-06
X, €10 -0.95078e-06  0.18960e-06
X106 -0.19498e-05  0.27571e-06
X;_1€9 0.27147e-05  0.72953e-06
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where the variance of the residuals of 0.36665e+10 was identical with Subba Rao and

Gabr’s estimate. However Figs.4.10.1 and 4.10.2 clearly illustrate that this mode] is

also not adequate as shown by a combination of validity tests of various forms.It mey

therefore be pesdle to it a better model of the West German unemployment data
and this will be addressed in subsequent publications.

5. Conclusions

Model validity tests for nonlinear time series or signal processing applications
based on general correlation functions have been studied. The widely-used test for
linear systems based on the second order correlations of the residuals cannot distin-
guish between all nonlinear terms and an independent sequence. Assuming the worst
possible combinations of conditions in which all odd moments are zero and with all
possible unmodelled terms in the residual, it has been shown that the wraditional second
order correlation function @g(t) and the higher order correlations @gee(T),T2), Dgea(?)
can only detect a subset of the missing terms, whereas the autocorrelation function of
the squared residuals @zz;2(1), and tests based on aggregated measurements of the resi-
duals can detect all possible missing terms. These results apgly to validity tests based
on correlations using general monomials of the vector Y as entries and other periodic
functions which are combinations of the monomial case. To try to prove that every
possible term is detected(a{fgebraically very tedious however it is suggested that a com-
bination of tests be used consisting of an aggregated test ®gzgz(7) and some specific
tests including ¢§§z(t) to detect small even terms, anﬂ the general correlation jest
defined by eqn.(3.59) to detect some possibly small odd terms. The results have been
illustrated using simulated and real data sequencesand the use of a combination of
correlation tests in nonlinear time series validation was found to be both efficient and
practical. '
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Fig. 4.2.1 Chi-squared tésts for ‘Example 1 with f) = ¢,
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Fig. 4.2.2 Chi-squared tests ior Example 1 with f(§) = &
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Fig. 4.3.1 Chi-squared tests for Example 1 with () = ¢,
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Fig. 4.3.2 Chi-squared tests for Example 1 with i
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Fig. 4.5.1 Chi-squared tests for Example 2 with () = £,
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Fig. 4.5.2 Chi-squared tests for Example 2 with (g, = &2
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Fig. 4.6.1 Chi-squared tests for Example 2 with f(&) = &,
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Fig. 4.6.2 Chi-squared tests for Example 2 with f(g) = 2}
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Fig. 4.7.1 Chi-squared tests for Example 2 with &) = &,
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Fig. 4.7.2 Chi-squared tests for Example 2 with 1) = £2
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Fig. 4.9.1 Chi-squared tests for Example 3 with (€)= &,
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Fig. 4.9.2 Chi-squared tests for Example 3 with f(§) = &
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Fig. 4.10.1 Chi-squared tests for Example 3 with (€, = E,
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Fig. 4.10.2 Chi-squared tests for Example 3 with (g = 2
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