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Distributed Energy Efficient Clouds Over
Core Networks

Ahmed Q. Lawey, Taisir E. H. El-Gorashi, and Jaafar M. H. Elmirghani

Abstract—In this paper, we introduce a framework for design-
ing energy efficient cloud computing services over non-bypass
IP/WDM core networks. We investigate network related factors
including the centralization versus distribution of clouds and the
impact of demand, content popularity and access frequency on
the clouds placement, and cloud capability factors including the
number of servers, switches and routers and amount of storage
required in each cloud. We study the optimization of three cloud
services: cloud content delivery, storage as a service (StaaS), and
virtual machines (VMS) placement for processing applications.
First, we develop a mixed integer linear programming (MILP)
model to optimize cloud content delivery services. Our results indi-
cate that replicating content into multiple clouds based on content
popularity yields 43% total saving in power consumption com-
pared to power un-aware centralized content delivery. Based on
the model insights, we develop an energy efficient cloud content
delivery heuristic, DEER-CD, with comparable power efficiency
to the MILP results. Second, we extend the content delivery model
to optimize StaaS applications. The results show that migrating
content according to its access frequency yields up to 48% net-
work power savings compared to serving content from a single
central location. Third, we optimize the placement of VMs to min-
imize the total power consumption. Our results show that slicing
the VMs into smaller VMs and placing them in proximity to their
users saves 25% of the total power compared to a single virtual-
ized cloud scenario. We also develop a heuristic for real time VM
placement (DEER-VM) that achieves comparable power savings.

Index Terms—Cloud computing, content delivery, energy con-
sumption, IP/WDM, popularity, StaaS, virtual machines.

I. INTRODUCTION

C LOUD computing exploits powerful resource manage-
ment techniques to allow users to share a large pool of

computational, network and storage resources over the Internet.
The concept is inherited from research oriented grid computing
and further expanded toward a business model where consumers
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are charged for the diverse offered services [1]. Cloud comput-
ing is expected to be the main factor that will dominate the
future Internet service model [2] by offering a network based
rather than desktop based users applications [3].

Virtualization [4] lies at the heart of cloud computing, where
the requested resources are created, managed and removed flex-
ibly over the existing physical machines such as servers, storage
and networks. This opens the doors towards resource consolida-
tion that cut the cost for the cloud provider and eventually, cloud
consumers. However, cloud computing elastic management and
economic advantages come at the cost of increased concerns
regarding their privacy [5], availability [6] and power consump-
tion [7]. Cloud computing has benefited from the work done on
datacenters energy efficiency [7]. However, the success of the
cloud relies heavily on the network that connects the clouds to
their users. This means that the expected popularity of the cloud
services has implications on network traffic, hence, network
power consumption, especially if we consider the total path that
information traverses from clouds storage through its servers,
internal LAN, core, aggregation and access network up to the
users’ devices. For instance, the authors in [8] have shown that
transporting data in public and sometimes private clouds might
be less energy efficient compared to serving the computational
demands by traditional desktop.

Designing future energy efficient clouds, therefore, requires
the co-optimization of both external network and internal clouds
resources. The lack of understanding of this interplay between
the two domains of resources might cause eventual loss of power.
For instance, a cloud provider might decide to migrate virtual
machines (VMs) or content from one cloud location to another
due to low cost or green renewable energy availability, however,
the power consumption of the network through which users data
traverse to/from the new cloud location might outweigh the gain
of migration.

The authors in [9] studied the design of disaster-resilient op-
tical datacenter networks through integer linear programming
(ILP) and heuristics. They addressed content placement, rout-
ing, and protection of network and content for geographically
distributed cloud services delivered by optical networks. In [10]
mixed integer linear programming (MILP) models and heuris-
tics are developed to minimize delay and power consumption
of clouds over IP/WDM networks. The authors of [11] ex-
ploited anycast routing by intelligently selecting destinations
and routes for users traffic served by clouds over optical net-
works, as opposed to unicast traffic, while switching off unused
network elements. A unified, online, and weighted routing and
scheduling algorithm is presented in [12] for a typical opti-
cal cloud infrastructure considering the energy consumption of
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the network and IT resources. In [13], the authors provided an
optimization-based framework, where the objective functions
range from minimizing the energy and bandwidth cost to min-
imizing the total carbon footprint subject to QoS constraints.
Their model decides where to build a data center, how many
servers are needed in each datacenter and how to route requests.

In [14] we built a MILP model to study the energy efficiency
of public cloud for content delivery over non-bypass IP/WDM
core networks. The model optimizes clouds external factors in-
cluding the location of the cloud in the IP/WDM network and
whether the cloud should be centralized or distributed and cloud
internal capability factors including the number of servers, in-
ternal LAN switches, routers, and amount of storage required
in each cloud. This paper extends the work by (i) studying the
impact of small content (storage) size on the energy efficiency
of cloud content delivery (ii) developing a real time heuristic
for energy aware content delivery based on the content deliv-
ery model insights, (iii) extending the content delivery model to
study the Storage as a Service (StaaS) application, (iv) develop-
ing a MILP model for energy aware cloud VM placement and
designing a heuristic to mimic the model behaviour in real time.

The remainder of this paper is organized as follows. Section II
briefly reviews IP/WDM networks and clouds. In Section III, we
introduce our MILP for content delivery, discuss its results and
propose the DEER-CD real time heuristic. Section IV extends
the model of Section III to study Storage as a Service. In Section
V, a MILP for VMs based cloud is introduced and a heuristic
(DEER-VM) is proposed. Finally, Section VI concludes the
paper.

II. CLOUDS IN IP/WDM NETWORKS

The IP/WDM network consists of two layers, the IP layer
and the optical layer. In the IP layer, an IP router is used at
each node to aggregate data traffic from access networks. Each
IP router is connected to the optical layer through an optical
switch. Optical switches are connected to optical fiber links
where a pair of multiplexers/demultiplexers is used to multi-
plex/demultiplex wavelengths [15]. Optical fibers provide the
large capacity required to support the communication between
IP routers. Transponders provide OEO processing for full wave-
length conversion at each node. In addition, for long distance
transmission, EDFAs are used to amplify the optical signal on
each fiber. Fig. 1 shows the architecture of an IP/WDM network.

Two approaches can be used to implement the IP/WDM net-
work, namely, lightpath bypass and non-bypass. In the bypass
approach, lightpaths are allowed to bypass the IP layer of in-
termediate nodes eliminating the need for IP router ports, the
most power consuming devices in the network, which signifi-
cantly reduces the total network power consumption compared
to the non-bypass approach. However, implementing such an ap-
proach involves many technical challenges such as the need for
long reach, low power optical transmission systems, limitations
with the loss of electronic processing and as such the advantages
electronic processing provides at intermediate nodes in terms of
grooming, shared protection [16], and deep packet inspection.
On the other hand, the forwarding decision in the non-bypass

Fig. 1. IP/WDM Network.

Fig. 2. Cloud architecture.

approach is made at the IP layer; therefore, the incoming light-
paths go through OEO conversion at each intermediate node.
The non-bypass approach is implemented in most of the current
IP/WDM networks. In addition to the simple implementation,
the non-bypass approach allows operators to perform traffic con-
trol operations such as deep packet inspection and other analysis
measures.

A number of papers in the literature have investigated the en-
ergy efficiency of IP/WDM networks. The authors in [15] have
shown that the lightpath bypass approach usually reduces the
power consumption compared to the non-bypass approach as
bypassing the IP layer at intermediate nodes reduces the num-
ber of router ports, the major power consumers in IP/WDM
networks. In [17], the authors focused on reducing the CO2
emission of backbone IP/WDM networks by introducing re-
newable energy sources. In [18], a MILP model is developed
to optimize the location of datacentres in IP/WDM networks as
a means of reducing the network power consumption. In [19],
energy-efficient IP/WDM physical topologies are investigated
considering different IP/WDM approaches, nodal degree con-
straints, traffic symmetry and renewable energy availability. In
this paper we evaluate our proposed cloud models over a non-
bypass IP/WDM network as non-bypass is still the most widely
implemented approach.

A typical cloud consists of three main parts, namely; servers,
internal LAN and storage. Clouds are usually built very near to
core network nodes to benefit from the large bandwidth offered
by such nodes to serve users. Fig. 2 shows how the different parts
inside the cloud are connected and how the cloud is connected to
the core network. If the cloud is serving users located at another
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core node, traffic will flow through the optical switch and core
router on its way towards the core network. On the other hand
if the users are located on the same node, the traffic will flow
through the optical switch on its path towards the aggregation
router where it will be routed to local users. The core/edge
network power consumption of the second scenario is limited
to the optical switch and aggregation router.

III. ENERGY EFFICIENT CONTENT DELIVERY CLOUD

A. Content Delivery Cloud MILP Model

Jointly optimizing content distribution for content providers
(CPs) and traffic engineering for Internet service providers
(ISPs) is studied in [20] from QoS perspective. The authors
in [21] studied the same problem from energy point of view
where ISP and CP cooperate to minimize energy. In [22], the
authors compared conventional and decentralized server based
content delivery networks (CDN), content centric networks
(CCN), and centralized server based CDN using dynamic opti-
cal bypass where they took popularity of content into account.
In their conventional CDN model, content is fully replicated
to all datacenters regardless of content popularity. They showed
that CCN is more energy efficient in delivering the most popular
content while CDN with optical bypass is more energy efficient
in delivering less popular content.

In this section we introduce the MILP model developed to
minimize the power consumption of the cloud content delivery
service over non-bypass IP/WDM networks. Given the client
requests, the model responds by selecting the optimum num-
ber of clouds and their locations in the network as well as the
capability of each cloud so that the total power consumption
is minimized. The model also decides how to replicate content
in the cloud according to its popularity so the minimum power
possible is consumed in delivering content. A key difference
between our content delivery model and the work done in the
literature is the extensive study of the impact of content pop-
ularity among different locations where we compare content
replication schemes.

Below we re-introduce our model developed in [14] for com-
pleteness. We assume the popularity of the different objects
of the content follows a Zipf distribution, representative of the
popularity distribution of several cloud content types such as
YouTube and others [23] where the popularity of an object of
rank i is given as follows:

P (i) = ϕ/i

where P (i) is the relative popularity of the object of rank i and
ϕ is

ϕ =

(
N∑

i=1

1
i

)−1

.

We divide the content in our model into equally sized pop-
ularity groups. A popularity group contains objects of similar
popularity.

We define the following variables and parameters to represent
the IP/WDM network:

Parameters:
N Set of IP/WDM nodes.
Nmi Set of neighbors of node i.
|N | Number of IP/WDM nodes.
Prp Router port power consumption.
Pt Transponder power consumption.
Pe EDFA power consumption.
POi Power consumption of optical switch installed at

node i ∈ N .
Pmd Multi/demultiplexer power consumption.
W Number of wavelengths per fiber.
B Wavelength bit rate.
S Max span distance between EDFAs.
Dmn Distance between node pair (m, n).
Amn Number of EDFAs between node pair (m, n).
PUE n IP/WDM network power usage effectiveness.
M A large enough number.
Δt Time granularity, which represents the evaluation

period.
Variables (All are Nonnegative Real Numbers)
Cij Number of wavelengths in the virtual link (i, j).
Lsd

ij Traffic flow between node pair (s, d) traversing
virtual link (i, j).

Wij
mn Number of wavelength channels in the virtual link

(i, j) traversing physical link (m, n).
Wmn Total number of used wavelengths in the physical

link (m,n).
Fmn Total number of fibers on the physical link (m,n).
Qi Number of aggregation ports in router i.

Under the non-bypass approach, the total network power con-
sumption is composed of [15], [18]:

1) The power consumption of router ports∑
i∈N

Prp · Qi + P rp ·
∑
m∈N

∑
n∈N mm

Wmn .

2) The power consumption of transponders∑
m∈N

∑
n∈N mm

Pt · Wmn.

3) The power consumption of EDFAs∑
m∈N

∑
n∈N mm

Pe · Amn · Fmn .

4) The power consumption of optical switches∑
i∈N

POi.

5) The power consumption of multi/demultiplexers∑
m∈N

∑
n∈N mm

Pmd · Fmn .

The content delivery cloud is represented by the following
variables and parameters:
Parameters:
Ud Set of users in node d.
PG Set of popularity groups, {1. . . |PG|}.
|PG| Number of popularity groups.
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PUE c Cloud power usage effectiveness.
S PC Storage power consumption.
S C Storage capacity of one storage rack in GB.
Red Storage and switching redundancy.
S PPGB Storage power consumption per GB,

S PPGB = S PC/S C.
S Utl Storage utilization.
PGSp Popularity group storage size, PGSp =

(S C/ |PG|) · S Utl.
CS C Content server capacity.
CS EPB Content server energy per bit.
Sw PC Cloud switch power consumption.
Sw C Cloud switch capacity.
Sw EPB Cloud switch energy per bit, Sw EPB =

Sw PC/Sw C.
R PC Cloud router power consumption.
R C Cloud router capacity.
R EPB Cloud router energy per bit, R EPB =

R PC/R C.
Drate Average user download rate.
Pp Popularity of object p (Zipf distribution).
NDd Node d total traffic demand, NDd =∑

i∈Ud
Drate.

DP d Popularity group p traffic to node d,Dpd =
NDd · Pp .

Variables (All are Nonnegative Real Numbers)
δsdp δsdp = 1 if popularity group p is placed in node

s to serve users in node d, δsdp = 0 otherwise.
LPsdp Traffic generated due to placing popularity group

p in node sto serve users in node d.
Lsd Traffic from cloud sto users in node d.
Cups Cloud s upload capacity.
δsp δsp = 1 if cloud s stores a copy of popularity

group p, δsp = 0 otherwise.
Clouds Clouds = 1 if a cloud is built in node

s,Clouds = 0 otherwise.
CN Number of clouds in the network.
CSNs Number of content servers in cloud s.
SwNs Number of switches in cloud s.
RNs Number of routers in cloud s.
StrCs Cloud s storage capacity.

The cloud power consumption is composed of
1) The power consumption of content servers

(SrvPC CD): ∑
s∈N

Cups · CS EPB.

2) The power consumption of switches and routers
(LANPC CD):∑

s∈N

Cups · (Sw EPB · Red + R EPB) .

3) The power consumption of storage (StPC CD):∑
s∈N

StrCs · S PPGB · Red.

The model is defined as follows:

Objective: Minimize

PUE n ·
(∑

i∈N

Prp · Qi + Prp ·
∑
m∈N

∑
n∈N mm

Wmn

+
∑
m∈N

∑
n∈N mm

Pt · Wmn

+
∑
m∈N

∑
n∈N mm

Pe · Amn · Fmn

+
∑
i∈N

POi +
∑
m∈N

∑
n∈N mm

Pmd · Fmn

)

+PUE c ·
(∑

s∈N

Cups · CS EPB

+
∑
s∈N

Cups · (Sw EPB · Red + R EPB)

+
∑
s∈N

StrCs · S PPGB · Red

)
. (1)

Equation (1) gives the model objective which is to minimize
the IP/WDM network power consumption and the cloud power
consumption

Subject to:
1) Flow conservation constraint in the IP layer

∑
j∈N :i �=j

Lsd
ij −

∑
j∈N :i �=j

Lsd
ji =

⎧⎨
⎩

Lsd if i = s
−Lsd if i = d
0 otherwise

∀s, d, i ∈ N : s �= d. (2)

Constraint (2) is the flow conservation constraint for IP layer.
It ensures that the total incoming traffic is equal to the total out-
going traffic for all nodes except for the source and destination
nodes.

2) Virual link capacity constraint∑
s∈N

∑
d∈N :s �=d

Lsd
ij ≤ Cij · B

∀i, j ∈ N : i �= j. (3)

Constraint (3) ensures that the traffic traversing a virtual link
does not exceed its capacity.

3) Flow conservation constraint in the optical layer

∑
n∈N mm

Wij
mn −

∑
n∈N mm

Wij
nm =

⎧⎨
⎩−

Cij if m = i
Cij if m = j
0 otherwise

∀i, j,m ∈ N : i �= j. (4)

Constraint (4) represents the flow conservation for the optical
layer. It ensures that the total number of outgoing wavelengths
in a virtual link is equal to the total number of incoming wave-
lengths except for the source and destination nodes of the virtual
link.
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4) Physical link capacity constraints∑
i∈N

∑
j∈N :i �=j

W ij
mn ≤ W · Fmn

∀m ∈ N ∀n ∈ Nmm . (5)∑
i∈N

∑
j∈N :i �=j

W ij
mn = Wmn

∀m ∈ N ∀n ∈ Nmm . (6)

Constraints (5) and (6) represent the physical link capacity
constraints. Constraint (5) ensures that the number of wave-
length channels in virtual links traversing a physical link does
not exceed the capacity of fibres in the physical link. Constraint
(6) ensures that the number of wavelength channels in virtual
links traversing a physical link is equal to the number of wave-
lengths in that physical link.

5) Number of aggregation ports constraint

Qi = 1/B ·
∑

d∈N :i �=d

Lid

∀i ∈ N. (7)

Constraint (7) calculates the number of aggregation ports for
each router. We use relaxation in our model due to the large
number of variables. However, as we are interested in power
consumption, relaxation has a limited impact on the final re-
sult as the difference will be within the power of less than one
wavelength (router port and transponder) which is negligible
compared to the total power consumption. The heuristics which
produce comparable results provide independent verification for
the model (and its relaxation), especially that the routing and
placements in the heuristics follow approaches that are indepen-
dent of the model.

6) IP/WDM network traffic

LPsdp = δsdp · DP d

∀s, d ∈ N ∀p ∈ PG (8)∑
s∈N

LPsdp = DP d

∀d ∈ N ∀p ∈ PG. (9)

Lsd =
∑

p∈P G

LPsdp

∀s, d ∈ N. (10)

Cups =
∑
d∈N

Lsd

∀s ∈ N. (11)

Constraint (8) calculates the traffic generated in the IP/WDM
network due to requesting popularity group p that is placed in
node s by users located in node d. Constraint (9) ensures that
each popularity group request is served from a single cloud
only. We have not included traffic bifurcation where a user may
get parts of the content from different clouds. This is a useful
extension to be considered in future. Constraint (10) calculates

the traffic from the cloud in node s and users in node d, to be
used in constraints (2) and (7). Constraint (11) calculates each
cloud upload capacity based on total traffic sent from the cloud.

7) Popularity groups locations

∑
d∈N

δsdp ≥ δsp

∀s ∈ N ∀p ∈ PG. (12)∑
d∈N

δsdp ≤ M · δsp

∀s ∈ N ∀p ∈ PG. (13)

Constrains (12) and (13) ensure that popularity group p is
replicated to cloud s if cloud s is serving requests for this pop-
ularity group, where M is a large enough unitless number to
ensure that δsp = 1 when

∑
d∈N δsdp is greater than zero.

8) Cloud location and number of clouds

∑
p∈P G

δsp ≥ Clouds

∀s ∈ N. (14)∑
p∈P G

δsp ≤ M · Clouds

∀s ∈ N. (15)

CN =
∑
s∈N

Clouds. (16)

Constraints (14) and (15) build a cloud in location s if that
location is chosen to store at least one popularity group or
more, where M is a large enough unitless number to ensure
that Clouds = 1 when

∑
p∈P G δsp is greater than zero.

Constraint (16) calculates total number of clouds in the net-
work.

9) Cloud Capability

CSNs = Cups/CS C

∀s ∈ N. (17)

SwNs = (Cups/Sw C) · Red

∀s ∈ N. (18)

RNs = Cups/R C

∀s ∈ N. (19)

StrCs =
∑

p∈P G

δsp · PGSp.

∀s ∈ N. (20)

Constraints (17)–(19) calculate the number of content servers,
switches and routers required at each cloud based on cloud up-
load traffic going through these elements. The integer value is
obtained using the ceiling function. Note that the number of
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Fig. 3. The NSFNET network with link lengths in kilometer.

Fig. 4. Number of users versus time of the day.

switches (SwNs) is calculated considering redundancy. Con-
straint (20) calculates the storage capacity needed in each cloud
based on the number of replicated popularity groups.

B. The Content Delivery Cloud Model Results

The NSFNET network, depicted in Fig. 3, is considered as
an example network to evaluate the power consumption of the
cloud content delivery service over IP/WDM networks. It has 14
nodes and 21 bidirectional links [15]. In this paper the network is
designed considering the peak traffic to determine the maximum
resources needed. However we still run the model considering
varying levels of traffic throughout the day to optimally repli-
cate content as the traffic varies to obtain the minimum power
consumption. One point in the operational cycle (the point that
corresponds to the peak demand) is strict network design where
the maximum resources needed are determined. At every other
point the optimization is a form of adaptation where resources
lower than the maximum are determined and used to meet the
demand.

In our evaluation users are uniformly distributed among the
NSFNET nodes and the total number of users in the network
fluctuates throughout the day between 200 k and 1200 k as
shown in Fig. 4. The values in Fig. 4 are estimated, based on the
data in [18]. The number of users throughout the day considers
the different time zones within the U.S. [18]. The reference time
zone in Fig. 4 is EST. We use the model to evaluate the power
consumption associated with the varying number of users at the
different times of the day, with a 2 h granularity.

Table I gives the input parameters of the model. The router
ports power consumption and number of wavelength per fiber
is based on [15], note that the power consumption of the IP

TABLE I
INPUT DATA FOR THE MODELS

router port takes into account the power consumption of the
different shared and dedicated modules in the IP router such as
the switching matrix, power module and router processor. The
eight-slot CRS-1 consumes about 8 kW and therefore the power
consumption of each port is given as 1 kW.

The ITU grid defines 73 wavelengths at 100 GHz spacing
or alternatively double this number approximately at 50 GHz
channel spacing. In more recent studies [29] we have adopted
lower router power per port, 440 W, based on Alcatel-Lucent
designs. Also a larger (>16) number of wavelengths per fiber is
possible at 100 or 50 GHz spacing, however with super channels
and the introduction of 400 Gb/s and envisaged 1 Tb/s and
possibly flexigrid developments, the number of channels may
fall. Also note that a larger number of wavelengths per fiber will
reduce the number of fibers and hence EDFAs, but the power
consumption of the latter is small. To facilitate comparison with
previous studies we have adopted the figures in [15], [18]. Note
that data rate of router ports is the same as the wavelength rate
(40 Gb/s).

The energy per bit (EPB) in the table is capacity based as we
base it on the maximum power and maximum rate of the server.
However note that the model always attempts to fully utilize
servers, see constraint (17) and switches off unused servers to
minimize power consumption. The combination of these two
operational factors results in EPB based on capacity being a
good representation. The 5 Mbps average download rate is based
on the results of a survey conducted in the U.S. in 2011 [27].

A typical telecom office PUE is 1.5 [8]. Typical data centers
PUE varies widely between 1.1 for large data centers able to
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implement sophisticated water cooling [30] to small data centers
with PUE as high as 3 [31]. We have adopted a PUE of 2.5 in
this study for the small distributed clouds considered.

We divide the cloud content into 50 popularity groups which is
a reasonable compromise between granularity and MILP model
execution time. Note also that distributing the content into mul-
tiple locations does not increase the power consumption of the
cloud, i.e., the power consumption of a single cloud with all
the content is equal to the total power consumption of multiple
distributed clouds storing the same content without replication.
The reason is that each server has an idle power; however, it is
either switched ON (and through packing is operated near max-
imum capacity) if needed or switched OFF. The cloud is made
up of a large number of servers (200 for example, see Fig. 10).
The cloud power consumption therefore increases with good
granularity in steps equal to the power consumption of a single
server. This leads to a staircase (with sloping stairs) profile of
power versus load and with the very large number of steps, the
profile is almost linear. This form of power management means
that placing a given piece of content in different clouds amounts
to the same power consumption approximately. We also assume
similar type of equipment and PUE, hence we do not assume a
fixed power component associated with placing a cloud in cer-
tain location. We also assume that underutilized storage units,
switches, and routers) in the cloud are switched OFF or put in
low power sleep mode. Note that savings are averaged over the
12 time points of the day (24 h). The metrics used are average
savings over 24 h. These are the average network power saving,
average cloud power saving and average total power saving.

Note that the variables specified above (with the exception
of binary variables) take values that are dictated by the num-
ber of users, their data rates, content popularity and scenario
considered.

We compare the following different delivery schemes:
1) Single cloud: Users are served by single cloud optimally

located at node 6 as it yields the minimum average hop
count. This scenario is obtained by setting the total number
of clouds to 1, i.e., constraint (16) becomes

CN =
∑
s∈N

Clouds = 1.

We consider two schemes in this model:
a) No power management (SNPM): The cloud and the

network are energy inefficient where different com-
ponents are assumed to consume 80% of their max-
imum power consumption at idle state.

b) Power management (SPM): The cloud and the net-
work are energy efficient where underutilized com-
ponents are powered off or put into deep sleep at
off-peak periods.

2) Max number of clouds with power management: A cloud
is located at each node in the network, i.e. the network
contains 14 clouds. In this case the total number of clouds
is set to 14, i.e., constraint (16) becomes

CN =
∑
s∈N

Clouds = 14.

We consider three schemes in this model
a) Full replication (MFR): Users at each node are

served by a local cloud with a full copy of the con-
tent. This scheme is obtained by setting the number
of popularity groups to 1, i.e., |PG| = 1.

b) No replication (MNR): The content is distributed
among all the 14 clouds without replication. This
scheme is obtained by ensuring that the total number
of replicas (δsp) does not exceed the original number
of popularity groups (|PG|) :∑

p∈P G

∑
s∈N

δsp = |PG| .

c) Popularity based replication (MPR): The model op-
timizes the number and locations of content replicas
among all the 14 clouds based on content popularity.

3) Optimal number of clouds with power management: The
number and location of clouds are optimized. We consider
three schemes of this scenario:

a) Full replication (OFR): Each cloud has a full copy
of the content. This scheme is obtained by setting
|PG| = 1.

b) No replication (ONR): Content is distributed among
the optimum clouds without replication. This
scheme is obtained by setting∑

p∈P G

∑
s∈N

δsp = |PG| .

c) Popularity based replication (OPR): The number
and locations of content replicas are optimized based
on content popularity.

We reduce the popularity group size to 20% of the size con-
sidered in the results of [14], i.e.,PGSp = 0.756TB. A single
download rate of 5 Mb/s is used for the two cases of file size.
The two file sizes may for example correspond to two movies of
different length and/or different resolution. At a constant user
rate the time taken to download the larger file (before playing in
this case) is longer. The smaller popularity group size represents
a cloud scenario where music, for instance, is more popular than
movies. Fig. 5(a) shows the total power consumption of the dif-
ferent schemes while Fig. 5(b) and (c) shows the network and
cloud power consumptions, respectively.

The SNPM scheme, where all content is placed in a sin-
gle cloud, results in the highest total power consumption as all
the resources are switched on even at off-peak periods where
idle power consumption contributes to 80% of the total power
consumption. Therefore, the small variation in SNPM power
consumption throughout the day is due to the 20% load induced
power consumption. We use SNPM as our benchmark to calcu-
late the power savings achieved by the other schemes. The power
awareness of the SPM scheme saves 37% of both the network
and cloud power consumption, compared to the SNPM scheme.
The optimal location of the single cloud is selected based on
network and cloud power consumption minimization using our
MILP. Node 6 is the optimum location that minimizes power
consumption based on MILP. It yields the minimum average
hop count which is a good choice for power minimization given
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Fig. 5. (a) Total power consumption. (b) IP/WDM network power consump-
tion. (c) Cloud power consumption.

that the traffic is uniformly distributed among the nodes. Note
that this choice of the reference case is conservative. We could
have chosen the reference case as a single cloud, but optimally
placed to minimize delay or network CAPEX as is currently
done, in which case the energy savings as a result of our work
will be higher.

We also investigate the other extreme scenario represented
by the MFR scheme where content is fully replicated into all
possible locations (14 nodes of the NSFNET). At the network
side (see Fig. 5(b)), the MFR saves 99.5% of the network power
consumption as all requests generated in a node are served
locally. The other 0.5% of the power consumption is associated
with the optical switch shown in Fig. 2. However, having a cloud
with full content at each node, especially with large popularity
group size, significantly increases the cloud power consumption
due to storage. Therefore the MFR scheme is not efficient if
storage power consumption continues to dominate the power
consumption of datacenters, for instance, we have shown in [14]
that MFR cloud power consumption even exceeds the SNMP

cloud power consumption at peak periods of the day, such as at
10:00, 16:00 and 22:00.

Despite their different approaches in optimizing content de-
livery, the MNR, ONR and SPM schemes have similar total
power consumption. In terms of the cloud power consumption,
the three schemes produce the lowest power consumption as
content is not replicated and as mentioned above distributing
the content into multiple locations does not increase the power
consumption. In the following we discuss the network power
consumption of the different schemes.

The ONR scheme finds the optimal number of clouds required
to serve all users from a single copy of the content, where dif-
ferent popularity groups are migrated to different clouds based
on their popularity. However, our results show that the ONR
scheme selects to serve users using a single cloud located at
node 6, i.e., ONR imitates the SPM scheme. This is because
distributing the content into multiple clouds without replicating
it results in higher network power consumption. For instance,
if the ONR scheme decides to build two clouds one at node 1
(far left end of NSFNET) and the other at node 12 (far right end
of NSFNET), then users at nodes located at the left end of the
network will have to cross all the way to the right end of the
network to download some of their content from cloud at node
12 as we do not allow this content to be replicated into the cloud
in node 1, and vice versa for users located at nodes at the right
end of the network asking for content only available at node 1.
However, if all popularity groups are kept in node 6 which is
the node that yields the minimum average hop count to differ-
ent nodes in the network (this will be shown later in Section
III-C), then the power consumed in the network to download
content will be minimized, resulting in 37% saving in both total
and network power consumption compared to SNPM, similar
to SPM.

The main insight of the ONR scheme is that energy effi-
cient content delivery prioritizes single cloud solutions over
distributed solutions if content is not allowed to be replicated,
the content has similar popularity at every node, and we are free
to choose the number of clouds. This raises the question of how
should we replicate content in a scenario of more than one cloud.
The extreme of such a scenario is represented by the MNR where
each node in the network contains a cloud. To create a cloud in a
certain location, an object should be migrated into that location.
However, as discussed earlier migrating content into multiple
clouds without replication results in high power consumption
in the network. The MNR scheme selects to place content in
agreement with the insights of the ONR scheme, where most
of the content is located in node 6, while migrating only the
least popular objects, associated with the lowest network power
consumption, into other nodes. This placement strategy meets
the MNR scheme constraints and at the same time minimizes
the network power consumption needed to access content. The
MNR network power consumption slightly deviates from the
ONR network power consumption (36.5% rather than 37%) as
the least popular contents are not served from the cloud in node
6. The MNR scheme, however maintains the total power saving
achieved by the ONR scheme, i.e., 37% compared to the SNPM
scheme.
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Fig. 6. OFR powered ON clouds at different times of the day.

ONR and MNR still follow the SPM scheme and centralize
the content in one cloud at node 6, as observed in [14]. Therefore
centralizing the content is the optimum solution if content is not
allowed to be replicated regardless of content size.

As already observed, serving content locally by enforcing
replication in all the 14 locations (MFR scheme) yields the
highest cloud power consumption and the lowest network power
consumption. In the OFR scheme we investigated the impact of
removing the constraint on the number of clouds; so the model
is free to choose the optimal number of clouds that have a full
copy of the content. The OFR scheme manages to reduce the
total number of clouds from 14 to 6 at off-peak periods of the day
(between 00:00 and 08:00). These clouds are switched on and
off according to the traffic variation as seen in Fig. 6. However,
at peak periods (between 10:00 and 22:00) the OFR scheme
converges to MPR scheme and builds clouds at all nodes as
the power saved in the network is higher than the power lost
in storage replication. OFR achieves significant power savings
at the network side of 92% compared to the SNPM scheme,
a saving higher than what is achieved by the SPM, ONR and
MNR as the content is fully replicated to optimally located
clouds. Eventually, the OFR scheme increases the total power
saving compared to the SPM, ONR and MNR schemes, where
the cloud in node 6 is mainly used, from 37% to 42.5% compared
to SNPM, which is also slightly higher saving compared to MFR
scheme due to deploying fewer clouds at off-peak periods.

From the discussion above it can be seen that the savings
achieved by the OFR scheme are limited by the constraint on
the content replication granularity where all content is replicated
to a certain location if a cloud is created in that location. The
question raised next is how much can the limits of power saving
be pushed if the constraints on both the number of clouds and
content replicated at each cloud are removed. This approach is
implemented by the OPR scheme. The results in Fig. 5 indicate
that the OPR scheme provides solutions with the lowest total
power consumption.

The OPR, MPR and OFR schemes in this case have similar
power consumption to the MFR scheme (43% total power sav-
ings compared to SNPM) which implies that the three schemes
tend to replicate the majority of the content in all the 14 clouds

Fig. 7. Popularity groups placement under the OPR scheme at 06:00 and
22:00.

most of the time due to the small storage power cost as shown
in Fig. 5(c).

Fig. 5(b) shows that the network power savings for the dif-
ferent models follow a similar trend to that in Fig. 5(a). At the
network side, the OPR, MPR, OFR and MFR schemes save
92–99.5% of the network power consumption compared to the
SNPM scheme while the SPM, ONR and MNR schemes save
37% of the network power consumption. Despite their similar
average network power saving, OPR and OFR have different
behaviour in saving power at the network side. OPR maintains
the network power at the lowest level at all times by powering
on the optimum number of clouds with the optimum content.
However, OFR is less flexible as all the powered on clouds
have to have a full copy of the content. Therefore OFR powers
on only four clouds at low load and consumes higher network
power while behaving as MFR and consuming power only in
optical switches at high loads (10:00 to 22:00) by powering
on 14 clouds (see Fig. 6), resulting in a daily average network
power consumption similar to the OPR scheme.

Fig. 7 shows how the OPR scheme replicates the content at
two times of the day, 06:00 (left half of Fig. 7) and 22:00 (right
half of Fig. 7), which correspond to the lowest and highest load
demands, respectively (as shown in Fig. 4). As the popularity of
the content increases (popularity group 1 is the most popular),
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Fig. 8. Total number of replications per popularity group under the OPR
scheme.

Fig. 9. Number of popularity groups replicated at each cloud under the OPR
scheme.

it will be replicated (black circle) to more clouds as this will
result in serving more requests locally and therefore reducing
the network power consumption. At 06:00, most of the content
is kept in node 6, while at 22:00, more popularity groups are
replicated into more clouds as under higher loads the power
consumption of the cloud is compensated by higher savings in
the network side. Compared to the results of [14], Fig. 7 shows
that OPR tends to replicate more content to more clouds due to
lower power consumption of storage, especially that we fixed
the average download rate at 5 Mbps. As content is equally pop-
ular among all users and users are uniformly distributed among
nodes, OPR will replicate the most popular content into all the
14 nodes most of the day. Therefore OPR has similar power effi-
ciency to the MPR where content is optimally replicated among
all the 14 clouds based on its popularity.

Fig. 8 shows the total number of replicas per popularity group
for the OPR scheme, obtained by summing the black circles for
each popularity group in Fig. 7. At low demand, the number
of replications follows a Zipf distribution. However, at high de-
mand (at 22:00), the scheme does not follow a Zipf distribution
in replicating content as the high demand and the low power
cost of storage allow the majority of the popularity groups to be
replicated into all the nodes.

Fig. 9 shows the total number of popularity groups replicated
at each built cloud, obtained by summing the black circles in
Fig. 7 for each cloud; i.e., Fig. 9 reflects the relative cloud size
built at each node. At low demand periods (06:00) most of the
content is replicated to the cloud in node 6 only, while at peak
period (time 22:00) fewer popularity groups are replicated to

Fig. 10. Number of powered on servers in each cloud under the OPR scheme.

TABLE II
THE POWER SAVINGS GAINED BY THE DIFFERENT CONTENT DELIVERY

CLOUDS SCENARIOS COMPARED TO THE SNPM SCENARIO

the cloud in node 6 as the high network power savings at peak
period justify replicating the content to more clouds instead of
having a single copy in a centralized cloud. Due to the low power
cost of storage, content is replicated to more clouds at both high
and low loads compared to the larger popularity group results
in [14].

Fig. 10 shows the number of servers powered on at each cloud
at t = 06:00 and t = 22:00. The number of servers powered on
at each cloud at a certain time is proportional to the size of
content replicated to the cloud given in Fig. 9. Fewer servers
are powered on at node 6 at both times compared to the results
of [14] as more requests are served from other clouds due to
low storage cost. Note that the number of switches and routers
at each cloud follows a similar trend to that of the number of
servers.

From the results above it is observed that OPR is always the
best scenario for content delivery. OPR converges to a single
cloud scenario for content of larger size at low demand periods
while it fully replicates contents at all network locations for
content of smaller size at high demand periods. OPR can be
realized either by replicating popular content to the optimized
locations and continuously replacing it as the popularity changes
throughout the day; or by replicating all the content to all clouds
and only switching on the hard disks storing the content with the
highest popularity, selected by the model at each location. The
latter storage management approach saves power in the network
side; however, it needs knowledge of content popularity to assign
separate hard disks to different popularity groups.

Table II summarizes the power savings achieved by the dif-
ferent cloud Content delivery approaches considered compared
to the SNPM model.
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C. DEER-CD: Energy Efficient Content Delivery Heuristic
for the Cloud

As OPR is the most energy efficient scheme among the dif-
ferent schemes investigated, in this section we build a heuristic
(DEER-CD) to mimic the OPR model behaviour in real time.
We need to build a mechanism to allow the cloud management
to react to the changing network load by replicating the proper
content to the optimum locations rather than deciding an aver-
age replication scheme that might not fit well with different load
patterns throughout the day. The DEER-CD heuristic involves
two phases of operation:

1) Offline phase: Each node in the network is assigned a
weight based on the average number of hops between the node
and the other nodes and the traffic generated by the node, i.e.,
the number of users in the node and their download rate. The
weight of node s, NWs, is given as

NWs =
∑
d∈N

Ud · Drate · Hsd (21)

where Ud is the number of users in node d and Hsd is the
minimum number of hops between node pair (s, d).

As the network power consumption is proportional to the
amount of content transiting between nodes and the number
of hops travelled by the content, nodes of lower weight are
the optimum candidates to host a cloud. Equation (21) can be
pre-calculated as it relies on information that rarely changes
throughout the day such as the physical topology, average users
population and download rate. We construct a sorted list of nodes
from lowest to highest weight and use this list to make cloud
placement decisions. In the absence of our sorted list approach,
an exhaustive search is needed where a PG can be allocated to
a single node leading to |N | (number of nodes) combinations
being evaluated for network energy efficiency. In addition the
PG can be allocated to two nodes leading to the evaluation of
|N | · (|N | − 1) combinations, and therefore in total this ex-
haustive search, which we totally avoid, requires

∑|N |
i=1

|N |!
(|N |−i)!

placement combinations to be assessed. Our sorted list reduces
this search to the evaluation of |N | combinations only. For
NSFNET with |N | = 14 this is a complexity reduction by a
factor of 1.6 × 1010 . Furthermore using a 2.4 GHz Intel Core
i5 PC with 4 GB Memory, the heuristic took 1.5 min to evaluate
the DEER-CD results.

In our scenario the users are uniformly distributed over all
nodes and they all have the same average download rate of
5 Mbps. Therefore the nodes’ ranking is mainly based on the
average number of hops. The list of ordered nodes based on Cs

from the lowest to the highest is as follows:
LIST = {6, 5, 4, 3, 7, 9, 13, 10, 11, 12, 14, 1, 8, 2}.
To place a given popularity group in one cloud, node 6 is the

best choice as it has the minimum weight. If the model decides to
have two replicas of the same popularity group, then they will be
located at nodes {6, 5}. Higher numbers of replicas are located
similarly by progressing down the list and replicating content in
a larger ordered subset of the set above. We call each subset of
the list a placement (J). Therefore, DEER-CD will only have 14
different placements for each popularity group to choose from,

Fig. 11. The DEER-CD heuristic pseudo-code.

which dramatically minimizes the number of iterations needed
to decide the optimal placement for each popularity group.

2) Online phase: In this phase, the list generated from the
offline phase is used to decide the placement of each popularity
group. Fig. 11 shows the pseudo code of the heuristic.

For each popularity group, the heuristic calculates the total
power consumption TPCiJ associated with placing each pop-
ularity group i ∈ PG in each placement, J ⊆ LIST. The total
power consumption is composed of network power consump-
tion NPCiJ and the cloud power consumption CPCiJ , at each
placement J . Each cloud location candidate in the placement,
s ∈ J(loop(a)), is assigned to serve nodes according to the mini-
mum hop count (loop (b)). (LiJ sd) is the traffic matrix generated
by placing popularity group i in the set of nodes s that are spec-
ified by the associated placement J, d denotes the set of other
nodes in the network where users are requesting files in popu-
larity group i. We use multi hop non-bypass heuristic developed
in [15] to route the traffic between nodes s and d and calculate
the network power consumption that is induced due to cross
traffic between the nodes associated with each placement (14
possible placements) for each popularity group (loop (c)). The
total power consumption is calculated and the placement asso-
ciated with the lowest TPCi among the 14 possible placements
is selected to replicate the popularity group (loop (d)).

The DEER-CD heuristic is able to build a core network that
includes clouds and it is able to handle the resultant traffic to
minimize power consumption. It is able to use the number of
users in each node, the network hop counts, user data rates and
content popularity distribution to specify the location of clouds
and their capability in terms of servers, switches, storage and
routers. It is able subsequently to route the resultant traffic using
multi-hop non-bypass to minimize power consumption. As such
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Fig. 12. (a) Total power consumption of the DEER-CD heuristic. (b) IP/WDM
network power consumption of the DEER-CD heuristic. (c) Cloud power con-
sumption of the DEER-CD heuristic.

it is able to carry out a complete network design and a complete
cloud design which is different from dynamic operation over an
existing cloud and an existing network.

Note that our heuristic in its current form does not consider the
capacity constraints explicitly (such as the number of installed
fibres and other network elements) as we consider designing
the network for peak traffic (t = 22:00) first and running the
heuristic at times where the traffic is less than the peak traffic
(see Fig. 4). The heuristic can however be easily updated to
work in a capacitated network.

Fig. 12(a) shows the total power consumption for the DEER-
CD heuristic, while Fig. 12(b) and (c) show the IP/WDM net-
work and cloud power consumptions, respectively, also under
the DEER-CD heuristic. For the larger size popularity group
scenario, the OPR model and the DEER-CD heuristic achieve
comparable network power savings of 72% and 70%, respec-
tively, compared to SNPM scheme. Also the cloud and total
power savings achieved by the OPR model are maintained at
34% and 40%, respectively. This is due to the almost identi-
cal popularity groups’ placement by the model and heuristic. A

Fig. 13. Total number of replications per popularity group for DEER-CD
(PGSp = 3.78TB).

Fig. 14. Total number of replications per popularity group for DEER-
CD(PGSp = 0.756TB).

TABLE III
OPTIMIZATION GAPS BETWEEN THE DEER-CD HEURISTIC AND MILP

Similar observation is noticed for the smaller popularity group
where the DEER-CD heuristic maintains the network, cloud
and total power savings of 92%, 35% and 43%, respectively,
achieved by the OPR model.

Figs. 13 and 14 show the number of replications per popular-
ity group for the two popularity group sizes. Similar to the OPR
model, the heuristic displays a Zipf like behaviour in replicat-
ing popularity groups for the larger popularity group size (see
Fig. 13). Similar distributions to those of the model in Fig. 8
are exhibited by the heuristic for the smaller size where at low
demand the content placement follows a Zipf distribution while
at higher demand it follows a simple binary distribution. Such
behaviour can be harnessed to simplify the content placement
heuristic in networks characterized by long periods of peak traf-
fic. Comparing the distribution in Fig. 14 at (t = 22:00) to Fig. 8
shows that the heuristic creates more replications for popularity
groups of lower popularity which results in higher cloud power
consumption and lower network power consumption compared
to the OPR model as shown in Table III which reports the
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optimization gaps between the DEER-CD heuristic and the OPR
model for both larger and smaller popularity group sizes at low
and high traffic.

IV. ENERGY EFFICIENT STORAGE AS A SERVICE

StaaS can be viewed as a special case of the content delivery
service where only the owner or a very limited number of autho-
rized users have the right to access the stored content. Dropbox,
Google Drive, Skydrive, iCloud, and Box are examples of cloud
based storage. In energy efficient StaaS, all content is stored in
one or more central locations and dynamically migrated to loca-
tions in proximity of its owners to minimize the network power
consumption. The content can be migrated, content migration,
however, consumes power at the IP/WDM network as well as
in the servers and internal LAN of the clouds. Therefore, StaaS
should achieve a trade-off between serving content owners di-
rectly from the central cloud/clouds and building clouds near to
content owners. Upon registration for StaaS, users are granted a
certain size of free storage (Quota). DropBox [32], for instance,
grants its users 2 GB. Different users might have different levels
of utilization of their StaaS quota as well as different files ac-
cess frequency. Large file access frequency has two meanings:
either one user highly accesses it or many authorized users have
low/moderate access frequency to the same file.

A. StaaS MILP Model

We extend the model in Section III-A to capture the distinct
features of StaaS. As only the owner or a very limited number
of authorized users have the right to access the stored content,
the concepts of popularity and replication do not apply to StaaS.

In addition to the parameters and variable defined in Section
III-B, we define the following:
Parameters:
Freq Average file download frequency per hour.
Dsize Average file size in Gb.
Rate Average user rate per second, where Rate = 2 ·

Freq · Dsize/3600.
NDd Node d total traffic demand, NDd =∑

i∈Ud
Rate.

Quota Users storage quota in Gb.
SUi Storage Quota utilization of user i.
α 1 or 2.
Variables (All are Nonnegative Real Numbers)
IT cd Traffic between the central cloud and cloud in

node d due to content migration.
CUsd Traffic from the cloud in node s to users in node

d.
πsd πsd = 1 if cloud s serves users in node d, πsd = 0

otherwise.
Lsd Total traffic between node pair (s, d).

Note that the average user rate, Rate, substitutes Drate in
Section III-A and is calculated by dividing total amount of data
sent and received which (are measured in Gb, and equal to2 ·
Freq · Dsize) over one hour by number of seconds in one hour
as users need to download the full file before editing and need

to upload the full file after finishing (or intermediately). Waiting
is not desirable and the file access frequency dictates the data
rate. The factor of 2 is introduced to represent the fact that users
usually re-upload their files back to the cloud after downloading
and processing them.

The objective of the model in Section III-A applies to the
StaaS model, as well as constraints (1)–(7), (17)–(19). The fol-
lowing additional constraints are introduced:

1) Clouds to users traffic∑
s∈N

CUsd = NDd

∀d ∈ N (22)

M · CUsd ≥ πsd

∀s, d ∈ N (23)

CUsd ≤ M · πsd

∀s, d ∈ N (24)

CUcd = NDd ·

⎛
⎝1 −

∑
b∈N :b �=c

Cloudb

⎞
⎠ .

∀d ∈ N : d �= c (25)

Constraint (22) ensures that the traffic demand of all users in
each node is satisfied. Constraints (23) and (24) decide whether
a cloud serves users in node d or not, where M is a large
enough number, with units of 1/Gb/s and Gb/s in (23) and (24),
respectively, to ensure that πsd = 1 when CUsd is greater than
zero. Constraint (25) sets the traffic between the central cloud
and users in other nodes to 0 if those users have a nearby cloud
to download their content from.

2) Clouds locations

M.
∑
d∈N

CUsd ≥ Clouds

∀s ∈ N (26)∑
d∈N

CUsd ≤ M · Clouds.

∀s ∈ N (27)

Constraints (26) and (27) build a cloud in location s if that
location is selected to serve the requests of users of at least
one node d, where M is a large enough number, with units of
1/Gb/s and Gb/s in (26) and (27), respectively, to ensure that
Clouds = 1 when

∑
d∈N CUsd is greater than zero

3) Clouds storage capacity

StrCs =
∑
d∈N

∑
i∈Ud

πsd · Quota · SUi · Red.

∀s ∈ N (28)

Constraint (28) calculates the cloud storage capacity based
on the number of users served by the cloud, their storage quota
and utilization, taking redundancy into account.
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4) Inter clouds traffic:

ITcd =
∑
i∈Ud

Cloudd · Quota · SUi/ (3600 · Δt) .

∀d ∈ N : d �= c (29)

Constraint (29) calculates the content migration traffic be-
tween the central cloud and local clouds. The factor of Δt in the
denominator scales the power consumption down to be consis-
tent with our evaluation period of Δt hours.

5) Total traffic between nodes and clouds upload capacity

Lsd = CUsd + IT sd

∀s, d ∈ N (30)

Cups =
∑
d∈N

(Lsd + α · IT sd).

∀s ∈ N (31)

Constraint (30) calculates the total traffic between node pair
(s, d) as the summation of the inter cloud traffic and clouds
to users traffic. Constraint (30) substitutes constraint (10) in
calculating network traffic. Constraint (31) calculates clouds
upload capacity which includes the clouds to users traffic and
the clouds inter traffic when s = c. The factor α is set to 2 if we
are interested in total power consumption, as the receiving local
cloud will consume similar power in its servers and internal LAN
to the central sending cloud during migration. However, it is set
to 1 if we are only interested in the actual clouds upload capacity
and capability calculated by constraints (17)–(19). In this section
we set α = 2 as we are interested in power consumption.

B. StaaS Model Results

The NSFNET network, the users’ distribution and input pa-
rameters discussed in Section III-C are also considered to eval-
uate the StaaS model. Node 6 is optimally selected based on the
insights of Section III to host one central cloud.

We analyze 1200 k users uniformly distributed among net-
work nodes which correspond to time 22:00 in Fig. 4. Power
consumption calculation is averaged over the range of access
frequencies considered (10 to 130 downloads per hour).

We analyse three different schemes to implement StaaS:
1) Single cloud: Users are served by the central cloud only.
2) Optimal clouds: Users at each node are served either from

the central cloud or from a local cloud by migrating content
from the central cloud.

3) Max clouds: Users at each node are served by a local
cloud.

We evaluate the different schemes considering two file sizes
of 22.5 MB and 45 MB and a user storage quota of 2 GB.

Note that the file sizes reflect content of high resolution im-
ages or videos. Files of smaller sizes will result in low network
traffic that will not justify replicating content into local clouds.

Users’ storage utilization SUi is uniformly distributed be-
tween 0.1 and 1.

Fig. 15(a) shows the total power consumption versus the con-
tent access frequency while Fig. 15(b) and (c) decompose it into

Fig. 15. (a) Total power consumption of StaaS. (b) IP/WDM network power
consumption of StaaS. (c) Cloud power consumption of StaaS.

the IP/WDM network power consumption and cloud power con-
sumption, respectively. At lower access frequencies, the optimal
clouds scheme selects to serve all users from the central cloud.
At higher access frequencies, however, the impact of the file size
becomes more relevant. For the larger file size (45 MB) scenario
local clouds are built whenever the access frequency is equal to
or higher than 50 downloads per hour. On the other hand for the
smaller file size of 22.5 MB, users are served from the central
cloud up to access frequencies as high as 90 downloads per hour
for this smaller file size (22.5 MB) scenario. This is because a
larger file size results in higher traffic and consequently larger
reduction in traffic between the central cloud and users when
serving the requests locally. Therefore it will compensate for
the power consumption of content migration. To eliminate the
impact of content replication on storage power consumption,
this scheme requires switching off the central clouds storage
that stores the migrated content after migration. Apple iCloud is
an example of a cloud implementation that typically hosts large
files representing images and videos. Migration to local clouds
is energy efficient in this case as opposed to clouds that typically
host small text documents.
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Fig. 16. Power-on clouds storage size versus content access frequency for the
StaaS optimal scheme (45 MB file size).

On the network side, the Max Clouds scheme has the lowest
network power consumption, saving 67% and 83% of the net-
work power consumption compared to the Single Cloud scheme
considering the 22.5 MB and the 45 MB average file size, re-
spectively. This is because all users are served locally and the
IP/WDM network power consumption is only due to content
migration from the central cloud. However, this saving is at the
cost of high power consumption inside the clouds to migrate
content, resulting in an increase of 28% and 19% in the cloud
power consumption for the 22.5 and 45 MB cases, respectively,
as shown in Fig. 15(c).

For the 22.5 MB file size scenario, limited total and network
power savings are obtained by the optimal clouds scheme com-
pared to the single cloud scheme (0.1% total and 5% network
power saving) as shown in Fig. 15(b). On the other hand, for
the 45 MB file size scenario, more total and network power
savings are obtained by the Optimal Cloud scheme compared
to the Single Cloud scheme (2% total and 48% network power
saving) as shown in Fig. 15(b).

Fig. 16 shows the variation in the number and size of clouds
with the content access frequency for the 45 MB file size. As
the content access frequency increases, migrating content from
the central cloud to local clouds becomes more energy efficient
compared to delivering content directly from the central cloud
and therefore more clouds are needed to serve users locally.
Note that the storage size in Fig. 16 represents the powered-
on storage. This results in decreased storage size of the central
cloud with higher content access frequency as shown in Fig. 16.
Fig. 16 also shows that other clouds have almost similar storage
size, at high access rates, due to the uniform distribution of users
in the network.

V. VM PLACEMENT OPTIMIZATION

Machine virtualization provides an economical solution to
efficiently utilize the physical resources, opening the door for
energy efficient dynamic infrastructure management as high-
lighted by many research efforts in this field. The authors in [33]
studied the balance between server energy consumption and net-
work energy consumption to present an energy aware joint VM
placement inside datacenters. The authors in [34] proposed the
use of multiple copies of active VMs to reduce the resource
requirement for each copy of the VM by distributing the incom-

ing requests among them to increase the energy efficiency of
the consolidation and VM placement algorithm. They consid-
ered heterogeneous servers in the system and used a two dimen-
sional model that considers both computational and memory
bandwidth constraints. The authors in [35] proposed a MILP
formulation that virtualizes the backbone topology and places
the VMs in several cloud hosting datacenters interconnected
over an optical network with the objective of minimizing power
consumption.

In this section we optimize the placement of VMs in IP/WDM
networks to minimize the total energy consumption. We con-
sider different VM distribution schemes. In our analysis, a VM
is defined as a logical entity created in response to a service
request by one or more users sharing that VM. A user request is
defined by two dimensions: (i) the CPU utilization (normalised
workload) of the VM and (ii) the traffic demand between the
VM and its user. In this section we use the terms CPU utilization
and normalised workload interchangeably.

A. Cloud VM Placement MILP Model

We develop a MILP model to optimize the number, and lo-
cation of clouds and optimize the placement of VMs within the
clouds as demands vary throughout the day to minimize the
network and clouds power consumption. The model considers
three VM placement schemes:

1) VM replication: More than one copy of each VM is al-
lowed in the network.

2) VM migration: Only one copy of each VM is allowed in the
network. We assume that the internal LAN capacity inside
datacenters is always sufficient to support VM migration.

3) VM slicing: The incoming requests are distributed among
different copies of the same VM to serve a smaller number
of users as proposed in [34]. We call each copy a slice as
it has less CPU requirements. As VMs with small CPU
share might threaten the SLA, we enforce a limit on the
minimum size of the VM CPU utilization. Unlike [34]
where CPU and memory bandwidth are considered, we
consider the CPU and traffic dimensions of the problem
where each slice is placed in a different cloud rather than
in different server inside the same cloud.

In addition to the variables in Section III-A, we define the
following variables and parameters:
Parameters:
V M Set of virtual machines.
Uv Set of users requesting VM v.
NV M Total number of virtual machines.
Pmax Maximum power consumption of a server.
Wmax Maximum normalised workload of a server.
∇ Server energy per bit, ∇ = Pmax/Wmax .
Wv Total normalised workload of V Mv.
Ddv Traffic demand from VM v to node d,Ddv =∑

i∈Ud :i∈Uv
Drate.

MinW Minimum allowed normalised workload per VM.
Variables (All are Nonnegative Real Numbers)
Lsdv Traffic demand from VM v in cloud s to node d.
δsv δsv = 1 if cloud s hosts a copy of VM v, otherwise

δsv = 1.
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CWs Total normalised workload of Cloud s.
Wsv Normalised workload of the slice of VM v in

node s.
PSNs Number of processing servers in cloud s.

The power consumption of the cloud considering the machine
virtualization scenario is composed of

1) The power consumption of servers (SrvPC V M)∑
s∈N

∇ · CWs.

2) The power consumption of switches and routers
(LANPC V M)∑

s∈N

Cups · (Sw EPB · Red + R EPB) .

Note that we do not include the storage power consumption in
our models. Although the server power consumption is a func-
tion of the idle power, maximum power and CPU utilization [36],
for large number of servers, taking only∇ = Pmax/Wmax as the
server EBP to calculate its power consumption yields very close
approximation as the difference will be only in last powered
on server. Note that a cloud is composed of a large number of
servers and through “packing,” each server in our case is either
as close to fully utilized as possible or is off. In such a case “idle
power plus linear increase in power with load” is equivalent to
“linear increase in power with load” as both servers are either
operated near the peak or are off and the peak powers are iden-
tical. For the overall cloud either a single server (or more gen-
erally a very small minority of servers) may be partially loaded.
Therefore for a cloud made up of a large number of highly
used servers (unused servers are turned off), the power con-
sumption increases in proportion to load approximately. Note
that if servers are not fully packed, this approximation becomes
less accurate. This warrants further investigation, however our
approach is followed in the literature [28]. As for the content
delivery model, we also assume here that other storage and
network elements have similar power management as servers.

The model is defined as follows:
Objective: Minimize

PUE n ·
(∑

i∈N

Prp · Qi + Prp ·
∑
m∈N

∑
n∈N mm

Wmn

+
∑
m∈N

∑
n∈N mm

Pt · Wmn

+
∑
m∈N

∑
n∈N mm

Pe · Amn · Fmn

+
∑
i∈N

POi +
∑
m∈N

∑
n∈N mm

Pmd · Fmn

)

+ PUE c·
(∑

s∈N

∇· CWs +
∑
s∈N

Cups ·(Sw EPB ·Red

+ R EPB)
)
. (32)

Subject to
1) VMs demand ∑

s∈N

Lsdv = Ddv

∀d ∈ N ∀v ∈ V M. (33)

Constraints (33) ensures that the requests of users in all nodes
are satisfied by the VMs placed in the network.

2) VMs locations

M ·
∑
d∈N

Lsdv ≥ δsv

∀s ∈ N ∀v ∈ V M (34)∑
d∈N

Lsdv ≤ M · δsv

∀s ∈ N ∀v ∈ V M. (35)

Constraints (34) and (35) replicate VM v to cloud s if cloud
s is selected to serve requests for v where M is a large enough
number, with units of 1/Gb/s and Gb/s in (34) and (35), respec-
tively, to ensure that δsv = 1 when

∑
d∈N Lsdv is greater than

zero.
3) Clouds locations∑

v∈VM

δsv ≥ Clouds

∀s ∈ N (36)∑
v∈VM

δsv ≤ M · Clouds.

∀s ∈ N (37)

Constraints (36) and (37) build a cloud in location s if the
location is selected to host one or more VMs where M is a
large enough unitless number to ensure that Clouds = 1 when∑

v∈VM δsv is greater than zero.
4) Total cloud normalised workload for replication and mi-

gration schemes

CWs =
∑

v∈V M

δsv · Wv.

∀s ∈ N (38)

Constraint (38) calculates the total normalised workload of
each cloud by summing its individual V Ms normalised work-
loads.

5) VM migration constraint∑
s∈N

δsv = 1

∀v ∈ V M. (39)

Constraint (39) is used to model the VM migration scenario
where only one copy of each VM is allowed.

6) VM Slicing constraints
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∑
s∈N

Wsv = Wv

∀v ∈ V M (40)

Wsv ≥ MinW · δsv

∀s ∈ N ∀v ∈ V M (41)

Wsv ≤ M · δsv

∀s ∈ N ∀v ∈ V M (42)

CWs =
∑

v∈V M

Wsv

∀s ∈ N. (43)

Constraints (40)–(43) are used to model the VM slicing sce-
nario. Constraint (40) ensures that the total normalised workload
of all slices is equal to the original VM normalised workload
before slicing. Constraints (41) and (42) ensure that the loca-
tions of the slices of a VM are consistent with those selected in
constraints (34) and (35) and also they ensure that the slices nor-
malised workload does not drop below the minimum allowed
normalised workload per slice where M is a large enough num-
ber, with units of %, to ensure that δsv = 1 when Wsv is greater
than zero. Constraint (43) calculates the work load of each cloud
by summing the load of the slices of the different VMs hosted
by the cloud.

7) Single cloud scheme constraint∑
s∈N

Clouds = 1. (44)

Constraint (44) is used to model the single cloud scheme
which is used as our benchmark to evaluate the power savings
achieved by the different VM distribution schemes.

8) Number of processing servers

PSNs = CWs/Wmax

∀s ∈ N. (45)

Constraint (45) calculates the number of processing servers
needed in each cloud. The integer value is obtained using the
ceiling function.

B. Cloud VM Model Results

The VM placement schemes are evaluated considering the
NSFNET network and the users distribution discussed in Section
III-B. In addition to the input parameters in Table I, the VM
model considers the parameters in Table IV. To reflect various
users’ processing requirements and represent different types of
VMs, we uniformally assign normalised workloads to VMs from
the set given in Table IV.

Fig. 17 shows the server CPU and network bandwidth uti-
lization of 10 VMs at two times of the day (06:00 and 22:00).
Note that network utilization is calculated by assuming a 10
Gb/s servers’ interface speed and users traffic rates are kept at 5
Mbps as in Section III.

In a practical cloud implementation the CPU normalised
workload needed is estimated by the cloud provider based on

TABLE IV
INPUT DATA FOR THE VM MODELS

Fig. 17. Sample VMs CPU and network utilization.

users’ requirements. Instead of starting with users requests for
VMs and assigning them to VMs, we simplify the generation of
CPU normalised workload by considering a set of 1000 VMs
(limit of what MILP can handle) of different types and assign
each VM a uniformly distributed normalised workload between
10% and 100% of the total CPU capacity. We then randomly
and uniformly assign each VM to serve a number of users. This
approach is less complex to analyze in terms of number of vari-
ables and it captures the same picture. This can be understood
by noting that a cloud provider will assign the incoming re-
quests to a given VM according to its specialization up to a
certain maximum normalised workload. This results in a distri-
bution of VM normalised workloads and an assignment of users
(from different nodes) to a VM which is what our approach also
achieves.

Fig. 18(a) shows that the VM replication and migration
schemes reduce to a single cloud scheme at low demand pe-
riods where all users are served from a cloud built in node 6
where all the 1000 VMs reside. For the migration scheme, node
6 is always (low traffic and high traffic) the optimum location
for all VMs as it yields the minimum average hop count to all
the network nodes given that users are uniformally distributed
among nodes and requests for a VM are also uniformally dis-
tributed among users. For migration and at higher demands, and
if the users connected to each VM have a Geo location clus-
tering tendency, then there will be a benefit at high demand in
migrating VMs nearer to such clusters. On the other hand for
a uniform distribution of users there is fundamentally no ben-
efit in migrating VMs. Our model concurs with this reasoning
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Fig. 18. (a) Total power consumption of the different VMs scenarios. (b)
IP/WDM network power consumption of the different VMs scenarios. (c) Cloud
power consumption of the different VMs scenarios.

and keeps the VMs at node 6 even at high demand under the
migration scheme.

Under the replication scheme on the other hand the decision
to make extra copies of a VM is driven by the tradeoff between
the network power saved as a result of having extra copies of the
VM that reduce network journeys, versus the increase in power
as a result of the extra VMs. Therefore we found out that the
model chooses to replicate lightly loaded VMs (i.e., VMs with
load nearer to the 10%, away from 100%) as these consume
less power. The replication scheme under uniformly distributed
users obtains a limited network saving of 2% (see Fig. 18(b))
compared to the single cloud scheme. This is achieved by repli-
cating a limited number of VMs (see Fig. 18(c)) with an overall
network and VM combined power saving that is near zero, but
positive.

The VM slicing scheme is the most energy efficient scheme
as slicing does not increase the cloud power consumption (con-
straint (40)), allowing the VMs slices to be distributed over the
network, yielding 25% and 76% total and network power sav-
ing, respectively compared to the single cloud scheme as shown
in Fig. 18(a) and (b).

Fig. 19. (a) VMs distribution scheme at 06:00. (b) VMs distribution scheme
at 22:00.

Fig. 19 shows the VMs placement over the network nodes
for the three schemes at low and high demands. As discussed
above the migration scheme places all VMs at node 6 all the
time. At high loads the replication scheme, creates more than
one copy of a limited number of VMs. The slicing scheme slices
the machines so that each node has about 400–900 VMs at the
different times of the day.

Note that the limited impact of the migration and replication
schemes is due to the geographical uniformity of the traffic be-
tween VMs and nodes. Therefore we also evaluate a scenario
with an extreme non-uniform distribution of requests for VMs
where only users in a certain neighbourhood request a VM. In
this scenario, only users in three neighbouring nodes (one phys-
ical hop between each) connect to a particular VM. For each
of the 1000 VMs, we generate a uniform normalized work-
load between 10% and 100% and also generate for the same
VM a random number uniformly distributed between 1 and N
representing a network node, we then look up the single hop
neighbourhood list of that node and select any other two neigh-
bouring nodes. For example at 22:00, when there are 1.2 M
users, we choose to allocate in this example to each VM an
equal deterministic share, i.e., 1200 users, and so 400 users will
be located in each of the three neighbouring nodes. This means
that all users requesting a given VM are highly geographically
localised.

Table V shows the power savings achieved by the different
schemes compared to the single cloud scheme at two times of
the day, 06:00 and 22:00. The power savings of the migration
and replication schemes increase compared to the uniform traffic
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TABLE V
POWER SAVING OF THE DIFFERENT SCHEMES COMPARED TO SINGLE CLOUD

UNDER GEOGRAPHICALLY NON-UNIFORM TRAFFIC

Fig. 20. DEER-VM heuristic pseudo-code.

scenario as the popularity of a VM in a certain neighbourhood
justifies migrating or replicating it to that neighbourhood. The
non-uniformity of traffic also allows the slicing scheme to save
more power. The performance under the uniform and extreme
non-uniform traffic distributions gives the lower and the up-
per bounds on the power savings that can be achieved by the
different VM placement schemes.

C. DEER-VM: Energy Efficient VM Distribution for the Cloud

The results of the VM models showed that VM slicing is the
most energy efficient VM placement scheme. In this section we
develop a heuristic to perform VM-Slicing in real time using
the same concept used in the DEER-CD heuristic.

The pseudo code of the DEER-VM heuristic is shown in
Fig. 20. Nodes are ordered from the lowest to the highest based
on their weight and the heuristic searches the 14 possible place-
ments deduced from the LIST for each VM. The minimum hop
count (loop (a)) is used to assign each node, to the nearest node
hosting a VM which yields (LvJ sd), the traffic generated be-
tween nodes (s, d) due to placing VM v according to placement
J (loop (b)). Knowing(LvJ sd), the heuristic calculates the to-
tal power consumption, TPCvJ (loop (c)). VMs are located at

Fig. 21. (a) DEER-VM total power consumption. (b) DEER-VM IP/WDM
network power consumption. (c) DEER-VM cloud power consumption.

the placement associated with the lowest power consumption
among the 14 possible placements (loop (d)). The same process
is repeated for other VMs till all VMs are placed.

In the absence of our sorted list approach, an exhaustive VM
search is needed. In a similar fashion and as outlined for the
DEER-CD, for NSFNET with N = 14 this is a complexity
reduction by a factor of 1.6× 1010 . Furthermore using a 2.4 GHz
Intel Core i5 PC with 4 GB Memory, the heuristic took 35 min
to evaluate the DEER-VM results.

Fig. 21(a) reveals that while the VM slicing approach has
saved 25% of the total power compared to the single cloud
scenario, the DEER-VM heuristic achieved 24%. This slightly
lower saving is due to the multi hop non-bypass heuristic which
is less efficient than the MILP model in routing traffic and
therefore its network power consumption has increased by 6.4%
as seen in Fig. 21(b).

As slicing the VM does not increase the power consumption
of the machine, the results of model and heuristic considering
VM slicing maintain the cloud power consumption of the Single
Cloud scenario as shown in Fig. 21(c).

Table VI reports the optimization gaps between the DEER-
VM heuristic and MILP.
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TABLE VI
OPTIMIZATION GAPS BETWEEN THE DEER-VM HEURISTIC AND MILP

The 24% saving of DEER-VM is due to the IP/WDM net-
work side rather than the cloud side as the CPU normalised
workload is the same for both scenarios and the cloud servers’
power consumption is normalised workload dependant. Most
of the savings come from VMs which generate a lot of traffic
in the network compared to their CPU utilization. Slicing such
VMs reshapes the traffic pattern in the network so that users
get their service from nearby locations, thereby saving network
power consumption. However, if most VMs have high CPU uti-
lization and low network traffic then slicing VMs will not save
power and a Single Cloud scenario will be a better solution, es-
pecially taking VMs management cost into account. Therefore,
VM slicing can play a major role in saving power consumption
in VM based content delivery such as IPTV, and video on de-
mand (VoD). The current version of the DEER-VM heuristic is
designed to work under a uniform distribution of users as the
sorted list is produced only once, however in the case of non-
uniformly (geographically) distributed users, the placement of
one VM will affect the placement selection of the next one. As
such a progressively shorter list has to be sorted at each step.
This is the subject of on-going work that we hope to report on
in future. Note that the placement decision of one VM (and one
PG for the content delivery model) is independent of the oth-
ers; therefore, the heuristics can be distributed among different
servers to reduce the computation time as different instances
will work in parallel.

Note that our MILP model and heuristics are free to place
content, storage or VMs in the locations that minimize power
consumption and select the optimum route between the user
and the content, stored documents or VMs such that power
is minimized. The model also allows a user to be served by
multiple VMs.

VI. CONCLUSION

This paper has introduced a framework for energy efficient
cloud computing services over non-bypass IP/WDM core net-
works. We have analysed three cloud services, namely; content
delivery, Storage as a Service (StaaS) and virtual machines based
applications. A mixed integer linear programming (MILP) op-
timization was developed for this purpose to study network
related factors including the number and location of clouds in
the network and the impact of demand, popularity and access
frequency on the clouds placement, and cloud capability fac-
tors including the number of servers, switches and routers and
amount of storage required at each cloud. We have studied dif-
ferent replication schemes and analysed the impact of content

storage size. Optimizing the cloud content delivery reveals that
replicating content into multiple clouds based on content pop-
ularity (OPR scheme) is the optimum scheme to place content
in core networks where at low traffic most of the content is
kept in node 6 of the NSFNET network, while at high traffic
more popularity groups are replicated into more clouds as under
higher loads the power consumption of the cloud is compen-
sated by higher savings on the network side. OPR resulted in
92% and 43% network and total power savings respectively,
for content of small size such as music files. MPR is shown to
have similar performance as OPR, however, under a scenario
with a non-uniform user distribution or with fixed (idle) power
component for placing a cloud in certain location, OPR is ex-
pected to outperform MPR as it might not be necessary to build
14 clouds, which we will investigate in future work. For real
time implementation, we have developed an energy efficient
content delivery heuristic, DEER-CD, based on the model in-
sights. Comparable power savings are achieved by the heuristic.
The results of the StaaS scenario show that at lower access fre-
quencies, the optimal clouds scheme selects to serve all users
from the central cloud while at higher access frequencies con-
tent is migrated to serve users locally, resulting in saving 48%
and 2% of the network and total power compared to serving
contents from a single central cloud for an average file size of
45MB. Limited total power savings are obtained for smaller
file sizes. Optimizing the placement of VMs shows that VM
Slicing is the best approach compared to migration or replica-
tion schemes. However this is under the assumption that the
minimum normalized workload per slice is 5%. For VMs with
larger minimum normalised workload per slice, slicing might
approach VM migration in power saving as it will be difficult
to have more local slices. VMs slicing saves 76% and 25% of
the network and total power, respectively, compared to a single
virtualized cloud scenario. Comparable power savings are ob-
tained by placing VMs using a heuristic (DEER-VM) developed
to mimic the model behaviour in real time.
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