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Abstract

In part I of this study, concerned with time-domain results, a number of NARMAX
time-series models were obtained for a range of situations of wave loading on slender
cylinders. The dual frequency-domain approach is pursued here. First, a review
is given of the basic theory of the Volterra expansion for nonlinear systems. The
associated higher order Frequency Response Functions (FRF’s) are presented. The
means of constructing them by the method of harmonic probing is outlined and their
interpretation is discussed. A study is made of the higher order FRF’s for the Morison
equation and a proposed extension, the Morison-Duffing equation. Finally, the FRF’s
for the aforementioned NARMAX models are determined; it is shown that the fluid
systems exhibit a consistent structure in their higher order responses which is not
predicted by Morison’s equation.

1 Introduction

In a previous paper [1], NARMAX nonlinear time-series methods were applied to
experimental force and velocity data for various flows around a cylinder, the ob-
ject being to obtain mathematical models which would allow accurate prediction of
fluid-loading forces from measured instantaneous flow velocities. The situations rep-
resented ranged from planar oscillatory flow in a U-tube to a random directional
sea.
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The standard means of predicting wave forces at present is to use Morison’s
equation [2].

F(t)= %pDC¢u|u| + %rpD’C,.ﬁ (1)

where F(t) is the force per unit axial length on the cylinder, u(t) is the instan-
taneous flow velocity, p is water density and D is the diameter. Cyq and Cy, are the
dimensionless drag and inertia coefficients respectively. In all the cases considered
in [1], the NARMAX models gave substantial improvements over the predictions ob-
tained from the Morison equation. (In a separate paper [3], additional terms were
added which had a physical interpretation and gave good curve-fits but not predic-
tions. This analysis enabled improved force classification into drag, inertia and Aistory
components.) However, these improvements were obtained at the expense of includ-
ing extra model terms which had no clear physical interpretation. Further, in the
analysis of the U-tube data from an experiment by Obasaju [4], different model struc-
tures were obtained for different values of Keulegan-Carpenter number KC, where
KC = UyT/D, for the flows. One reason why this situation might occur is that the

. discrete-time representation of a continuous-time system is not unique. In order to

draw any conclusions from the NARMAX results given in [1] in the time-domain,
it is necessary to recover the underlying continuous-time model or use some other
means which can reveal any common underlying physical structure in the NARMAX
models. This can be done by passing to the frequency- domain where the system
has a representation by a number of frequency response functions (FRF’s) which
can be determined directly from the NARMAX representation [6]. The calculation
of the nonlinear FRF’s is based on the Volterra series representation of nonlinear
systems [5], which has been applied with success to a number of problems in control
engineering and structural dynamics in recent years.

The layout of the paper is as follows: section 2 provides a brief introduction to the
Volterra representation of a nonlinear system. Section 3 describes how one can obtain
the higher order frequency response functions from the system equation of motion
(or its NARMAX representation) using the method of harmonic probing. Section 4
is concerned with the validation and interpretation of the higher order FRF’s. The
harmonic probing procedure is applied in Section 5 to Morison’s equation. Finally
in Section 6, the higher order FRF’s for the NARMAX models from [1] are obtained
and it is shown that they exhibit a number of common features.

The results presented in the next two sections are not original. However, as the
determination of higher order FRF’s by harmonic probing is unlikely to be a well
known technique within the context of fluid loading calculations, a review is given in
order to make the paper essentially self-contained.

2 The Volterra Series and Higher Order Frequency

Response Functions.
The primary problem of system identification is to obtain a mathematical model of
a given physical system from consideration of measured input and output data. In

general mathematical terms, a system S can be regarded as a functional which maps
given input functions e.g. z(t), to associated output functions y(t).

y(t) = Sz (t)] )




This is far too general to be very illuminating. However, it is well known that the
input-output functional for a linear system can always be written in the form

b = j drh(r—t)z(r) 3)

a relationship which is sometimes referred to as Duhamel’s integral. Within this
framework, the system is specified uniquely by its Green’s function or impulse re-
sponse function h(t). The Fourier transform F of equation (3) yields the familiar
frequency domain expression

Y(w) = (W)X (w) (4)

where X (w) and Y (w) are the Fourier transforms of z(t) and y(t) respectively and
H(w) = F[h(t)] is the system Frequency Response Function or FRF. All information
about the system is encoded in either of the functions h(t) and H(w). Which repre-
sentation is used in a given problem will usually be dictated by the form of the answer
required. In vibration problems, the frequency domain approach is usually adopted;
displaying the FRF H (w) shows immediately those frequencies at which large outputs
can be expected i.e. peaks in H(w) corresponding to the system resonances.

Equations (3) and (4) are manifestly linear and therefore cannot hold for arbitrary
nonlinear systems. However, both admit a generalisation. The extended form of
equation (3) was obtained in the early part of this century by Volterra [7]. It takes
the form of an infinite series

y(t) = yi(t) + y2(t) + ya(t) + .. (5)
where
+o0
y(t) = /_ drhy(r)z(t - 1) (6)
400 ptoo
v (t) = j- 3 dridrhg(m, 12)z(t — 7)z(t — 12) (7)

400 p4o0 pto0
ya(t) = /- /_ J drydradraha(m, 12, T3)2(t — 1)z (t — m3)z(t — T3) (8)

The form of the general term is obvious from the above. The functions hi(7),
ha(71,72), ha(71, 72, 73)s « o« Bal(T1y -y Tw), - . . BTE generalisations of the linear impulse
response function and are ususally referred to as Volierra kernels. The use of the
Volterra series in dynamics stems from the seminal paper of Barrett [8] in which the
series was applied to nonlinear differential equations for the first time. One can think
of the series as a generalisation of the Taylor series from functions to functionals.
The expression (3) simply represents the lowest order truncation which is of course
exact only for linear systems.

It can be shown [5] that the kernels can be considered to be symmetric without
loss of generality i.e. ha(my,72) = ha(73, 1) etc.

As stated above, there exists a dual frequency-domain representation for nonlinear
systems. The higher order FRF’s or Volterra kernel transforms Hy(w1,...,Wp), B =
1,...,00 are defined as the multi-dimensional Fourier transforms of the kernels, i.e.




400 400 .
Ho(Wiyeooywn) = j A - dTahin (T o0y Ta)e 1T etonta) - (g)

-00 - 00

1 400 400 i
Ba(T1yeeesTa) = (2—,!)—“/ dw;...dw.H,.(wh...,w.)e+'(""'+"'+"’"‘)

-0 -0
(10)
1t is a simple matter to show that symmetry of the kernels implies symmetry of
the kernel transforms so for example, Ha(w1,w3) = Ha(wa,w1)-
It is then a straightforward matter ( Appendix A ) to obtain the frequency-domain
dual of the expression (5)

Y(w) = Yi(w) + Ya(w) + Ya(w) + ... (11)
where
¥i(w) = Hy(@)X() (12)
+o0
Ya(w) = 21—7{ - dwy Hy(wy,w — w1) X (w1) X (w = w1) (13)
1 400 pto0 dw
Ya(w) = W/—m . dwdws Ha(wy,wa,w — w1 — w2) X (W) X (w2) X (w —wn -—(t::;

The remainder of this paper is concerned with the determination and interpre-
tation of the higher order FRF’s. As for a linear system, the choice of time or
frequency-domain representation is largely dictated by the problem. In this case, the
frequency-domain is indicated for the following reason. The objects under study are
NARMAX difference equation models for a number of different fluid-loading systems
obtained in [1]. It was observed there that time-domain models for two similar flows
(i.e. two flows in a U-tube differing only in their Keulegan-Carpenter number) might
contain different model terms. Because the NARMAX representation of a system
is not unique, one cannot be sure if differences in the model structures for different
flows are due to differences in the underlying physics or simply a reflection of the non-
uniqueness. However, the non-uniqueness is not a problem in the frequency-domain.
No matter what the form of the model, if it represents the measured data accurately
it must reflect the correct frequency content, both from linear and nonlinear parts of
the system. In other words, although there may be a number of discrete-time models
which represent a continuous-time system to a given order of accuracy, and these
models can differ in structure; the higher-order FRF’s corresponding to the discrete
models must all agree with those for the continuous system and with each other. This
will be discussed further in Section 4.

3 Harmonic Probing of the Volterra series.

The subject of this section is a method of determining the higher order FRF’s for a
system. If one has measured input and output time data, it is possible to evaluate the




FRF’s by carrying out many multi-dimensional Fast Fourier Transforms and averag-
ing the results, in much the same way as one would evaluate a standard linear transfer
function [9]. However, this approach requires that the input be a Gaussian white noise
sequence; also, the computational burden of carrying out multi-dimensional FFT’s
makes evaluation of FRF’s higher than second order prohibitive by this method. Al-
ternatively, it is possible to estimate the higher order FRF’s efficiently by harmonic
testing of a system [10].

If one knows the equation of motion of a system, an alternative approach can
be used which yields exact expressions for the higher order FRF’s. The method
of harmonic probing was introduced by Bedrossan and Rice in [11] specifically for
systems with continuous-time equations of motion. The method was extended to
discrete-time systems by Billings and Tsang in [6]. An alternative, recursive approach
to probing is presented in [12].

A review of the method of harmonic probing will now be presented. In order to
explain how the procedure works, it is necessary to determine how a system responds
to a harmonic or periodic input in terms of its Volterra series.

First consider a periodic excitation composed of a single harmonic

z(t) = ¥ (15)

The spectral representation of this function follows from the representation of the
6 function given in Appendix A.

X(w) =27(w - 1) (16)

Substituting this expression into equations (12) to (14) and forming the total
response as in (11) yields, up to third order,

Y(v) = Hy(w).2x6(w — )+

i =

2—‘” deHz(wl,w - wl).216(w1 - Q)21n$(u -w) - Q)-'—

1 +00 p4o0
/ dwldng;g(w;,wg,w - W - wg).

(27)* Jooo Jooo

276wy — 0).276(wz — N).276(w —wy —wz —N) +... (17)

using the argument-changing property of the delta function and carrying out the
integrals gives
Y (w) = 27 {H:(Q)6(w — Q) + Hz(R, V)6(w — 2Q) + H3(2, 2, N)6(w — 302) +... (18)
Taking the inverse Fourier transform yields the required response,

y(t) = Hy(Q)e'™ + Hy(Q, R)e>™ + H3(Q,Q,Q)e™ ¥ + ... (19)

This shows clearly that one should expect components in the output at multiples
of the excitation frequency, i.e. harmonics. The important point here is that the
component in the output at the forcing frequency is H;(Q2).
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& Probing the system with a single harmonic only yields information about the
9 values of the FRF’s on the diagonal line in the frequency space. In order to obtain

further information one should use multi-frequency excitations. With this in mind,
i consider the ’two-tone’ input

z(t) = &M 4 (20)

which has spectral representation

X(w) = 276(w — 04) + 2x6(w — 2) (21)
substituting into (12)-(14) and thence into (11) yields

Y (w) = H1(w).2x6(w — D) + Hi(w).276(w — 2)+

1 [t
e dwlﬂg(wl,w-—wl).

27 J_

{21!‘6((.01 - 91) + 21!'6(9)1 - ﬂg)}{215(w -w — ﬂ;) -+ 2‘[6((.0 —wy - Qz)}-i-
1 +00 400
g (2—“_)?‘/-& dld]_dh)gH:;(Wl, W, W —w; — Uz).

{276(w1 — Q) + 276(wy — 02)){276(wz — Q1) + 276(wz — 22)}.

{276(w — w1 —wz — Q1) + 276(w — w1 —wz = W)} + ... (22)

It is a straightforward but tedious matter to expand this expression and perform
the integrals. After making use of the symmetry properties of the higher order FRF’s,
one obtains

% = H1(91)6(w - 91) + Hl(ﬂz)é(w - ng)_l_

Hg(gl,ﬂl)é(u} - 291) + 232(91, ﬂg)é(td -y - Qz) + Hg(ﬂg, Qg)é(w - 292)-]-
H3(Ql, Q, 91)5((;) - 391) + 333(01, Q,, Qg)é(w -20, - 92)"‘

353(91,02, Qz)ﬁ(w -, - 202) + Ha(ﬂz,ﬂz, 93)5((9 - 392) + e (23)

On taking the inverse Fourier transform, one obtains the response up to third
order

cr y(t) = Hy(R))e"™ + Hy(Q)e* 2+

Hz(Ql, gl)eimﬂ; 4 232(91,92)661(914-0:) 3 H:(Qz.ﬂz)e“zn’i'
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Hy(Qu, D1, )e’*>™ + 3Hs(y, s, ;) (3 +a) .

3H3(1, D3, 05)e (N1 +3%2) 4 Hy(Qy,Q3, Q)™ + ... (24)

The important thing to note here is that the amplitude of the component at the
sum frequency for the excitation ie. at 0, + {1, is twice the second order FRF
H(1,9;3). In fact, if a general periodic excitation is used i.e.

z(t) = ™ 4 ... 4 € (25)

it is not difficult to show that the amplitude of the output component at the
frequency 5 + ...+ Qg is n!Ha(Q1,...,9%). This single fact is the basis of the
harmonic probing algorithm. In order to find the second order FRF of a system for
example, one substitutes the expressions for the input (20) and general output (24)
into the system equation of motion and extracts the coefficient of eft(M+0a). thig
yields an algebraic expression for Hj.

The procedure is best illustrated by choosing a concrete example. Consider the
continuous-time system.

Dy+y+y® =z(t) (26)

where D = :—‘. In order to find H;, one substitutes in the equation, the probing
expressions

z(t) = 25(t) = ¥ (27)
y(t) = (1) = Hi(Q)e"™ (28)

The result being
(iQ + 1) Hy (Q)e'M + Hy(Q)%e 3 = i (29)

equating the coefficients of e’ on each side of this expression yields an equation for
H,

(Q+1)H, () =1 (30)
which is trivially solved, yielding the expression

1
i1 +1

Evaluation of H is only a little more complicated. One substitutes the probing
expressions

H,(Q) = (31)

z(t) = z8(t) = Mt 4 ! (32)

y(t) = 18 (1) = Hi(Q)e ™ + Hy(Qa)e' 7 + 2Hs(M, Q)ef (B +0a)t (33)

Note that in passing from the general output (24) to the probing expression (33),
all second order terms except that at the sum frequency have been deleted. This is a
very useful simplification and is allowed because no combination of the missing terms

7




can produce a component at the sum frequency and therefore they cannot appear in
the final expression for Hj. Substituting (32) and (33) into (26), and extracting the
coefficients of ef(P1+M)! yields

{i(2 + Q3) + 1} Hz(Q1, Q3) + H1 (1) H1(R2) = 0 (34)
So that
_ =H:i(?)H:1(R2)
Hy(6h, f1a) = i(ﬂll + Qz)l‘i" ;

= —H; (1) Hy (1) Hy (1 + 03)

-1
(2 + 1)(822 + 1)(2[Q1 + 2] + 1)
on using the previously obtained expression for Hj.

The next example is a little more interesting; consider the following version of
Duffing’s equation for a nonlinear oscillator

(35)

mD?y + cDy + ky + kay® + kay® = z(t) (36)

H, and H; for this system can be evaluated by exactly the same procedure as
used on the previous example. The results being

Hy(w) = —mw’-:icu+k (37)
Hg(wl,wz) = —%Hl(wl)ﬂl(wﬂﬂl(u’l +W2) (38)

Note that the constant k; multiplies the whole expression for Hj, so that if the
square-law term is absent from the equation of motion, H; vanishes. This reflects a
quite general property of the Volterra series; if all nonlinear terms in the equation
of motion for a system are odd powers of z or y, then the associated Volterra series
has no even order kernels. As a consequence it will possess no even order kernel
transforms.

In order to obtain Hsj, the required probing expressions are

3(0 = Ig(t) - eiw;l + ei'ugt +eiw;t (39)
y(t) = () = Ha(wr)e + Hy(wa)e! + Hyfws)e™™
+2H;(wy, wp)e 1t 4 2Hy (g, ws)ef (1) 4 2Hp(wg, wa)e'(rte )

+ 6 Ha(wy, w3, wa)e'(@rHwatws)t (40)
which are sufficiently general to obtain Hj for any system. Substituting into the
Duffing equation and extracting the coefficient of ef(«1+watws)t yields,

1
H3(w1,wg,w3) = -E.Hl(wl + w2 + w3)-

8




{4ks (H1(w1)Ha(wz,ws) + Hy(ws)Ha(ws,w1) + Hy(w3)Ha(w1,w3)) + bsﬂx(w:)ﬂz(w;)ﬂl(wa)}
41

It is a general property of systems that all higher order FRF’s can be expressed in
terms of H; for the system. The exact form of the expression will of course depend
on the particular system.

A discussion of the interpretation of these functions is deferred until the next
section.

The harmonic probing algorithm has been established above for all continuous-
time systems i.e. those whose evolution is governed by differential equations of mo-
tion. The NARMAX models which shall be analysed later are difference equations
so the probing algoritm requires a little modification [6]. Consider the difference
equation analogue of equation (26)

Ay+y+y’ =z(t) (42)

where A is the backward shift operator, defined by Az(t) = z(t — 1). (Through-
out this paper it is assumed, except where indicated that the sampling interval for
a discrete-time system is scaled to unity. This yields a unit sampling frequency
and Nyquist frequency of 0.5 ). In the usual notation for difference equations, (42)
becomes

vty +y = (43)

However, the form containing A allows the most direct comparison with the
continuous-time case. It is clear from the above that the only differences for harmeonic
probing of discrete-time systems will be generated by the fact that the operator A
has a different action on functions e’ to the operator D. This action is very simple
to compute,

A vt = eiu(t—l) = e—l'u_eiut (44)

It is amusing to note that this action follows from the fact that A=eP asan
operator equation; as e*“! is an eigenfunction of D with eigenvalue iw, it is also an
eigenfunction of A with eigenvalue e~W. It is now clear that one can carry out the
harmonic probing algorithm for (42) exactly as for the continuous-time (26), the only
difference will be that the A operator will generate a multiplier e~ everywhere that
D generated a factor iw. As a consequence H,; and H; for (42) are easily computed.

B) = =y (45)
H(wy,w2) = -;?,I(E:Jil?)l_(r;)
= —H1(w1)Hl(ul)Hl(h’1 +W2) (46)

Note that the form of H; as a function of H, is identical to that for the continuous-
time system.

It is possible at this point to make a quite general statement. Given a continuous-
time system with linear or nonlinear equation of motion f(D,y,z) = 0 and higher
order FRF’s HE(wyy...,wn),n = 1,...,00, the corresponding discrete-time system

9




F(A, y, z) = 0 has higher order FRF’s Hi (w1, ...,wa) = H5(—te™™",..., —ie~iwa) n =
1,...,00. Further the functional relationships between the H, and H; will be iden-
tical in both cases.

The system in equation (42) is not a NARMAX system as it is a nonlinear function
of the most recent sampled value y;. A NARMAX model has the general form [1]

Yi = F(y,-_l, ooy Yiny d Timly oeny zi..) (47)

The relevant existence theorems [13] [14] show that this form is general enough
to represent almost all input-output systems.

4 Validation and Interpretation of the Higher Or-
der Frequency Response Functions.

In order to justify studying the higher order FRF’s it is necessary to show that they
contain useful information about whatever system is under examination. In fact,
as time and frequency-domain representations are completely equivalent, the higher
order FRF’s contain all system information; later in this section it is demonstrated
that important facts can be conveyed in a very direct and visible way.

Before discussing matters of interpretation it is important to address the question
of uniqueness of the higher order FRF’s as the analysis of the final section of this paper
is predicated on the assumption that the non-uniqueness of the time-domain NAR-
MAX representation of a system does not necessarily affect the frequency-domain
representation.

The first thing which must be established is the correspondence between the FRF’s
of the continuous system and the FRF’s of the discrete approximations. Consider the
Duffing oscillator of equation (36); a discrete-time representation for this system could
be obtained by adopting discrete approximations to the derivatives. The coarsest
approximation available is the forward-difference approximation in which

iﬁ P Vi —A!:i—l (48)
- Yi+1— 2+ ¥i-1
Vi = At'g (49)

where At is the sampling interval. Substituting these expressions into (36) with the
coefficient values given above, yields the NARMAX representation

_[2+cAt+EAR) 1 .
s 1+ cAt Vi1~ \ T+ catJ ¥-?

kAt | k3At? At? .
‘{mm}y-'-l‘{m Wi+ Treat ) (50)

In fact, because this is based on the coarse approximations (48) and (49) it does
not yield good representations of the higher order FRF’s. In order to demonstrate
accurate FRF's from a NARMAX model, the following numerical simulation was
carried out. A fourth-order Runge-Kutta scheme was used to obtain the response
of the system (36) under excitation by a Gaussian noise sequence z(t) with rms
10.0 and frequency range 0 to 90 Hz. The coefficient values adopted were: m =
1,c = 20,k = 10%,k; = 107, k3 = 5.10°. This system has a resonant frequency of

10




wy = Jk/m = Wrad/s or f, = §& = 15.75Hz. The data was generated with a
sampling interval of 0.005 seconds, giving a Nyquist frequency of 100 Hz.

A NARMAX model was fitted to 1000 points of the resulting discrete z and y
data using the estimation and validation methods described in [1]. The result was

i = 16696y — 0.90348y;-1
— 2.1830x10%y? , ~— 1.0665x 1057,
+ 3.0027 x 10~%uw;  + 1.8040 x 10~%u;_,
+ 2.7676 x 10~%u;_5

Figure 1 shows a comparison between the original y data from the simulation,
and that predicted by the NARMAX model (51), when excited by the same input
data z; the NARMAX model clearly gives a good representation of the system in the
time-domain. The fitted model was then used to generate the higher order FRF’s
H,, H; and H3 by the method of harmeonic probing. As the exact results could also
be obtained by harmonic probing of (36), direct comparisons could be made. In all
cases, the exact FRF’s are given with the frequency scale in Hz; the FRF’s for the
discrete model are given with normalised frequency scales f, = f /f, where f, is the
sampling frequency, the Nyquist frequency is 0.5 in these units. ’

Figure 2 shows a comparison between the exact Hj and that obtained from the
model, the agreement is excellent. However, an important point must be raised here.
H, for the discrete system is only an approximation to H, for the continuous system
up to the Nyquist frequency of 0.5 (100 Hz); it is only plotted up to this frequency
in Figures 2c and 2d because it simply repeats beyond this point and is therefore
meaningless.

The comparison between the exact H, and that from the NARMAX model is
given in Figure 3, the same comparison using the contour maps for the functions
is shown in Figure 4; again the agreement is very good. Note that because Hj
contains factors H(27f;) and Ha(27f2) it would meaningless to plot it outside the
ranges corresponding to fi < 100, f < 100. Further, H; also contains a factor
H1(27(f1+f2)) so that the plots should not extend past the area specified by fi+f2 <
100. Rather than plot irregular shaped regions, the H figures presented in this paper
include information beyond this last bound, which is indicated by the solid line in
the model contour maps in Figure 4; information presented outside this region on
any H; plot should not be regarded as meaningful.

The comparison between the exact H3 and model Hj is given in Figure 5, and in
contour map form in Figure 6. Unfortunately, the whole Hs surface cannot be plotted
as it exists as a three-dimensional manifold embedded in a four-dimensional space
over the (wy,ws,ws) 'plane’. However, one can plot two-dimensional submanifolds
of Hj, and this is the approach which is usually adopted. Figures 6 and 7 show
H3(wy,ws,w;) plotted over the (wy,w;) plane. The region of validity of the H surface
is a little more complicated in this case, and is shown on the model H3 contour maps
in Figures 7c and 7d.

In all cases, agreement between the exact H, and those obtained from the NAR-
MAX model is impressive. For a less passive comparison, Figure 8 shows the gain
and phase of the output components y1, y2 and y3 obtained from the systems defined
by the exact and model FRF’s when excited by a unit sinusoid at various frequencies.
Again, agreement is excellent.

Having established that 8 NARMAX model can yield good representations of
the FRF’s from a continuous system, the next question which must be addressed
concerns the correspondence between frequency-domain representations of different

(51)
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- yet ezactly equivalent NARMAX models. (Non-uniqueness is actually a problem
with most methods of modelling, it is not specific to NARMAX). Suppose one has
obtained as an accurate discretisation of a continuous system, the NARMAX model

¥ = a1¥i-1 + az2yi-2 + b1z (52)

As this expression holds for all values of i (away from the initial points), it can
just as well be written as

Yi-1 = @1¥i—2 + azpi-s + b1zi-3 (53)
Substituting (53) into (52) yields the NARMAX model

¥ = (a2 + a2)yi—2 + 6102¥i-3 + b1Zi—1 + b1zi-2 (54)

which is exactly equivalent to (52) yet contains different terms. This type of ambiguity
will occur for any system which regresses the present output onto past values of
output. It is a reflection of a type of ambiguity for continuous-time systems; one can
always differentiate the equation of motion to obtain a completely equivalent system.
The only thing which changes is the set of objects for which initial conditions are
required. Harmonic probing of (52) yields (in symbolic notation where A=e™)
& (52) _ &
B we 1—a; A —azA? (55)

while probing of (54) gives the superficially different

(54) _ by A +aib A?
Hl T 1- (ﬂ% + 02) A2 —016263 (56)

However, the latter expression factors

H(54) - bl A (ﬂ]_ A +1) - blA

1 (I‘11 A+1)(1—01A“02A2) 1 — a3 A—02A2
The final type of non-uniqueness is generated by the fact that NARMAX models

can be approximately equivalent. As an illustration consider the simple system

=g (57)

¥i = ayi-1+ Zi-1 (58)
If a is small, a simple application of the binomial theorem gives
(l-al)yi=zicr= pi=(1- ab) ziog = y=Q1+ad)zi1+ O(c?)
So the system

¥i = Zi-1+azi-2 (59)

is equivalent to the system in (59) up to O(a?). Now, harmonic probing of system
(58) gives yields the FRF

68, N_ 1
) = 1—— (60)
and a similar analysis for (59) gives
B®w) = 140 = - +0(e) = B{P@) +0(2) (6
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Note that by retaining n terms in the binomial expansion above, the model

Yi=zicitaziea+...+a" 1z,

is obtained which is equivalent to (58) up to O(a™). As a result, the system (58) can
be be represented with arbitrary accuracy by the expansion above if n is taken large
enough. However, note that one representation has only three model terms while the
other has n with n possibly large. This serves to illustrate why it is important to
correctly detect the model structure or which terms are in the model in order to yield
a parsimonious model [15].

One must be careful not to regard these simple arguments as generating a general
principle; however, it would seem likely that equivalence of two NARMAX models
up to a given order of accuracy would imply equivalence of the corresponding FRF’s
up to the same order of accuracy. This is easy to establish in the case of a general
linear system by an extension of the argument above.

The various cases discussed above exhaust all obvious possibilities for obtaining
different NARMAX representations of a given system.

This discussion is simply intended as an argument that all NARMAX models
which are equivalent in the sense that they furnish a discrete approximation to a
continuous system will have higher order FRF’s which not only approximate to each
other but also to those of the underlying continuous system. It does not constitute a
rigorous proof in any sense; however, it is difficult to imagine a situation under which
this condition would not hold.

Having established some confidence in their reliability, the interpretation of the
higher order FRF’s can be discussed. The Duffing oscillator system (36) serves well as
an illustration. The magnitude and phase of the expression (37) for Hy(w) = H1(27f)
is given in Figures 2a and 2b on the frequency interval 0 to 100 H z. The interpretation
of these figures, traditionally given together and universally called the Bode plot, is
well known; the peak in the magnitude at f = f, = 15.75Hz shows that for this
frequency of excitation the amplitude of the linear part of the response y;(t) is a
maximum. The Bode plot thus allows the immediate identification of those excitation
frequencies at which the vibration level of the system is likely to be high.

Interpretation of the second order FRF is also straightforward. The magnitude
and phase of H; for the Duffing system above are given in Figures 3a and 3b (resp.
4a and 4b) as surfaces (resp. contour maps) over the (f, f2) = (£, §2) plane. The
frequency ranges for the plot are the same as for H, in Figure 2. A number of ridges
are observed. These are in direct correspondence with the peak in H; as follows.
According to equation (38), H; is a constant multiple of Hy(w;)H;(wz)Hi(wy +wa).
As a consequence H; possesses local maxima at positions where the H; factors have
local maxima. Consequently there are two ridges in the H3 surface corresponding to
the lines w; = wy = 27f, and wy = w,. These are along lines parallel to the frequency
axes. In addition, H, has local maxima generated by the H;(w; + w3) factor along
the line wy + wg = w,. This ridge has an important consequence; it indicates that
one can expect a maximum in the second order output y3(t) if the system is excited
by two sinusoids whose sum frequency is the linear resonant frequency. This shows
clearly why estimation of a transfer function by linear methods is inadequate for
nonlinear systems; such a transfer function would usually indicate 8 maximum in the
output for a harmonic excitation close to the linear resonant frequency. However,
it would fail to predict that one could excite a large nonlinear component in the
output by exciting at w = %r; this is a consequence of the trivial decomposition
2eit = "5t 4 ¢/ F* which means that the signal can be regarded as a "two-tone’
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input with a sum frequency at the linear resonance w,. The importance of the second
order FRF is now clear. It reveals those pairs of excitation frequencies which will
conspire to produce large levels of vibration as a result of second order monlinear
effects.

The interpretation of Hs for the system is very similar. Consideration of equation
(41) shows that for a three-tone input of the form (39) one should expect maxima
in the third order output ys(t) if the following conditions are satisfied: wi = wr,
Wy = Wy, W3 = Wy, W) + Wy = Wy, Wa W3 = W,y W3+ Wy = Wy Wy + w2t ws = Wy
The presence of these *combination resonances’ would be indicated by the presence
of ridges in the Hj surface. Although Figures 6 and 7 only show the ’projections’ of
Hs over the (wy,w3), they are sufficient to indicate the presence of the ’combination
resonances’ W) = Wy, Wy = Wy, W1 + W2 = Wy, 2w = Wy, Wy w2 =wr. It is clear
that the local maximum distributions become more and more complex as the order
of the FRF increases.

The arguments above show that the higher FRF’s provide directly visible in-
formation about the possible excitation of large nonlinear vibrations through the
cooperation of certain frequencies.

5 Analysis of the Morison Equation.

Having reviewed the appropriate machinery for generating and interpreting higher
order FRF’s, it can now be applied to Morison’s equation. One slight complication
arises. In the previous discussion, it has been assumed throughout that the Volterra
series for a given system exists. In fact, this need not be the case; a necessary condi-
tion for existence is that all nonlinearities must be infinitely differentiable [16]. This
condition is not satisfied for Morison’s equation because of the drag term u(t)|u(t)|
which has a discontinuous second derivative. However, according to the Weierstrass
approximation theorem, one can approximate this term by a polynomial to any de-
gired accuracy on a given range; this yields an approximation to Morison’s equation
for which the Volterra series exists. It is shown in Appendix A of [1] that the best
(in the least squared error sense ) approximation to u|u| on a symmetric interval
[V, V] is given by
%u + 4;_5Vu3 +0(%) (62)
For a regular wave, one would take V to be the maximum velocity, for an irregular
wave, the rms velocity could be used. The expression above yields the approximate
form for Morison’s equation

uju| =

_1 5V, . 35 sl Ll oom . 5
F(t) = 2p:‘.)C‘,g{ 16u-lr~ wve }+ 4'st Cmti 4 O(v”) (63)
or

F(t) = KMu+ K3 + K (64)

in a convenient shorthand. Application of the harmonic probing algorithm is straight-
forward and yields the FRF’s

Hy(w) = KV 4+ iKpw (65)
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1
Ha(wl,wz,ws) = EKSS) (66)

The magnitude and phase of a typical Morison equation H, are given in Figure 8.
The linear dynamics of Morison’s equation are a little strange in that |H;(w)| — oo
as w — 0o also the phase angle tends to § as w — oo. This means that & high
frequency wave - however small in amplitude - incident on the cylinder can generate
a very high force which leads the wave by a quarter of a cycle.

The second order FRF vanishes as a consequence of the fact that nonlinearity
is an odd power. This is not due to the approximation procedure; u|u| is an odd
function so any least-squares polynomial approximation will also be odd. Because
of this, Morison’s equation cannot generate a low-frequency drift component under
harmonic excitation i.e. in regular waves. Such effects are produced by difference
combinations of frequencies which are generated by the even order FRF’s. The sit-
uation is different if a current is present. In a steady current of velocity uo and
wave-induced velocity u(t), the drag term becomes proportional to (u+ uo)|(u + uo)|
which is then approximated by a;(u + uo) + a3(u + uo)? say. This expression has a
u? term which will generate a constant but non-vanishing H; function. The use of
quadratic transfer functions to model low frequency forces is well established in the
literature of fluid-loading, see for example [17)].

The third order FRF for the approximate Morison system is simply a constant,
all components in the third order output ys(t) appear with the same amplitude
independently of input frequencies; therefore there are no third order ’resonances’.

Having obtained the higher order FRF’s, one can substitute into equations (12)
and (14) and thence into (11) to obtain the nonlinear spectral representation of the
force in terms of the velocity spectrum U(w)

Fw) = (K" 4 iKmw)U(w)+

K@) ptoo ptoo
7 andat v - e 7
T Jcoo J-0
Because H; is a constant, it can be taken out of the integral for the third order
component of the output as above. The resulting integral can then be written as a
convolution product.

+00 pt00
UsUsUW)= j j doig il (s () D (w0 = w1 — wiz)
-00 J=00
This allows the following compact form for the force spectrum

(3)
F) = (K + iKn)U(w) + 35U + U+ V(W) (68)

This type of equation was introduced in [18], it appears to have been initially
obtained by Bendat and Piersol for Shell International Petroleum. The derivation was
by direct Fourier transformation of the cubic approximation to Morison’s equation.
A study of the efficacy of this equation based on experimental data obtained in the
De Voorst wave flume is presented in [19].

It is only a little more difficult to determine the higher order FRFs for the Duffing-
Morison equation,
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a1F+a3F+ F +a3F|F|= %pDC;u!ul + irpD’C..& (69)

which was examined in [3] as a possible extension to Morison’s equation. On approx-
imating the u|u| and F|F| terms by cubics and relabelling, one obtains

e1F +eaF + F +7aF3 = Ksl)u-t- Ksa)u3+K..ﬁ (70)

where 71, 7a, Kﬁl) and Ksa) are now functions of the approximating intervals. Har-
monic probing of this system yields the higher order FRF’s

_ iKpw+ KV
Hyw) = —ajw? + tow + 7 (1)
(3 _
PRTC O W o 1L (72)

6 —a1 (w1 + w2 + w3)? + fag(wy + w3z + wa)

Note that H;(w) — 0 as w — oo showing that the Morison-Duffing equation
does not suffer from the high frequency ’instability’ which is present for Morison’s
equation. This is prevented by the addition of the F and F terms. Further, the
equation has much more complex third order dynamics. The poles in equation (72)
will produce a maximum in the third order output when the combination resonance
condition w; + ws + ws = w, is met where w, is the linear resonant frequency given

byw,.z‘/i

ay

6 Higher Order FRF’s from Experimental Data.

In the first part of this study [1], NARMAX models were fitted to measured flow
velocity and force data for a variety of different flows. The higher order FRF’s
corresponding to these models are presented below.

The first set of data were obtained from U-tube experiments by Obasaju et.al. [4].
A horizontal cylinder was placed in a planar oscillatory flow, so the excitation u(t)
is harmonic. The data is described in more detail in [1]. Results were obtained for
KC values of 3.31, 6.48. 11.88, 17.5 and 34.68. The Stokes parameter § = Re/KC,
where Re is the Reynolds number, was held constant at a value of 417. The data
for KC of 3.31 and 6.48 were essentially linear, inertia-dominated and Morison’s
equation proved adequate for prediction purposes. For this reason the NARMAX
study was restricted to the data for the higher values of KC. The following models
were obtained: for KC = 11.88,

F;, = 0.18021 x 10F;_; — 0.78516F;_9
— 0.41016 x 10_1F.‘..4 — 0.41113u;_3u;_3u;-3
+ 0.92188u;u,u; — 0.31250F;_juu; (73)
+ 0.42653 x 10*F;_4u;-3 4+ 0.84966 x 104F;_4u;
+ 0.33159 x 10~ F;_1Fi—qu; = 0.12659 x 105F; _qu;_1
for KC =17.5,
F, = 0.16842 x 10F.'..1 . 0.54108F;_3

0.26385 x 10~ 1F;_F;_1F;—y — 0.80901 x 101y,
— 0.94940 x 10~ Yu;—2 0.83598 u;u;u;
0.58117F;_3u;_3ui-3 0.14757F; _aF; _4u;_3

(74)

++
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and for KC = 34.68,

F. = 0.16968 x 10F;_; — 0.92220F;_2
+ 0.62466 x 10-1F;_F;_F;_, - 0.58983u;_3u;_su;-3
+ 0.15208 x 10u;u;u; — 0.80145F;_ju;u; (75)
+ 0.46783 x 1072F;_4F;_4 + 0.22397F;_s

0.33093 x 10~ u;_3

In each of these cases, the NARMAX model gave a very substantial improvement
over Morison in predicting the force. However, each model contains different terms,
particularly the third order products. Following the argument of section 4, one
might expect a greater degree of consistency in the frequency domain. Recalling that
Morison’s equation predicts a vanishing H; and constant Ha, one can determine the
higher order FRF’s for the models above to see if there is any deviation from this.
Regarding the linear behaviour of the models, in all cases the H; functions showed a
peak value on or near f = 0, the variation thereafter with frequency being monotonic
decrease. This is in contradiction with the result expected from Morison’s equation
(Figure 8) in which the H; gain increases monotonically with frequency. The actual
observed results are therefore more in keeping with what would be expected on the
grounds of stability. In all these cases, the Hj functions either vanished or had very
small magnitude and were devoid of any interesting structure.

The Ha(wi,ws,w;) functions from the NARMAX models are shown in Figures
9 to 11. The frequency limit for the plot in each case is the normalised Nyquist
frequency of 0.5. In each case the magnitude and phase surfaces are given together
with the corresponding contour maps. Note that the region of validity of the surfaces
- the higher order generalisation of the Nyquist interval is larger if H; vanishes, the
Nyquist region in this case is indicated by the solid lines in Figure 9d.

The first of the figures is for the KC = 11.88 data which was sampled at 71 points
per cycle. The dominant feature is the significant ridge along the line joining A and
B in Figure 9c; this is over the line 21 + f; =0, and is a combination resonance due
to the peak in Hy(f1) at fi = 0 If the excitation frequencies satisfy this condition,
the output will be at the frequency fi+ f2+ fs = fi — 2f; + f1 = 0; this represents
a transfer of energy to the d.c. component of the output. This effect would not be
observed in a U-tube experiment where a single excitation frequency is necessary.
Another feature of interest is the valley between the points C and D along the line
2f1 + f2 = fo, where f, is a little less than the Nyquist frequency; if the excitation
frequencies combine to give a point on this line there will be no significant nonlinear
effects. Given in Figure 10 is Hj for the KC = 17.5 data, sampled at 112 points
per cycle. This has exactly the same features as the previous H3; note that the peak
values of the magnitude surfaces are also very similar i.e. 26.5 db and 26.1 db. Figure
11 shows H3 from the KC = 34.68 data sampled at 71 points per cycle, the same
features are present again, the only difference in this case is that the peak gain is
up to 118 db, indicating very significant nonlinear effects if the condition 2f; + f;
is met. In conclusion for the U-tube data, the H3 functions are not constant as for
the Morison equation, in fact they show pronounced ridges. Further, there is good
agreement in the positions of these features between the H3’s for the different KC
values. Note that there is a common structure for both the gain surfaces and the
phase surfaces.

The second set of experimental data examined in [1] was obtained from a test at
the De Voorst wave flume facility. The experiment is described in more detail in (1]
and [20]. The cylinder was placed in irregular waves with a JONSWAP spectrum

17




with peak frequency 0.2 Hz; the excitation was quite narrow-banded. The sampling
frequency adopted was 20 Hz. In general, the force data from the particular test
examined (run OA1F1) was linear inertia-dominated and Morison’s equation proved
perfectly adequate for prediction purposes. As the magnitude of the transverse force
is an indicator of vortex shedding, a NARMAX model was fitted to 1000 point samples
of in-line force and velocity around the point at which the transverse force force on
the cylinder was a maximum. The result was,

F, = 0.10527 x 10F;_, — 0.24170F;_4
- 0.19254 x 103u;_4 + 0.18877 x 10%y;
4+ 0.19028 x 10%u;_qu;_4ti—4 + 0.83766 x 10~2F;_1Fij_1ui—4
— 0.77932 x 10=2F;_1 F;_qui-3

(76)

H, for this system is shown in Figure 12. It is interesting that the presence of a
linear resonance (at f = fr.,) is indicated, the peak shown is not at the main forcing
frequency which is at 0.01 normalised. After the peak H; decreases overall. H for
the system is shown in Figure 13; similar ridges to those which characterised the U-
tube data are present. A double peaked ridge along the line CD shows peaks along
2f1 + f2 = +fres Where fr., is the linear resonant frequency; this shows that there
will be a transfer of energy to the linear resonance. This feature is not as sharply
indicated as for the U-tube data, this can probably be attributed to the smallness
of the nonlinear component of the force data, which makes accurate identification
difficult. The dominant feature in the H3 appears to be a ridge along the line ADC
corresponding to f; = f3 = 0. A NARMAX model was also fitted to data centred on
the same point in the record but decimated by a factor of 2. This gives an effective
sampling frequency of 10 Hz. The model obtained was

F; = 0.85124F;_, — 0.29028F;_3
— 0.25433 x 10%u;_4 + 0.73679 x 10%y; 1)
— 0.71581 x 103u;_, + 0.47754 x 10%u;_qu;_4ui_4

+ 0.10364 x 10~2F,_ 1 F;_1u;4

H, is given in Figure 14. Again, one observes a peak. This occurs at twice
the normalised frequency as previously, i.e. at the same absolute frequency fr.,
given that the sampling frequency has halved. This supports the conclusion that
the linear ’resonance’ is a feature of the system. This is not predicted by Morison’s
equation. Hj is shown in Figure 15. As before, characteristic ridges are present
along 2f, + f2 = % fres (lines AB and CD in Figure 15c), although not very sharply
defined. The features are clearest in the contour map for the magnitude |H3| (Figure
15c). Unusually, the ridge at f; = 0 which dominated Figure 13c is absent, this may
be due to the fact the the nonlinear component of the data was decreased by the
decimation procedure making identification of nonlinear terms even more difficult.

The final sample of data considered in [1] was recorded from the Christchurch Bay
Tower [21]. In this case the cylinder was in a random directional sea with current.
As in the wave flume experiments the wave spectrum was very sharply peaked, in
this case at approximately 0.1 Hz; the sampling frequency was 10 Hz. In order to
minimise the effects of directionality, a NARMAX model was fitted to the 1000 point
data segment which had the minimum RMS velocity transverse to the predominant
wave direction. The data was decimated by a factor of 2, giving an effective sampling
frequency of 5 Hz. The resulting model was,
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F; = 0.18615 x 10F;_,
— 0.66218 x 10~5F;_yF;_1F;_1
— 0.21047F;_ju;_4Ui—q
— 0.42B32F;_3u;u;_4
— 0.20219 x 10_3F.'...3F.'_3
0.79306 x 10-3F;_y F;_au;

0.11551 x 10F;_3

0.36266 x 10 CF;_1F;_1Fi—4
0.19212F,_4u;u;
0.42050&_3“.‘-3“.‘_3
0.14279 x 10~3F;,_oF; 5
0.48154 x 10~3F,_1 F;_yu;—4

FH I+ +++++++0

+ 0.50511 x 10%u; -3t 4ty 0.18365 x 10%u;u;_qu;_q

— 0.22708 x 103u.-_1u.'_4u.-_4 0.13557 x 10-‘E_3F.'..3F.'...3 (78)
— 0.32915 x 10~4F,_1F;_3F;_2 0.24301 x 10-%F;_yF;,_1F;_s

4+ 0.24703 x 10~4F;,_,F;,_1F;_3 0.36463F,;_5

+ 0.14370F;_4 0.14133F;_¢

4+ 0.11428 x 103y, 0.24760 x 10%u;_y

+ 0.20084 x 10%u;_2 0.28620F;_3

0.44304 x 102U§_3
0.46985 x 10%u;_4

0.27294 x 10211.,'...5

Harmonic probing of this model yielded the H; function given in Figure 16, which
has a prominent peak at a frequency quite distinct from the forcing frequency ( =~
0.005 normalised = 0.24 Hz). The H; function is shown in Figure 17, its features are
not very sharply defined, probably due to the fact that the component of the current
in the predominant wave direction was small; this makes identification of the second
order component of the force difficult. It is clearest from the contour map of the
gain surface (Figure 17c) that there are ridges at fi + f =+ fres (along lines AB
and CD). Note that the peak gain (Figure 17a) is 46 db compared with 51 db for
H,, this shows that significant second order nonlinear effects can be expected under
certain excitations. Finally, the Ha surface is given in Figure 18 and shows a marked
occurrence of the ridges at 2fi + f2 = fres (lines AB and CD in Figure 18c) which
have been observed in the other cases. Note that the peak gain (Figure 18a) is 81
db, very large compared to Hz and H;.

All the results described above show remarkable consistency; however, they must
be interpreted with great care. The reason for this is quite simple. In order to obtain
unambiguous results from any system identification procedure, the input function, in
this case u(t), used to force the system must excite all modes of interest; effectively,
the system should be forced over as broad a range of frequencies as possible. Previ-
ously, most experiments in the field of wave loading have concentrated on simulating
specific conditions. However, for the purposes of obtaining information about wave
loading mechanisms from system identification procedures it would be useful to carry
out an experiment using broadband random excitation.

7 Conclusions.

It appears from the results obtained here, that some systematic structure is present
in higher order FRF’s which is not predicted by Morison’s equation. This structure
is common to wave loading data from several quite different flows. It is obtained
from the frequency domain analysis of NARMAX models which have quite different
structures. The implication is that some of the variation in the NARMAX models
is due to the lack of uniqueness of a discrete time description for a system, i.e.
it is not completely due to differences in the underlying physics of the flows. It
follows that there may be an extension to Morison’s equation valid in all flows which
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will reproduce the high frequency components of wave loading data better than the
Morison equation. Recent results by Billings and co-workers at the University of
Sheffield suggest that it is possible to obtain a continuous-time representation of a
system from the higher order FRF’s. Research is in progress to determine if the
H, functions described in this paper can furnish such a representation for the wave
loading case.
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Appendix A. Frequency Domain Representation of
the Volterra Series.

Although the calculation which leads from equation (5) to equation (11) in the main
body of the paper is fairly well-known, it is included here in order that the presenta-
tion be reasonably self-contained.

The calculation is simplified by adopting a useful integral representation of the
Dirac delta function. One begins with Fourier’s theorem for the Fourier transform.

f(t) = % j_ ;wdwe‘“‘ { j_ rdre-"“f f(r)} (79)
which gives
£0) = 5 '[_ :odw{ _;mdre-*'w f(f)} = [ .:odr{2—lw- _:jdwe--‘"} £(r) (80)

Now, the defining property of the Dirac delta §(7) is the projection property
(which is used frequently thoroughout this study)

400
f@)= [ dré(r-a)s(n) )

which implies,

+00
£(0)= / dré(7)f(r)
So, (80) allows one to make the identification

1 +00 i 1 400 .
6(7-) - E] dwe wr _i_ dwe™™ (82)

T-—oc

Thus, the delta function can be used in the sequel simply as a means of encod-
ing Fourier’s inversion theorem in the calculation. It is assumed throughout that
interchange of the order of integration in repeated integrals is valid.

The calculation of Y;(w) in equation (11) is elementary. Equation (6) yields

+00
Yi(w) = F ()] = dte"“" j drhy(r)z(t — 7)

+oo +00 . 1 +co .
= f dt | dre=%thy(r) {_ j dQe'“("")X(Q)}
27 J oo

-—0o0 =00

Rearranging and changing the order of integration gives

== j_ T:dﬂ{ _:Odre"'“'hl r)}X(Q){ f dte"(""'")}

+co +00
= [ d0H () X(Q)5w - Q) = Hi(w) j X (Q)8(w - 0) = Hy(w)X(w)

=00
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as required. The calculation for Y;3(w) proceeds in exactly the same fashion:

+ 00 J +o0 +o0
Ya(w) = F[1e(t)] = dte"“"f j drydrahy(my, 2)z(t — 1)z(t — 12)

-00

400 p+0 pto0 .
= j / dtdridrze " ha(m1,73) .
—o0 J=0o0 J=00

{ij+wdwicim(t—r;)x(w )} {_1_]+°°du ew,(l-r:)x(wg)}
2% ) ! 27 ) 0o *

Rearranging and interchanging order gives

1 400 p4o0 400 p4o00 .
%) = s aondon { [ [ andrabatm, mpemirnim |
(27) )0 J-oo T S,

{-(;—r)j_jdte—it(w-m—w)} X (w1)X(w3)

Applying the definition of Ha(w;,ws) from (11), and using the representation of
the delta function above, yields

1 +o0 400

A final integration over w; gives

Yg(w) = dw;[dWQHQ(w], wg)X(wl)X(wg)é(u - - W2)

1 [t
Yz(w) = T dwlﬂg(ul,w-—wl)X(wl)X(w —w;)
(27)J-oo
which is equation (13) as required. The evaluation of H3(w) proceeds exactly as
above. The above calculations can of course be carried out without using é functions.
The alternative, more rigorous, approach is to use convolution products.
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Figure Captions.

Figure 1. Comparison between simulated Duffing oscillator data and prediction by
NARMAX model.

Figure 2. Hy(f) for Duffing oscillator system: (a) exact magnitude, (b) exact
phase, (c) NARMAX model magnitude, (d) NARMAX model phase.

Figure 3. H;(f1, f2) for Duffing oscillator system: (a) exact magnitude, (b) exact
phase, (¢) NARMAX model magnitude, (d) NARMAX model phase.

Figure 4. Contour maps of Hz(f1, f2) for Duffing oscillator system: (a) exact
magnitude, (b) exact phase, (c) NARMAX model magnitude, (d) NARMAX model
phase.

Figure 5. Hi(f1, f2, f1) for Duffing oscillator system: (a) exact magnitude, (b)
exact phase, (¢) NARMAX model magnitude, (d) NARMAX model phase.

Figure 6. Contour maps of H3(f1, f2, f1) for Duffing oscillator system: (a) exact
magnitude, (b) exact phase, (¢c) NARMAX model magnitude, (d) NARMAX model
phase.

Figure 7. H, H; and H3 components in the Duffing system output for excitation
by a unit sinusoid: (a) exact magnitude, (b) exact phase, (c) NARMAX model
magnitude, (d) NARMAX model phase.

Figure 8. H;(f) magnitude and phase for Morison equation.

Figure 9. Hj(f1, f2, f1) from NARMAX fit to U-tube data with KC of 11.88. (a)
Magnitude, (b) phase, (c) magnitude contour map, (d) phase contour map.

Figure 10. Hs(f1, f2, f1) from NARMAX fit to U-tube data with KC of 17.5. (a)
Magnitude, (b) phase, (c) magnitude contour map, (d) phase contour map.
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Figure 11. H3(f1, f3, f1) from NARMAX fit to U-tube data with KC of 34.68. (a)
Magnitude, (b) phase, (¢) magnitude contour map, (d) phase contour map.

Figure 12. H;(f) from NARMAX fit to De Voorst data sampled at 20Hz. (a)
Magnitude, (b) phase.

Figure 13. H3(f1, f2, f1) from NARMAX fit to De Voorst data sampled at 20Hz.
(a) Magnitude, (b) phase, (c) magnitude contour map, (d) phase contour map.

Figure 14. H;(f) from NARMAX fit to De Voorst data sampled at 10Hz. (a)
Magnitude, (b) phase.

Figure 15. H3(f1, f2, f1) from NARMAX fit to De Voorst data sampled at 10Hz.
(a) Magnitude, (b) phase, (c) magnitude contour map, (d) phase contour map.

Figure 16. H(f) from NARMAX fit to Christchurch Bay data. (a) Magnitude,
(b) phase.

Figure 17. H(fi1, f2) from NARMAX fit to Christchurch Bay data. (a)
Magnitude, (b) phase, (c) magnitude contour map, (d) phase contour map.

Figure 18. Ha(f1, f2, f1) from NARMAX fit to Christchurch Bay data. (a)
Magnitude, (b) phase, (c) magnitude contour map, (d) phase contour map.
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