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Abstract

The NARMAX systemn identification technique is applied to a number of fluid
loading data sets in order to determine if there exists a simple exten:ion of Morison's
equation which will predict forces with improved accuracy. Data from a variety of
flow situations is considered, ranging from regular planar oscillatory flow in a U-tube,
to unidirectional irregular waves in a wave flume, to directional seas in Christchurch
Bay.

1 Introduction

Since its introduction in 1950 [1], the Morison equation has provided the main means
of predicting wave forces on slender cylinders. In the usual notation,

F@) = -;-pDC,;uh;] + %wpDQCm& (1)

where F(t) is the force per unit axial length, u(t) is the instantaneous flow velocity, p
is water density and D is diameter. The dimensionless drag and inertia coefficients Cy
and C,, depend on the characteristics of the flow. In general the main dependence is
taken to be on Re, the Reynolds number, and K C, the Keulegan-Carpenter number
although these parameters do not have generally accepted definitions in random or
directional waves. In place of Re, the Stokes parameter § = Re /KC is often used.
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The coeficients Cq and Cy, are usually obtained by applying least-squares procedures
to measured force and velocity data.

The equation generally predicts the main trends in measured data quite well;
however, some characteristics of the flow are not well represented. For example, in
sinusoidal oscillatory flow the force variation at the fundamental frequency may be
well predicted while that at higher harmonics is not. One result is that peak forces
can be underpredicted. Further, a poor representation of the high frequency content
of the forces is a serious limitation for the determination of the fatigue life of a
structural element.

The publication [2] documented an attempt to determine new model structures on
heuristic physical grounds. It was found that two simple extended equations allowed
a considerable increase in the accuracy of curve-fits to data measured in a variety of
flow situations, ranging from sinusoidal flow in a U-tube, to unidirectional random
waves in a large wave flume, to directional seas in Christchurch Bay. The first of
these new structures simply extended the Morison equation through the addition of
a term in F|F|. The addition of this single term allowed a finer classification of wave
forces due to the fact that a significant contribution from the extra term was found
to be correlated with the presence of gross vortex shedding effects. The second of
‘the new structures also included derivatives of the force F and F, yielding a vari-
ant of Duffing’s equation for a nonlinear oscillator - the Morison/Duffing equation.
Although the adoption of these new structures resulted in improved curve fits, pre-
dictions of the fluid forces were disappointing. (The important distinction between
curve-fit accuracy and prediction accuracy as measures of model validity is discussed
in detail in Section 4 below.) The approach taken here is to allow sophisticated
system identification techniques based on NARMAX models [4] free rein in deciding
the appropriate terms for an extended model in an attempt to produce good fits and
predictions. The extra terms produced may have no obvious relation to the flow
phenomena involved. Previous work of this kind has been limited to the addition of
velocity-based terms with applications to U-tube data [3].

The layout of the paper is as follows: Section 2 provides an introduction to system
identification using the NARMAX nonlinear time series analysis procedures. Section
3 provides a summary of the basic theory required for any parameter estimation
problem; also the problem of structure detection i.e. determining the appropriate
form for the system model is discussed. Section 4 deals with the subject of model
validation. In Section 5, a simulation of a Morison-type system is used to demonstrate
the utility of the NARMAX procedures in analysing fluid loading data. Section 6
describes the results of applying the techniques to experimental data measured in a
U-tube. Section 7 progresses to a discussion of unidirectional random waves in a large
flume. Finally, data from a directional random sea measured at the Christchurch Bay
tower is discussed in Section 8.

Throughout this study, all the analysis is carried out in the time-domain. Part
1I of this paper [6] will contain a description of the parallel results obtained in the
frequency-domain.

2 System Identification via NARMAX Modelling.

Although almost all of the methodology presented here is documented elsewhere in
the literature [7] [8] [9] [4] [10] [11], it is likely that it is unfamiliar within the context
of fluid loading problems. For this reason a discussion is included here for the sake
of completeness.



The basic object of system identification can be stated quite simply. Given a
physical system which reponds in some measurable way y,(t) when an external stim-
ulus or excitation z(t) is applied, one wishes to determine a mathematical model
of the system which responds with an identical output Ym(t) when given the same
stimulus. The model will generally be some functional which maps the input z(t) to
the output ym(t).

ym (t) = S[z](?) (2)
If the model changes when the frequency or amplitude characteristics of the ex-
citation changes, it is said to be input-dependent. Such models are unsatisfactory in
that they may have very limited predictive capabilities.
The problem of system identification is to obtain an appropriate functional S for
a given system. If a prioni information about the system is available, the complexity
of the problem can be reduced considerably; for example, suppose that the system
is known to be a linear single degree-of-freedom dynamical system. In this case the
form of the equation relating z(t) and y(t) is known to be

my + cy + ky = z() (3)

where overdots denote differentiation with respect to time. In this case the only
unknowns are the coefficients or parameters m, ¢, and k; the problem has been
reduced to one of parameter estimation. Alternatively, rewriting equation (3) as

(Ly)(2) = =(1) @)

where L is a second order linear differential operator, one can write the solution as

y(t) = (L-'2)(t) = /drh(r ~8)z(r) (5)

which explicitly displays y(t) as a linear functional of z(t). Within this framework,
the system is identified by obtaining a representation of the function h(t) which is
often referred to as the impulse response or Green’s function for the system. In
structural dynamics h(t) is usually obtained via its Fourier transform H (w) which is
the system transfer function

Y(w)

H(U): X’(T)

where X (w) and Y (w) are the Fourier transforms of z(t) and y(t) respectively. It is
a simple matter to show that the transfer function for the system (3) has the form

(6)

1

—mw? +icw + k
and H(w) is completely determined by the three parameters m,c and k as expected.
This example shows the striking duality between the time and frequency domain
representations for a linear system. In fact, this duality extends naturally to nonlinear
systems where the analogues of both the impulse response and transfer functions can
be defined. This representation of nonlinear systems will be discussed in considerable
detail in the second part of this study [6].

A discussion of the mathematical details of the parameter estimation algorithm
is deferred until the following section. The main requirement is that measured time
data should be available for each term in the model equation which has been assigned

H(w)= (7)
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a parameter. In the case of equation (3), one would need records of displacement y(t),
velocity g(t), acceleration j(t) and force z(t) in order to estimate the parameters. A
simpler approach is to adopt a discrete-time representation of equation (3). If the
input and output signals are sampled at regular intervals of time At, one obtains
records of data z; = z(iAt) and y; = y(iAt) fori=1,...,N related by

mi; +cpi + kyi = zi (8)

The velocity and acceleration can be approximated by difference formulae

. _ Yi— Vi
S = 9
- _ Y41 — 20t Vi
Vi = Atg (10)
Substituting these expressions into (8) gives
At kAt? At 1!
¥= {2—6—— }yi—1+{?——1}yi-2+-A"—3i—l (11)
m m m m
or
Yi = a1¥i-1 +02¥i-2 + bhizi—1 (12)

This linear difference equation is one of the possible discrete-time representations
of the system in equation (3), the fact that it is not unique is a consequence of
the fact that there are many different discrete representations of derivatives. As
a result, the discrete form (12) will provide a representation which is as accurate
as the approximations (9) and (10). A further level of non-uniqueness is reflected
in the fact that the parameters depend on the sampling interval At. In the time-
series literature this type of model is termed Auto-Regressive with eXogenous inputs
(ARX). The words auto-regressive’ refer to the fact that the present output value
is partly determined by or regressed on, previous output values. The regression on
past input values is indicated by the words "exogenous inputs’ ( the term exogenous
arose originally in the literature of econometrics).

Through the discretisation process, the input-output functional of equation (2)
has become a linear input-output function with the form

i = F(yi-1, ¥i-23 Ti-2) (13)

The advantage of adopting this form is that only the two states z and y need be
measured in order to estimate all the model parameters a;,az and b, in (12) and thus
identify the system. It is a simple matter to show that a general linear system has a
discrete-time representation

Ry Ny
ui = Zﬂjyi—j - . Zb_fxi—j (14)
j=1 j=1
or
i = F(Yictyees Yionyi Timlse o os Tiony) (13)

As before, all parameters ay,...,8n, b1, .+, b,, can be estimated using measure-
ments of the z and y data only.



The extension to nonlinear systems is straightforward. Consider the Duffing os-
cillator represented by

mj + ci + ky + kay® = z(t) (16)
This continuous-time system is identified by estimating the parameters m, c, k
and k3. Alternatively, one can pass to the discrete-time representation

Yi = a1¥i-1 +02yi-2+513-’-1+°y?-1 (17

where a;,a; and b; are unchanged from (11) and

At?k;
= (18)

The model (17) is now termed a NARX ( Nonlinear ARX ) model. The regression
function y; = F(yi=1,¥i-2; Ti-2) is now ponlinear; it contains a cubic term. If all

terms of order three or less were included in the model structure i.e. (yi—2)*zi-1 etc.
a much more general model would be obtained,

c=

vi = FO(yi1,yi-2i zi-2) (19)

( the superscript denotes the highest order product terms ) which would be sufficiently
general to represent the behaviour of any dynarmical systems with nonlinearities up
to third order i.e. containing terms of the form 3, §?y etc.

The most general polynomial NARX model (including products of order < np )
is denoted by

vi = FOO (gic1yen s Yieonys ZistyseesTimng) (20)

It has been proved [7] [8] under very mild assumptions that any input-output
process has a representation by a model of the form (20). If the system nonlinearities
are polynomial in nature, this model will represent the system well for all levels of
excitation. If the system nonlinearities are not polynomial, they can be approxi-
mated arbitrarily accurately by polynomials over a given range of their arguments (
Weierstrass approximation theorem ). This means that the system can be accurately
modelled by taking the order n, high enough. However, the model would be input-
sensitive as the polynomial approximation required would depend on the data. This
problem can be removed by including non-polynomial terms in the NARX model if
required.

The preceding analysis unrealistically assumes that the measured data is free of
noise. In reality noise arises from the truncation error associated with finite-accuracy
instrumentation and arithmetic etc. In the following discussion it is allowed that
noise is present. However, it is assumed that the noise signal ((t) is additive on
the output signal y(t). This constitutes no restriction if the system is linear but is
generally invalid for a nonlinear system. As shown below, if the system is nonlinear
the noise process can be very complex; multiplicative noise terms with the input and
output are not uncommon, but can be easily accommodated by the algorithms of
Billings et al. [7] [8] [9] [4].

Under the assumption above, the measured output has the form

y(t) = ve(t) + (1) (21)




where y(t) is the ’clean’ output from the system. If the underlying system is
the Duffing oscillator of equation (16), the equation satisfied by the measured data
is now

mi+ci+ ky+ ksy® —ml — o — k¢ — k3P =3¢+ 3P = 2(t) (22
and the corresponding discrete-time equation will contain terms of the form (;_,,
Ci—2, Ci—1y?_, etc. Note that even simple additive noise on the output introduces
cross-product terms if the system is nonlinear. Although these terms all correspond
to unmeasurable states they must be included in the model. If they are ignored the
parameter estimates will generally contain systematic errors, these errors are called
bias. The system model (19) is therefore extended again by the addition of a noise
model and takes the form

i = FON(yio1, Yiz2s Tim2i Gio1s Gim2) + i (23)
This type of model is referred to as NARMAX ( Nonlinear Auto-Regressive
Moving-Average with eXogenous inputs ). The NARMAX model was introduced
in [7] [8) and has been developed in a sequence of papers by Billings and co-workers
" at Sheffield University.
Finally, the term ’moving-average’ requires some explanation. Generally, for a
linear system a moving-average model for the noise process takes the form

(i=ei+crei—1 +caei2+... (24)
i.e. the system noise is assumed to be the result of passing a zero-mean white noise
sequence through a digital filter with coefficients ¢, ¢2,.... The terminology comes

from the literature of time-series analysis. Equation (23) requires a generalisation
of this concept to the nonlinear case. This is incorporated in the NARMAX model
which takes the final general form

b= FOO (g, ooy Yion,iTicly o1 Timn i €iclye e o1 €ion,) + & (25)

In this form the noise sequence or residual sequence ¢; is now zero-mean white
noise. This allows the model to accomodate a wide class of possibly nonlinear noise
terms.

3 Stucture Detection and Parameter Estimation.

Having described the basic structure of the NARMAX model, the object of the
present section is give a brief description of the least-squares methods which are
used to estimate the model parameters. Suppose a model of the form (17) is required
for a set of measured input and output data {z;,yi;i=1,..., N}. Taking noise into
account one has

i = G1Yio1 +G2¥i-a +bizica H ey + G (26)

where the residual signal {; will contain the output noise and an error component
due to the fact that the parameter estimates may be incorrect. The least-squares
estimator finds the set of parameter estimates which minimise the error function

N
F=Y2 (27)

i=1
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The parameter estimates obtained will reduce the residual sequence to output
noise only. If the output noise is not uncorrelated and white, a noise model is in-
cluded in the NARMAX structure which reduces (; to €;, an uncorrelated white noise
sequence.

The problem is best expressed in terms of matrices. Assembling each equation of
the form (26) for i = 3,..., N into a matrix equation gives

Y3 v2 v z2 v a; (3
V4 = y3 ¥2 z3 V3 ay | + | Ca
; . . : . ) (28)
. . E : . b1 5
YN UN-1 YN-2 ZIN-1 YN-a c (N
or
{y} = [4){B} + {¢} (29)

in matrix notation. Throughout, matrices shall be denoted by square brackets, col-
umn vectors by curly brackets. [4] is called the design matrix, {8} is the vector of
parameters and {(} is the residual vector. In this notation the sum of squared errors
is

{Q17{¢) = {v}™ = {8YT[A1")({w} - [41{A}) (30)
Minimising this expression with respect to variation of the parameters gives the
well-known normal equations for the parameter estimates.

[A)7[4){8} = [4)7 {v) (31)
which are trivially solved by

{8) = (A1 (4D 4] (¥} ' (32)
provided that [4])7[4] is invertible. Because of random errors in the measurements,
different samples of data will contain different noise components, consequently they
will lead to slightly different parameter estimates. The parameter estimates therefore
constitute a random sample from a population of possible estimates; this population
being characterised by a probability distribution. Clearly, it is desirable that the
expected value of this distribution should coincide with the true parameters. If such a
condition holds, the parameter estimator is said to be unbiased. A necessary condition
for the absence of bias is that the residual sequence be a zero-mean white noise signal
uncorrelated with the data. The addition of a noise model reduces the residuals
to such a sequence and thus allows bias-free parameter estimates. Now, given that
the unbiased estimates are distributed about the true parameters, knowledge of the
variance of the parameter distribution would provide valuable information about the
possible scatter in the estimates. In fact, this information is readily available; the
covariance matrix for the parameters is defined as

[C)(3) = EI(18) — E{B}-({8) — E{BD] (33)
where the carets are used to emphasize the fact that quantities are estimates and the
expectation E is taken over all possible_ estimates. The diagonal elements C;; are the
variances of the parameter estimates f3;. Qnder a number of mild assumptions it is
possible to show that, given an estimate {8},

7




(€] = o2.((4)7[4])! (34)

where o7 is the variance of the residual sequence (; obtained by using { B} to predict
the output. The standard deviation for each parameter is therefore:

o = o¢\/ ([AIT14D3 (35)

If the parameter distributions are Gaussian, standard theory yields a 95% confi-
dence interval of {3} £ 1.96{c}, i.e. thereis a 95% probability that the true param-
eters fall within this interval.

In practice, direct solution of the normal equations via (32) is not recommended
as problems can arise if the matrix [A]T[A] is close to singularity. Suppose that the
RHS of equation (31) has a small error {6y} due to roundoff say, the resulting error
in the estimated parameters is given by

{68} = ([A]"[4])~*[4)" {év} (36)

As the elements in the inverted matrix are inversely proportional to the determi-
“nant of [A]7[A], they can be arbitrarily large if [A]T[A] is close to singularity. As
a consequence, parameters with arbitrarily large errors can be obtained. This prob-
lem can be avoided by use of more sophisticated techniques. The near-singularity of
the matrix [A]T[A4] will generally be due to correlations between its columns ( recall
that a matrix is singular if two columns are equal ) i.e. correlations between model
terms. It is possible to transform the set of equations (32) into a new form in which
the columns of the design matrix are uncorrelated, thus avoiding the problem. This’
‘orthogonal’ version of the least-squares procedure is used throughout this work. A
comprehensive description of the theory is given in [9] or [4].

In practice, it is unusual to know which terms should be in the model. This is
not too much of a problem if the system under study is known to be linear; the
pumber of possible terms is a linear function of the numbers of lags ny, nr and
n.. However, if the system is nonlinear, the number of possible terms increases
combinatorially with increasing numbers of lags. In order to reduce th~ computational
load on the parameter estimation procedure it is clearly desirable to determine which
terms should be included. Also, experience indicates that a final model containing
ten to fifteen terms is usually adequate. With this in mind, the problem of structure
detection is now considered. As the initial specification of a NARMAX model (25)
includes all product terms up to order nyp, the model-fitting procedure needs to include
some means of determining which of the possible terms are significant so that the
remainder can safely be discarded. The measure of significance used in the orthogonal
estimation procedure referred to above is called the error-reduction ratio or ERR [4);
an equivalent procedure based on the normal equations is presented here. In order
to determine whether a term is an important part of the model, a significance factor
can be defined as follows. Each model term 6(t), e.g. 6(t) = yi-z or 6(t) = ¥} zi-2.
can be used on its own to generate a time-series which will have variance o2. The
significance factor s4 is then defined by

2
80 = 10023 (37)
-y

where 0] is the variance of the estimated output, i.e. the sum of all the model terms.

Roughly speaking, sg¢ is the percentage contributed to the model variance by the
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term 6. Having estimated the parameters the significance factors can be determined

for each term; all terms which contribute less than some threshold value 8p;,;n to the

variance can then be discarded. Although the description above captures the essence

of the ERR, the procedure is only correct when used with the orthogonal estimator.

This is because all terms in the orthogonal basis are uncorrelated with each other. If

" one were to use the procedure on terms with intercorrelations one might observe two
or more terms which appear to have a significant variance which actually cancelled
to a great extent when added together.

Finally, some remarks are required on the subject of parameter estimation if a
noise model is necessary. The situation is complicated by the fact that the noise
signal is unmeasurable. In this case, an initial fit is made to the data without a noise
model, the model predicted output is then subtracted from the measured output
to give an estimate of the noise signal. This allows the re-estimation of parameters,
including now the noise model parameters. The procedure, fit model - predict output
- estimate noise signal, is repeated until the parameters converge.

This concludes the discussion on forming the NARMAX model. Having obtained
a model, it is important to have some means of testing its validity; this will form the

. subject of the next section.

4 Model Validity.

Having obtained a NARMAX model for a system, the next stage in the identification
procedure is to determine if the structure is correct and the parameter estimates are
unbiased. It is important to know if the model has successfully captured the system
dynamics so that it will provide good predictions of the system output for different
input excitations, or if it has simply fitted the model to the data; in which case it will
be of little use since it will only be applicable to one data set. Three basic tests of
the validity of a model are applied in the present work; they are described below in
increasing order of stringency. In the following, y; denotes a measured output while
{ denotes an output value predicted by the model.

4.1 One-Step-Ahead Predictions
Given the NARMAX representation of a system

%= FOR(giotyee ey Yicn, i Zicly e Timn i €inlye oy Bimn,) + € (38)
the one-step-ahead prediction or curve-fit of y; is made using measured values for all
past inputs and outputs. Estimates of the residuals are obtained from the expression
é.‘ = f],' ie.

%= FO) (g1, 0oy Yion, i Ticly e os Ziongi €inly oy €imn,) (39)

The one-step-ahead series can then be compared to the measured outputs. Good
agreement is clearly a necessary condition for model validity.

4.2 Model Predicted Output.

In this case, the inputs are the only measured quantities used to generate the model
output, i.e.



G = FOD(Gictyeees BimmyiTimtresrs Zimnni 0y 1 0) (40)

The zeroes are present because the prediction errors will not generally be available
when one is using the model to predict output. In order to avoid a misleading
transient at the start of the record for j, the first n, values of the measured output
are used to start the recursion. As above, the estimated outputs must be compared
with the measured outputs, with good agreement a necessary condition for accepting
the model. It is clear that this test is stronger than the previous one; in fact the
one-step-ahead predictions can be excellent in some cases when the model predicted
output shows complete disagreement with the measured data.

4.3 Correlation Tests.

These represent the most stringent of the validity checks. The appropriate reference
is [10]. The correlation function buo(k) for two sequences of data u; and v; is defined
by

1 N-k
Guv = E(u,-v,-.,_,,) = J-V_-—-; iz;u.-v.-.,,k (41)

For a linear system it can be shown [10] that necessary conditions for model
validity are

Bee(k) = bok (42)

ec(k) =0 VE (43)

The first of these conditions is true only if the residual sequence ¢; is a white
noise sequence. It is essentially a test of the adequacy of the noise model whose job
it is to reduce the residuals to white noise. If the noise model is correct, the system
parameters should be free from bias. The second of the conditions above states that
the residual signal is uncorrelated with the input sequence Z; i.e. the model has
completely captured the component of the measured output which is correlated with
the input. Another way of stating this requirement is that the residuals should be
unpredictable from the input.

In the case of a nonlinear system it is sometimes possible to satisfy the require-
ments above even if the model is invalid. It can be shown [10] that an exhaustive
test of the fitness of a nonlinear model requires the evaluation of three additional
correlation functions. The extra conditions are

De(es)(k) =0 Yk>0 (44)
¢ 2. (k)=0 Vk (45)
berea(k) =0 VE (46)

The dash which accompanies z? above indicates that the mean has been removed.
Normalised estimates of all the correlation functions above are obtained using
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_ mhricy uiviek
{E(u?)E(v})}}

with a similar expression for k < 0. The normalised expression is used because it
allows a simple expression for the 95% confidence interval for a zero result, namely
+1.96/ \/(N ). The confidence limits are required because the estimate of ¢y is made
only on a finite set of data; as a consequence it will never be truly zero. The model is
therefore considered adequate if the correlation functions described above fall within
the 95% confidence limits. These limits are indicated by a dashed line when the

correlation functions are shown in the following sections.

Gus(k)

k>0 (47)

4.4 Chi-Squared Test.

Oune final utility can be mentioned. If the model fails the validity tests one can
compute a statistic 5 [4] for a given term not included in the model to see if it should
be present. The test is specifically developed for nonlinear systems and is based on
chi-squared statistics. A number of values of the statistic for a specified term are

 plotted together with the 95% confidence limits. If values of the statistic fall outside
the limits, the term should be included in the model and it is necessary to re-estimate
parameters accordingly. Examples of all the test procedures described above will be
given in the following section.

5 Analysis of a Simulated Fluid Loading System.

In order to demonstrate the concepts described in previous sections, the techniques
are now applied to simulated data from the Morison equation (1). The first problem
is to determine an appropriate discrete-time form. The conditions p = 1,D = 2 are
imposed giving the equation

F(t) = 7Cmtt + Cau(t)|u(t)| (48)
where F(t) is the system output and u(t) will be the input. Using the difference
formula (9) one obtains the discrete form
xC,
—A-Tm(u.' — 1) + Cauilui (49)
The basic form of the NARMAX procedures used here utilises polynomial model

terms. For the sake of simplicity, the u|u| term in the simulation model is replaced
by a cubic approximation,

F, =

uilug| = au; + Bud + O(uf) (50)

The coefficients a and J are obtained by a simple least-squares argument which
is given in Appendix A. Substituting (50) into (49) yields the final NARMAX form
of Morison’s equation

Cm Cm
Fi = (aCa+ X Jui - TP uioy + BCau} (51)
or
F;, = a u; + azu—1 + asu? (52)
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This is the model which was used for the simulation of force data. A velocity
signal was used which bad a uniform spectrum in the range 0 Hz to 20 Hz. This
was obtained by generating 50 sinusoids each with an amplitude of 5.0 units spaced
uniformly in frequency over the specified range; the phases of the sinusoids were taken
to be random numbers uniformly distributed on the interval [0, 2x]. The sampling
frequency was chosen to be 100 Hz, giving five points per cycle of the highest frequency
present. It should be noted that the absolute frequencies have no meaning here, the
important quantity is normalised frequency i.e. the ratio of frequency to sampling
frequency. The amplitude for the sinusoids was chosen so that the nonlinear term
in (52) would contribute approximately 5% to the total variance of F. The uniform
spectrum is chosen here for convenience, a more realistic simulation would require
the imposition of a Pierson-Moskowitz or JONSWAP spectrum [12]. However, the
uniform spectrum is adequate for illustrative purposes. The simulated velocity and
force data is displayed in Figure 1. In order to show the accuracy of the cubic
approximation (50) over the range of velocities generated, the function ulu| is plotted
in Figure 2 together with the cubic curve fit; the agreement is very good. The values
of the exact NARMAX coefficients for the data were a; = 661.49, a; = —628.32 and

“az = 0.015479.

In order to demonstrate fully the capabilities of the procedures, a coloured noise

signal ( was added to the force data. The noise model chosen was

(i = 0.222111e;_1 — €j—2 t+ €i-3 (53)

where €; was a Gaussian white noise sequence. The variance of e(t) was chosen
in such a way that the overall signal to noise ratio op/o; would be equal to 5.0.
This corresponds to the total signal containing approximately 17% noise. This is
comparatively low, a benchtest study [13] showed that the NARMAX procedures
could adequately identify Morison type systems with the signal to noise ratio as high
as unity.

The first attempt to model the data assumed the linear structure

F; = ayu; + azu;_; (54)

The resulting parameter estimates were a; = 687.7 and a2 = —628.29 with stan-
dard deviations o4, = 4.6 and o,, = 4.6. The estimated value of a; is 5.7 standard
deviations away from the true parameter, this indicates bias. The reason for the
overestimate is that the u} term which should have been included in the model is
strongly correlated with the u; term; as a consequence the NARMAX model can
represent some of the nonlinear behaviour by adding an additional u; component. It
is because of effects like this that data from nonlinear systems can sometimes be ade-
quately represented by linear models. However, such models will be input-dependent
as changing the level of input would change the amount contributed by the nonlinear
term and hence the estimate of a;.

The one-step-ahead predictions for the model were observed to be excellent. The
model predicted output, shown in Figure 3, also agreed well with the simulation
data. However, if the correlation tests are consulted (Figure 4), both ¢.. and ¢,.,
show excursions outside the 95 % confidence interval. The first of these correlations
indicates that the system noise is inadequately modelled, the second shows that the
model does not take nonlinear effects correctly into account. This example shows
clearly the utility of the correlation tests. Figure 5 shows the results of chi-squared
tests on the terms u? and e;_1; in both cases the graphs are completely outside the
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95 % confidence interval; this shows that these terms should have been included in
the model. A further test showed that the e;_2 term should also have been included.

In the second attempt to identify the system, the correct process model was
assumed,

F, = aju; +au;-1 + (131.15:l (55)

but no noise model was included. The resulting parameter estimates were a; =
659.86, a; = —627.53 and a3 = 0.015743 with standard deviations 04, = 5.9, 04, =
4.5 and 04, = 0.002. The inclusion of the nonlinear term in the model has removed
the principal source of the bias on the estimate of a; and all estimates are now
within one standard deviation of the true results. The one-step-ahead predictions
and model predicted outputs for this model showed no visible improvements over the
linear model. However, the correlation test showed ¢, to be within the confidence
interval, indicating that the nonlinear behaviour is now correctly captured by the
model. As expected ¢..(k) is still non-zero for k > 0 indicating that a noise model is
required. This conclusion was reinforced by the chi-squared tests for e and e;—2
~ which showed that these terms should be included.

The final attempt to model the system used the correct ponlinear structure and
included a noise model with linear terms ¢;—1,...,€i-5: The parameter estimates
were accurate once more. The most significant noise term was found to be €;_3; if
just this term was included in the model the correlation tests (Figure 6) improved but
still showed an excursion outside the confidence limits for bee(k) at k = 1. Generally,
if ¢..(k) leaves the confidence interval at lag k, a term e;_ should be included in the
model. In this case the tests show that e;_; should be included, and this confirms
the result of the chi-squared test in Figure 5.

This simulation illustrates nicely the suitability of NARMAX procedures for the
study of fluid loading forces. More importantly it shows clearly the need for the
correlation tests, it is not sufficient to look at agreement between model predicted
data and measured data. The estimation procedures can still allow a good represen-
tation of a given data set even if the model structure is wrong, simply by biasing
the parameter estimates for the terms present. However, in this case the model is
simply a curve fit to a specific data set and will be totally inadequate for prediction
on different inputs.

6 Analysis of U-tube Data.

The U-tube data ( previously discussed in [2]) were obtained by digitising the force
time-history figures from published papers and reports. The data sets examined are
from the experimental study by Obasaju et al. [14). In the experiment, at various
values of K C, the time-history of the force on a cylinder in a regular planar oscillatory
fow was measured. For each KC value considered, two types of force histories were
distinguised in the experiment. Elements of the first class of force histories were
produced by carefully averaging over cycles which exhibited the same form or mode
of vortex shedding. Elements of the second class were obtained by averaging over all
cycles, irrespective of the mode of vortex shedding. It is the second class which is
considered here. For a fixed 3 value of 417, the KC values for which averaged force
cycles were available were 3.31, 6.48, 11.88, 17.5 and 34.68.

In order to form a basis for comparison the data was first examined by forcing
the model structure to be that of the discrete-time Morison equation (52)
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The parameter estimates for the model have no physical meaning. However, as
the coefficients a;, az and a3 are simple functions of Cy4, Cm and At the sampling
interval, it is possible to pass from the discrete-time parameters to the more physical
continuous-time parameters. However, as it is the model structures which are of
interest here the parameter estimates are not converted.

It is useful to have some numerical measure of the closeness of fit of the model.
The one adopted here is the normalised mean-square error or MSE. This is defined
by

ol
MSE = 1000—; (56)
F
where e(t) is the residual signal decribed in Section 2, which represents that com-
ponent of the measured F(t) which is not accounted for by system model or noise
model.

The Morison model was fitted to each of the five samples of data and the model
MSEs are given in Table 1. As one might expect, the Morison equation coped
well with the data for the two lowest K C values so only the comparisons between
measured data and model predicted output for the remaining data sets are shown
(Figures 7-9). In all cases the model validity tests show values outside the dashed
confidence limits, this indicates clearly that the model is inadequate.

For the next stage of the analysis, the structure detection routines were used to
determine which terms should be in the model. The parameter tables for the resulting
models are given in Tables 3 to 6. The tables also show the ERR value for the term
and the estimated standard deviation of the parameter. In all cases the MSE is
reduced, the results are summarised in Table 7.

The comparisons between measured data and model predicted output for the
higher K C data sets are given in Figures 10 to 12 with the corresponding correlation
test results. The improvement in the predictions is evident. The model validity tests
also show a great deal of improvement, in almost all cases the results are within the
confidence limits for a valid model.

The interpretation of the models is not clear, in each case there are many more
terms than in the discrete Morison equation. Also, the terms linear in u required by
Morison’s equation are not always present, they are usually replaced by terms linear
in y (i.e. F). This may be due to the oversampling effect described in [13] where it
was shown that sampling rates higher than 5 to 10 points per cycle tended to cause
the parameter estimation routines to select output terms rather than input terms,
the result being an excessively complicated model. Unfortunately, oversampling is
inevitable for the U-tube data. In order to use the estimation routines one must have
approximately 50 input/output pairs. As the U-tube data is digitised from figures
containing one cycle, one is forced to adopt an effective sampling rate of more than
50 points per cycle. Although an oversampled model can be perfectly adequate for
prediction purposes, it may be very difficult to associate the model terms with terms
in the underlying continuous-time equations of motion of the system. It is interesting
to note that the predominant nonlinear term is always u3 or in one case y°. However,
beyond this, the number and type of the nonlinear terms changes for each data set.
This is not particularly surprising if one assumes that no simple extension of the
Morison equation exists; the cubic terms are always present because they are a part
of the drag component, the source of the remaining nonlinearity is largely the vortex
shedding [2] and it is well known that the pattern or mode of shedding can change
dramatically as K'C changes.
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It is interesting that for the KC = 17.5 data (Table 5), the routines actually
select the terms for a discrete form of the Duffing-Morison equation [2],

é . 1 .
aF +oF+ F+asF|F|= §pDC¢u(t)Iu(t)| + %rpD’Cmu(t) (57)

although if u(t—1) and u(t—3) truly represented the discrete version of the derivative
1i, their coefficients would be equal and opposite, which is not the case here. As a
result, one might tentatively conclude that the Duffing-Morison equation cannot be
the correct extended model for if it were, the algorithms would determine the correct
parameters given the correct terms.

In conclusion, the above results show that it is possible to improve greatly on
the predictive capability of Morison’s equation at the expense of introducing models
with terms which have no clear physical meaning e.g. Fi_3u;-3. Also, the model
structure and parameters change with KC as opposed to the Morison case where
the structure has been incorrectly forced onto the data. The danger of this latter
approach is that the values of the parameters obtained will be biased and therefore
of questionable value. A further, more important caveat is that the inputs (i.e. flow

" velocities) to the systems considered here are all sinusoids or narrow-band signals, as
a consequence they do not excite the system except over small frequency intervals. In
the terminology of system identification the inputs are not persistently ezciting, they
are unlikely to generate all the possibilities for system response. As a consequence
the results above should be interpreted with great care.

7 Analysis of Wave Flume Data.

The data was obtained from the Delta flume of the De Voorst facility of Delft Hy-
draulics. The particular data considered here comes from the run QA1F1 which used
a fixed smooth cylinder. The unidirectional wave profiles were generated so that the
the surface elevation spectrum approximated to a JONSWAP spectrum. More details
of the experiment can be found in [16] which contains an exhaustive wave-by-wave
Morison analysis of the full De Voorst data set. In the experiment, the velocity signal
was obtained from electromagnetic flowmeters placed adjacent to the cylinder at the
same distance from the wave maker. The forces were recorded from force sleeves
placed at three levels (Stations 2,3 and 4) on the cylinder. The data from Station 2
had to be discarded as the sleeve fell within the crest to trough region of the wave.
Of those remaining, Station 3 was nearest to the surface while fully immersed and
was consequently subjected to the highest nonlinear forces. For this reason data from
Station 3 was used in the following analysis.

Because of a delay in the instrumentation, the velocity data led the force data
by 5.6 sampling instants in each record. This delay was reduced to 0.4 instants
by shifting the velocity arrays by six units. After the analysis described below was
carried out, the effect of the residual lag was investigated by using an interpolation
procedure to remove it. Some of the analysis was then repeated. The results were
almost identical; slightly different parameters were observed and the MSE values
for the models increased slightly, possibly due to the approximate nature of the
interpolation. Because of this the results shown below are for the data with the
residual delay of 0.4 instants.

A systematic and exhaustive analysis, including structure detection, of the full
OA1F1 data set ( over one hundred thousand input/output pairs), would be too
time-consuming. Also, a preliminary Morison analysis showed that the fluid loading
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forces are predominantly linear. For these reasons only the 'most nonlinear’ data
were analysed. In order to identify a correct ponlinear model for any system it is
necessary that the nonlinearity be sufficiently excited. In this case this corresponds
to when the velocity is high. A further useful sign of nonlinearity is the size of the
out-of-line component of the force. For this reason, the data for analysis was chosen
to be centred about the instant of the maximum transverse force excursion.

As with the U-tube data, the De Voorst data is oversampled from the point
of view of parameter estimation. Fourier analysis of the input and output data
showed spectra with a narrow-banded aspect centred about the frequency 0.2 Hz
(Figure 13), while the sampling frequency for the data was 20 Hz. Because there is
such a large amount of the data one can effectively reduce the sampling frequency
by decimating the data. A simple calculation shows that if one assumes a highest
frequency of interest of 0.4 Hz, one can decimate the data by factors of up to 24
without undersampling. The price one pays for this freedom is that decimation
reduces the proportion of significantly nonlinear data in a given sample. Results
will be presented for decimation factors of 1, 2 and 4, corresponding to sampling
freqencies f, of 20Hz, 10Hz and 5Hz respectively.

As before, a discrete Morison model was fitted to the data to serve as a basis
for comparison. The resulting model prediction errors are given in Table 8 and the
corresponding parameters are given in Table 9. The model predicted output and the
correlation test results for the 20Hz data are given in Figure 14.

The data were then analysed using the structure detection algorithms to determine
which terms should be present. The resulting model prediction errors are shown in
Table 10. The parameter tables for the three models are given in Table 11. The
presence of the terms linear in y as the dorninant terms in each model can possibly
be attributed to oversampling, this is supported by the fact that the ERR contribution
of the term y(t — 1) which measures the contribution of the term to the model, falls
steadily as the effective sampling frequency decreases. However, it must be argued
that these terms are necessary given that the model validity tests show a distinct
improvement on the Morison results. The main feature of interest is that the next
most important terms always constitute a discrete Morison submodel, i.e the linear
terms u(t — 1) and u(t — 2) always appear as a derivative pair (equal and opposite
coefficients) and the most significant nonlinear term is always u® for some lag value.
This was also observed at data with the higher decimation factors 8 and 16.This
would seem to indicate that one cannot do much better than Morison’s equation for
the De Voorst OA1F1 data. This is not surprising in view of the fact that the linear
inertia component of the force dominates throughout. The model predicted output
and the correlation test results for the 20Hz data is given in Figure 15. There is no
visible improvement in the fit to the prediction (cf. Figure 14). However, the model
validity test show a distinct improvement.

As with U-tube data, the De Voorst data is not ideal for system identification
purposes. However, one can draw a more definite conclusion in this case which is
that Morison’s equation is perfectly adequate to describe the fluid loading forces in
this particular test.

8 Analysis of a Directional Sea State.

The U-tube and De Voorst data is valuable in that it is of high quality and enables
new model structures of the force equation with vortex shedding to be investigated.
The flow situations are however idealised with Reynolds numbers well below full scale
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values.

In this section the new model structures are fitted to forces and velocities measured
on the Christchurch Bay Tower described in [17]. The same cylinder was used in the
De Voorst tests but the sea states have greater wave heights ( up to 7m against 2m
at De Voorst ) and are directional with a prominent current. The velocities were
measured with calibrated perforated ball meters attached at a distance of 1.228m
from the cylinder axis. This will not give the exact velocity at the centre of the
force sleeve unless waves are unidirectional with crests parallel to the line joining
the velocity meter to the cylinder. This is called the Y direction and the normal to
this, the X direction. The waves are however always varying in direction so in order
to facilitate the fitting of a single-input-single-output (SISO) model, the data was
chosen from an interval when the oscillatory velocity in the X direction was large
and that in the Y direction small. A sample of 1000 points fitting these criteria is
shown in Figure 16. The sampling frequency for this data set was 10 Hz. It can be
seen that the current is mainly in the Y direction. In this case the velocity ball is
upstream of the cylinder and interference by the wake on the ball will be as small as
possible with this arrangement. Using RMS velocities, the KC values in the X and
Y directions are 19.7 and 4.85 respectively. The magnitude of the velocity is shown

"in Figure 17 together with the angle of the velocity vector relative to the X direction.
This angle shows considerable variation; however, the larger angles are simply due
to the fact that the predominant current direction is the Y direction so the velocity
vector will be directed along Y whenever there is a zero-crossing in the X-component
of the velocity. Parameter estimation methods in general are very sensitive to phase
differences or delays between input and output; the directionality here induces a
time-varying delay so some difficulty was anticipated. It is clear that this data is
not of the same quality as that section 7, however, it was sufficiently reliable for a
number of positive results to be obtained.

As in previous sections, the discrete form of Morison’s equation was fitted to
the data to serve as a basis for comparison. The coefficients are presented in Table
12, note that the coefficients of u; and u;_; ( respectively u(t-1) and u(t-2) in the
table) are almost equal and opposite indicating that they constitute the discretisation
of an inertia term 4. The MSE for the model is 21.43 which indicates significant
disagreement with reality. The model predicted output is shown in Figure 18 together
with the correlation tests. One concludes that the model is inadequate.

The data was then analysed using the structure detection algorithm to determine
which terms should be included in the model. A nonlinear noise model was included.
The resulting model is given in Table 13. As in the case of the U-tube data of
Section 6, a complex model was obtained which includes terms with no clear physical
interpretation. The fact that such a model is required can be offered in support of
the conclusion that the inadequacy of Morison’s equation is due to the gross vortex
shedding effects which were observed in the U-tube experiments but not in the De
Voorst wave flume [2]. The model predicted output and correlation tests are shown
in Figure 19. Although the validity tests show a great deal of improvement, the
model predicted output appears to be worse. This is perfectly understandable; one
of the effects of correlated noise ( indicated by the the function ¢.. in Figure 18
) is to bias the model coefficients so that the model fits the data rather than the
underlying system. In this case the model predicted output is actually accounting for
some of the system noise; this is clearly incorrect. When the noise model is added to
reduce the noise to a white sequence, the unbiased model no longer predicts the noise
component and the model predicted output appears to represent the data less well.
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This is one reason why the M SE adopted here makes use of the residual sequence
e; rather than the prediction errors {;. Figure 20 shows a comparison between the
white residual signal and the coloured prediction errors. In this case, the MSE is
0.70735 which shows a marked improvement over Morison. The fact that the final
correlation function in Figure 19 still indicates problems with the model can probably
be attributed to the time-dependent phase relationship between input and output
described above. It is possible that this could be improved with further analysis.

The results here seem to indicate again that there is no simple extension to Mori-
son’s equation which allows a direct physical interpretation of the additional terms.
The Christchurch Bay data shows a strong resemblance to the U-tube data in this
respect.

9 Conclusion.

The results presented above for the oscillatory flow data and the directional sea data
offer evidence that there is no simple extension to Morison’s equation for prediction
purposes which allows a physical interpretation of the additional terms - at least
in the disrete-time case. In the case of the De Voorst data, Morison’s equation
gives acceptably accurate predictions over almost the whole data set simply because
the data is linear, inertia-dominated. In the case of the U-tube data, Morison is
visibly inadequate for detailed prediction; however, the models identified here which
can predict accurately change their structure as K'C' and consequently the vortex
shedding patterns change. This allows the conclusion that Morison’s equation fails
when there is gross vortex shedding. In this case Morison’s equation can still be
regarded as useful as it provides at least a reasonable estimate of force whilst keeping
the same model structure. One might argue that the conditions in a U-tube are
artificial and the sort of nonlinear behaviour displayed there would not occur in real
situations. For this reason it was important to analyse data collected from real seas
with comparable K C values. The models obtained from analysis of the Christchurch
Bay data show the same type of structure as those from the U-tube. This allows the
conclusion that vortex shedding effects are significant, which is consistent with the
more heuristic reasoning in [2].

These conclusions must be regarded as tentative for two reasons. Firstly, the data
is not ideally designed for use with system identification methods. Oversampling is
a problem in most of the data presented here, the effect of this is simply to produce
an overly complex model, the validity of the model is not affected. Also, the narrow-
band excitations are suboptimal for parameter identification purposes. Secondly, the
discrete NARMAX form for a continuous-time system is not unique; the models pre-
sented here, while differing considerably in their structure, may all reflect a common
underlying differential equation model. In fact, the question of uniqueness will be
taken up in the second part of this study where it will be shown that the problem
can be largely circumvented by passing to the frequency-domain.

Acknowledgements.

Thanks are due to Delft Hydraulics for access to the wave force data obtained in the
Delta flume in their De Voorst facility. This data was provided with the assistance of
Malcolm Birkinshaw of the Health and Safety Executive and Professor Peter Bearman
and Martin Davies of Imperial college. In particular, the help provided by Martin

18




Davies in translating data into a useful format is much appreciated. Thanks are also
due to Dr. Emmanuel Obasaju for making available unpublished data from his ex-
perimental work undertaken as a research associate at Imperial College. This project
is supported by the Offshore Safety Division of the Health and Safety Executive
through the Marine Technology Directorate’s managed programme on the Behaviour
of Fixed and Compliant Offshore Structures. This paper will comprise part of the
final report to the Health and Safety Executive (to be published by HMSO).

References

[1] Morison (J.R.), O’Brien (M.P.), Johnson (J.W.) & Schaf (S.A.) 1950 Petroleum
Transactions 189 pp.149-157. The force exerted by surface waves on piles.

[2] Stansby (P.K.), Worden (K.), Billings (S.A.) & Tomlinson (G.R.) 1991 To ap-
pear in Applied Ocean Research. Improved wave force classification using system
identification.

[3] Sarpkaya (T.) 1981 US Naval Civil Engineering Laboratory Report no. CR
82.008. Morison’s equation and the wave forces on offshore structures.

[4] Chen (S.), Billings (S.A.) & Liu (Y.P.) 1987 International Journal of Control
50 pp.1873-1896. Orthogonal least-squares methods and their application to
nonlinear system identification.

[5] Billings (S.A.) & Tsang (K.M.) 1989 Mechanical Sysiems and Signal Processing
3 pp.341-359. Spectral analysis for nonlinear systems, part II: Interpretation of
nonlinear frequency response functions.

[6] Worden (K.), Billings (S.A.), Stansby (P.K.) & Tomlinson (G.R.) 1991 Submitted
to Journal of Fluids and Structures. Identification of nonlinear wave forces. Part
I1. Frequency-domain analysis.

[7] Leontaritis (I.J.) & Billings (S.A.) 1985 International Journal of Conirol 41
pp.303-328. Input-output parametric models for Nonlinear systems. Part I: de-
terministic nonlinear systems.

[8] Leontaritis (I.J.) & Billings (S.A.) 1985 International Journal of Control 41
pp.329-344. Input-output parametric models for Nonlinear systems. Part II:
stochastic nonlinear systems.

[9] Korenburg (M.), Billings (S.A.) & Liu (Y.P.) 1988 International Journal of Con-
trol 51 pp.193-210. An orthogonal parameter estimation algorithm for nonlinear
stochastic systems.

[10] Billings (S.A.), Chen (S.) & Backhouse (R.J.) 1989 Journal of Mechanical Sys-
tems and Signal Processing 3 pp.123-142. Identification of linear and nonlinear
models of a turbocharged automotive diesel engine.

[11] Leontaritis (1.J.) & Billings (S.A.) 1987 International Journal of System Science
18 pp.189-202. Experimental design and identifiability of nonlinear systems.

[12] Chakrabarti (S.K.) 1987 Hydrodynamics of Offshore Structures. Computational
Mechanics Publications, Southampton and Springer-Verlag, Heidelberg.

[13] Worden (K.), Billings (S.A.), Stansby (P.K.) & Tomlinson (G.R.) 1990 Confi-
dential Technical Report to Department of Energy. Parametric modelling of fluid
loading forces II.

19




[14] Obasaju (E.D.), Bearman (P.W.) & Graham (J.M.R.) 1988 Journal of Fluid
Mechanics 196 pp.467-494. A study of forces, circulation and vortex patterns
around a circular cylinder in oscillating flow.

(15] Klopman (G.) & Kostense (J.K.) 1989 in Water Wave Kinematics Torum &
Gudmestad (eds.) NATO ASI series E 178. The loading on a vertical cylinder
in random waves at high Reynolds numbers.

[16] Davies (M.].S.), Graham (J.M.R.), & Bearman (P.W.) 1990 in Environmental
Forces on Offshore Structures and Their Prediction pp.113-136. Kluwer Aca-
demic Press.

[17] Bishop (J.R.) 1979 National Maritime Institule report no. NMI R57 Aspects
of large scale wave force experiments and some early results from Christchurch
Bay.

Appendix A. Approximating u|u| by a Cubic Poly-
‘nomial.
The basic problem is to determine the best, in the least squares sense, cubic repre-

sentation of the function u|u| over a given interval @ < u < b. Because u|u is an odd
function, one immediately has

ulu| = au + fu + O(u®) (58)
The coefficient estimates are fixed by minimising the error functional
b
J(a,B)= j du(ulu| — cu — Bu?)? (59)
a
with respect to a and 8. One obtains for the « variation
aJ
—=0=Ano+Anpf-B1=0 (60)
da
where
g 1
An =/ wldu = Z(b® - a®) (61)
,, 3
b 1
A= / uidu = - (b° — a®) (62)
; 5
b 1
B, = / u?|u|du = Z(b‘ —-a*) (63)
a
while varying 3 yields
aJ
%=0=>A210+A223—32=0 (64)
where
b 1
Ay = / wdu= £ (0° - a%) = Ay (65)
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b
Rgs = / . T %(b" —a7) (66)

b
B; = j u!|u|du = %(b6 - af) (67)

The parameter estimates are Dow obtained by solving the linear simultaneous
equations (A.3) and (A.7). The result being

_ A;2B; — AnB;
AnAiz — Andn
Ay B, - AnB;

= 69
b AnA2— Andn (69)

Given a set of time data u(t), a convenient choice for the approximating interval
is [~ Urme, Urm,), 10 this case

(68)

a

DUrms . 35 u3
16 48Urm,

(70)

ulu| =
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Figure Captions

Figure 1. Simulated velocity and force signals for the coloured noise study.
Figure 2. Comparison between u|u| and cubic approximation.

Figure 3. Coloured noise study: model predicted output for linear process model -
no noise model.

Figure 4. Coloured noise study: correlation tests for linear process model - no
“noise model.

Figure 5. Coloured noise study: chi-squared tests for linear process model - no
noise model.

Figure 6. Coloured noise study: correlation tests for nonlinear process model with
linear noise model.

Figure 7. Discrete Morison fit to KC = 11.88 U-tube data. (a) Model predicted
output. (b) Correlation tests.

Figure 8. Discrete Morison fit to KC = 17.5 U-tube data. (a) Model predicted
output. (b) Correlation tests.

Figure 9. Discrete Morison fit to KC = 34.68 U-tube data. (a) Model predicted
output. (b) Correlation tests.

Figure 10. NARMAX fit to KC = 11.88 U-tube data. (a) Model predicted
output. (b) Correlation tests.

Figure 11. NARMAX fit to KC = 17.5 U-tube data. (a) Model predicted output.
(b) Correlation tests.
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Figure 12. NARMAX fit to KC = 34.68 U-tube data. (a) Model predicted
output. (b) Correlation tests.

Figure 13. Velocity Power Spectral Density for De Voorst data.

Figure 14. Discrete Morison fit to sample of De Voorst data. (a) Model predicted
output. (b) Correlation tests.

Figure 15. NARMAX fit to sample of De Voorst data. (a) Model predicted
output. (b) Correlation tests.

Figure 16. X and Y components of velocity for sample of Christchurch Bay data.

Figure 17. ’In-line’ component of velocity and angle between velocity and X
direction for sample of Christchurch Bay data.

Figure 18. Discrete Morison fit to sample of Christchurch Bay data. (a) Model
predicted output. (b) Correlation tests.

Figure 19. NARMAX fit to sample of Christchurch Bay data. (a) Model predicted
output. (b) Correlation tests.

Figure 20. Residual and deterministic prediction error for NARMAX fit to sample
of Christchurch Bay data.
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KC | MSE

3.31( 0.048
6.48 | 0.283
11.88 | 6.038
17.50 | 0.536
34.68 | 1.495

Table 1: M SE values for discrete Morison fit to U-tube data.




|
Model Term Parameter ERR St.Dev.
Fi 0.86255e+00 | 0.99075e+00 | 0.11296e+00 W
Ui_3 -0.97219e+401 | 0.90033e-02 | 0.21840e+01
F,_, -0.32474e+00 | 0.26389%-04 | 0.12775e4-00
u; 0.11304e+02 | 0.33765e-04 | 0.22126e401
Ui_qu? 4 -0.23109e+01 | 0.36811e-04 | 0.83612e+00
F; o Fi_4qu;_3 | -0.22816e+00 0.12014e-04 | 0.94324e-01
Fi_qu;_4 0.67476e-02 | 0.13726e-04 | 0.27316e-02
Fi_3F;_4u;_3 0.95055¢-01 | 0.47850e-05 | 0.48011e-01
F,_1F,_4u;_3 0.89978¢-05 | 0.55889¢-05 | 0.52788e-01

Table 2: Parameter table for NARMAX model : KC = 3.31.

Model Term Parameter ERR St.Dev.

F,_, 0.12801e+01 | 0.99076e+00 | 0.97851e-01
F,_, -0.27820e+00 | 0.91281e-02 | 0.99927e-01
u? s -0.58193e+00 | 0.29066e-04 | 0.10483e+00
F3, -0.43380e-01 | 0.95587e-05 | 0.12795e-01
F,_3F?%, 0.41553e-01 | 0.28922e-05 | 0.12899¢-01
ul 0.47740e4+00 | 0.16569e-04 | 0.14023e+00
F,_qu;u;1 -0.60782¢-01 | 0.32752e-05 | 0.3202G-01

Table 3: Parameter table for NARMAX model : KC = 6.48.

(3]



Model Term Parameter ERR St.Dev.

Fi_, 0.18021e+01 | 0.98490e+00 | 0.95162e-01 |
Fi_y -0.78516e+00 | 0.14217e-01 | 0.14038e+00
Fi_4 -0.41016e-01 | 0.35150e-03 | 0.50713e-01
ud 4 -0.41113e400 | 0.46961e-04 | 0.45955e-01
u? 0.92188e+00 | 0.30771e-04 | 0.11052e+00
F,_qu? -0.31250e+00 | 0.69055e-04 | 0.53067e-01
Fi_qui_s 0.42653e+04 | 0.84596e-04 | 0.14323e+04
Fi_qu; 0.84966e+04 | 0.52659¢-04 | 0.28530e+04
F._1Fi_pu; 0.33159¢-01 | 0.33000e-04 | 0.10812e-01
Fi_quioq -0.12659e405 | 0.29321e-04 | 0.42508e+04

Table 4: Parameter table for NARMAX model : KC = 11.88.

Model Term Parameter ERR St.Dev,
Fiy 0.16842e+01 | 0.99554e+00 | 0.68816e-01
Fi_s -0.64108e+00 | 0.42679e-02 | 0.66371e-01
F?, -0.26385e-01 | 0.18700e-04 | 0.72448e-02
u; -0.80901e-01 | 0.70946e-05 | 0.29273e+00
Uig -0.94940e-01 | 0.22122e-04 | 0.24563e+4-00
u? 0.83598e+00 | 0.24634e-04 | 0.13375e+-00
Fi_qu? g -0.58117e4+00 | 0.10666e-04 | 0.11554e+00
F._oFi_su;_3 | 0.14757e+00 | 0.16333¢-04 | 0.34883e-01

Table 5: Parameter table for NARMAX model : K'C = 17.5.




Model Term Parameter ERR St.Dev.
|
Fi_, 0.16968¢+01 | 0.08733e+00 | 0.10319e+00 |
Fi_, -0.92220e4-00 | 0.10677e-01 | 0.19801e+00
F3, 0.62466e-01 | 0.34870e-03 | 0.26433e-01
ud_, -0.58983e+00 | 0.13139%-03 | 0.89619e-01
ud 0.15208e+01 | 0.35151e-03 | 0.34248e+00
Fi_qu? -0.80145e400 | 0.21335e-03 | 0.22362e+00
F%, 0.46783¢-02 | 0.53122e-04 | 0.26860e-02
Fis 0.22397e+00 | 0.36680e-04 | 0.11904e+00
g -0.33093e-01 | 0.18081e-04 | 0.29828e-01

Table 6: Parameter table for NARMAX model : KC = 34.68.

KC | MSE | srspieen
3.31 | 0.011 0.228
6.48 | 0.005 0.018
11.88 | 0.018 0.003
17.50 | 0.009 0.017
34.68 | 0.084 0.056

Table 7: M SE values for OLS fit to U-tube data.



Table 8:

fs(Hz) | MSE
20.0 | 2.172
10.0 | 2.256
5.0 | 2.339

M SE values for discrete Morison fit to OA1F1 data.

Decimation | Model Term Parameter ERR St.Dev.
Factor
1| u 0.34616e+04 | 0.41756e-01 | 0.16720e+02
U1 -0.34434e+04 | 0.93366e+00 | 0.16652e+02
u? 0.61468e+02 | 0.28627e-02 | 0.53679%e+01
2 |y 0.17843e+04 | 0.93047e+00 | 0.88072e+01
U1 -0.17777e+04 | 0.16854e-01 | 0.87101e+4-01
ud 0.75793e+02 | 0.30123e-01 | 0.58492e+01
4 | u 0.89092¢+03 | 0.23972e-01 | 0.46741e+401
U;—1 -0.80878e+03 | 0.94932e+00 | 0.44681e+01
u? 0.81435e+02 | 0.33366e-02 | 0.68324e+01
Table 9: Parameter tables for Morison models of OA1F1 data.




fo(Hz) | MSE | wrsgiteson
20.0 | 0.241 0.111
10.0 | 0.675 0.299
5.0 | 1.246 0.533

Table 10: M SE values for OLS analysis of OA1F1 data.

Decimation | Model Term Parameter ERR St.Dev.
Factor
1| Fy 0.10527e+01 | 0.99339e+00 | 0.15631e-01
Fi_4 -0.24170e+00 | 0.32234e-02 | 0.12455e-01
Uj_4q .0.19254e+403 | 0.20740e-03 | 0.12037e+02
u; 0.18877e+03 | 0.29104e-03 | 0.12110e+02
T 0.19028¢+402 | 0.10240e-03 | 0.21628e+01
F,?_lu.‘_,; 0.83766e-02 | 0.90080e-04 | 0.73806e-03
Fi 1 Fi_2Fi_4 -0.77932¢-02 | 0.28166e-03 | 0.72594e-03
2| Fi— 0.85124e+00 | 0.97386e+00 | 0.21853e-01
Fi_s -0.29028e+00 | 0.14644e-01 | 0.20183e-01
Uj—g -0.25433e+02 | 0.92557e-03 | 0.18812e+02
Uu; 0.73679¢403 | 0.13187e-02 | 0.40688e+02
Ui -0.71581e+03 | 0.14840e-02 | 0.53778e+02
ud_, 0.47754e+02 | 0.71568¢-03 | 0.40493e+01
F? jui_4 0.10364e-02 | 0.30643e-03 | 0.15470e-03
4 | Fiy 0.48637e+00 | 0.91320e+00 | 0.29916e-01
Fe—s .0.24531e+00 | 0.5348%e-01 | 0.22727e-01
Ui_4q 0.15107e4+02 | 0.21704e-02 | 0.12213e+02
u; 0.74223¢+03 | 0.38881e-02 | 0.22395¢+02
Ui .0.75752e+03 | 0.10346e-01 | 0.29543e+02
B2 5 0.85848¢+02 | 0.22339e-02 | 0.60891e+01
F,_3F%, 0.62316e-05 | 0.78293e-03 | 0.77790e-06
Fi_, .0.34339e+00 | 0.58334e-03 | 0.34145e-01
F,_3 0.27752¢+00 | 0.84541e-03 | 0.33932e-01
Table 11: Parameter tables for NARMAX models of OA1F1 data.




Model Term Parameter ERR St.Dev.

U; 0.88080e+03 | 0.18764e-01 | 0.20344e+402
Uj_y -0.84593e+03 | 0.38539¢+00 | 0.20008e+02
ud 0.33983¢+402 | 0.38132e+00 | 0.21913e4-01

Table 12: Parameter table for Morison model of Christchurch Bay data.




Model Term | Parameter ERR St.Dev.

Fi_, 0.18615e+01 | 0.95655e+00 | 0.70177e-01 ||
Fi_, -0.11551e401 | 0.29096e-01 | 0.13558¢+00
F2, -0.66218e-05 | 0.76435e-03 | 0.41434e-05
F2 ,Fi_4 -0.36266e-06 | 0.90966e-03 | 0.61313e-06
Fi_qu} 4 -0.21047e+00 | 0.43745e-03 | 0.28399¢-01
F,_qu? 0.19212e+00 | 0.51797e-03 | 0.18074e-01
Fi_sujui_s | -0.42832e400 | 0.55750e-03 | 0.33347e-01
Fi_qu? 4 0.42050e400 | 0.69171e-03 | 0.47320e-01
Fly -0.20219e-03 | 0.34152e-03 | 0.55597e-04
Fi_gFi_s 0.14279¢-03 | 0.27665e-03 | 0.70706e-04
F._yFi_su; | -0.79306e-03 | 0.10157e-03 | 0.10556e-03
F2 u;_4 0.48154e-03 | 0.14678e-03 | 0.58257e-04
wi—3u?_g 0.50511e+02 | 0.23129¢-03 | 0.14101e+02
wiu?_, 0.18365e+03 | 0.10878e-03 | 0.29600e+02
uiu?_, -0.22708e403 | 0.50493e-03 | 0.42018e+02
F, 0.13557e-04 | 0.74931e-04 | 0.42904e-05
F,_1F2, -0.32915¢-04 | 0.19974e-03 | 0.12754e-04
F2 Fi_3 0.24301e-05 | 0.11394e-03 | 0.10739e-05
F2,Fi 3 0.24703e-04 | 0.23297e-04 | 0.12493¢-04
Fi_s -0.36463e+00 | 0.16677e-04 | 0.10016e+00
Fi_4 0.14370e+00 | 0.37472e-04 | 0.11225e+00
Fi_s 0.14133¢+00 | 0.43328¢-04 | 0.46771e-01
u; 0.11428¢+03 | 0.93507e-05 | 0.37205e+02
uj_3 -0.24760e403 | 0.76597e-04 | 0.10773e+03
Ui_g 0.20084e+03 | 0.31621e-04 | 0.15248e+03
Fi_3 0.28620e+00 | 0.35747e-04 | 0.13075e+00
wi_3 -0.44304e+02 | 0.11110e-04 | 0.15693e+03
Uis 0.27294¢402 | 0.78658e-05 | 0.36969e+02
Ui—g -0.46985¢402 | 0.13122e-05 | 0.11163e+03

Table 13: Parameter table for NARMAX model of Christchurch Bay data.
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