
This is a repository copy of Joint contour nets.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79282/

Version: Accepted Version

Article:

Duke, DJ and Carr, H (2013) Joint contour nets. IEEE Transactions on Visualization and
Computer Graphics. ISSN 1077-2626

https://doi.org/10.1109/TVCG.2013.269

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

1

Joint Contour Nets
Hamish Carr, Member, IEEE, and David Duke, Member, IEEE,

Abstract—Contour Trees and Reeb Graphs are firmly embedded in scientific visualization for analysing univariate (scalar) fields. We

generalize this analysis to multivariate fields with a data structure called the Joint Contour Net that quantizes the variation of multiple

variables simultaneously. We report the first algorithm for constructing the Joint Contour Net, and demonstrate some of the properties

that make it practically useful for visualisation, including accelerating computation by exploiting a relationship with rasterisation in the

range of the function.

Index Terms—Computational Topology, Contour analysis, Contour Tree, Reeb graph, Reeb space, Joint Contour Net, Multivariate.

✦

1 INTRODUCTION

S Imulations of physical phenomena have three major
types of data: scalar, vector and multi-variate (multi-

field). For scalar and vector data, many visualization
techniques exist, from colour maps and glyphs to feature
recognition and display. In recent years, these tools have
included topological analysis to support visualization
both analytically and algorithmically.

Research has only just begun to analyse the topological
relationships of two or more properties. We report on the
Joint Contour Net, an extension of the Reeb graph, that
expresses the relationship between subsets of the domain
with common properties. Developing this representation
depends on early notions of the contour tree as the rela-
tionship between explicit contours or regions, however,
rather than working directly from Morse Theory.

2 SCALAR FIELD TOPOLOGY

For a scalar function f on a continuous d-manifold M ,
a level set for isovalue h ∈ IR is the inverse image of h:

f−1(h) = {x ∈M : f(x) = h} (1)

In 2D, level sets are referred to as isolines, and in 3D, as
isosurfaces. Since a level set may not be fully connected,
we call a single connected component a contour. For a
Morse function f , contours have one dimension less than
the original manifold: e.g. contour lines on a topographic
map have one dimension where the surface has two.

In practice, continuous Morse functions with infinite
differentiability are intractable, and computational topol-
ogy uses piecewise-continuous functions which may or
may not be differentiable. These are usually defined on
a mesh composed of polygonal, polyhedral or polytopal
cells, where the value of f is only known at the vertices
of the mesh. Morse behaviour is assured by simulation
of simplicity [21], simulation of differentiability [20],

• H. Carr and D. Duke are with the School of Computing, University of
Leeds, Leeds, UK.
E-mail: {h.carr,D.J.Duke}@leeds.ac.uk

and/or Discrete Morse Theory [22], which provides
a combinatorial equivalent of Morse functions, recon-
structing a smooth function for the purposes of analysis.

An alternate approach to constructing a smooth func-
tion is to work with a quantized representation (i.e.
discretized in the range of the function). Weber et al. [45]
relaxed the constraint of unique values, collecting iso-
valued regions and using them for topological analysis,
an approach later extended to arbitrary dimension by
Allili et al. [1]. More recently, Duffy et al. [14] have
recognized that quantization of values in the range must
also be taken into account: we will defer this to Section 5.

One form of analysis is the Reeb graph [34], which
contracts contours to points, giving a graph description
of connectivity. For simple domains, this is the contour
tree [3]. Both structures are important in graphics and
visualization because they capture the relationships of
all contours of a function. Moreover, their combinatorial
structure, based on equivalence classes between con-
tours, subdivides the domain into regions of common
behaviour, an important property for analysing data.
They have been used for acceleration of isosurface algo-
rithms [9], volume rendering [44], comparison of surface
shapes [27] and of protein molecules [46], topological
simplification of data sets [9], and reduction of high-
dimensional data to landscape representations [43], [23].

Van Kreveld et al. [41] computed the contour tree
for a mesh of N simplices in O(N logN) time in two
dimensions, O(N2) in higher dimensions, by explicitly
constructing a contour at high isovalues, then efficiently
tracking changes as the isovalue varied. Carr et al. [8]
reduced the simplicial mesh to a graph and computed
connectivity of upper and lower level sets with iso-
valued sweeps and Tarjan’s Union-Find algorithm [39],
then merged the results into the contour tree. Chiang
et al. [10] applied this to a graph constructed from mono-
tone paths between critical points: a similar approach
was used by Carr & Snoeyink [7] to extend to arbitrary
mesh types. Pascucci & Cole-McLaughlin [32] and more
recent work has generalised to parallel algorithms [32],
[29], [28], while other work has described how to sim-
plify the contour tree and reduce its size [9].

2

For the Reeb graph, Pascucci et al. [33] gave a fast
streaming algorithm editing the Reeb graph locally as
simplices are added to a 2-manifold. While worst case
runtime is at least O(N2), this is rare, and the algorithm
is fast in practice. More recently, Tierney et al. [40]
computed the Reeb graph in O(N2) by cutting a vol-
umetric mesh along contours, applying the contour tree
algorithm of Carr et al. [8], then repairing the cuts to con-
struct the Reeb graph. Doraiswamy and Natarajan [12]
have since extended this to arbitrary dimensions and
reduced the memory overhead to O(N), thus making
the algorithm more efficient in practice. Most recently,
O(N logN) time algorithms have also been described for
both contour trees and Reeb graphs[24], [31], although
earlier algorithms may still outperform them in practice.

3 MULTI-VARIATE TOPOLOGICAL ANALYSIS

Although multi-variate computational topology is in its
infancy, but four approaches can be identified: Jacobi
sets, Reeb graph comparison, Reeb spaces, and range
tessellation. For clarity, we will use multi-field to refer
to functions of the form IRd → IRr, and multivariate data
to refer to computational discretizations of multi-fields,
although this distinction is not common in the literature.

Jacobi sets were described by Edelsbrunner and
Harer [17] as the systematic variation of critical points
in multi-fields. These are extracted by taking a contour
with respect to one variable, restricting another variable
to that contour, and finding the critical points of the
restricted function. As the first variable varies, the critical
points sweep out paths in the domain. Moreover, Jacobi
Sets can also be defined for time-varying data sets, and
constructed in polynomial time [18]. Jacobi Sets can be
simplified with rules similar to the contour tree [30].

A second approach uses the Reeb graph and contour
tree to compare scalar fields. Hilaga et al. [27] used graph
matching on Reeb graphs of different 2-manifolds to
recognize shape similarities. Zhang et al. [46] extended
this to 3-manifold functions, computing the contour tree
with quantized data, then graph matching to recognize
similar molecular shapes as expressed in the electrostatic
potential field. Schneider et al. [37] took contour trees for
two properties in a simulation, simplified the contour
trees, then compared the overlap of features defined
in the contour tree. While these papers have shown
that the Reeb graph / contour tree can be used for
comparison, they merely identify similarities between
individual fields rather than giving overall structure.

A third approach starts by extending the Reeb graph
to multivariate functions. Edelsbrunner et al. [19] did
so, calling the result the Reeb space. We will illustrate an
example of a Reeb space in Section 4, but observe that
this is tightly linked with the mathematical analysis of
singular fibers [35]. This analysis has been completed for
functions of the form IR3 → IR2 and IR4 → IR3, but has
not been accompanied by an algorithm for computation.

Edelsbrunner et al. [19] reported a complex and math-
ematically formalised algorithm for the Reeb space,

lacking implementation details and asymptotic analysis.
Moreover, the algorithm reported only works for 4 or
fewer variables. In contrast, our approach works on
principle for an arbitrary number of variables. More
recently, Carlsson et al. [5] generalised a related notion,
persistence, to higher dimensions. Their algorithm, how-
ever, is O(m2n4) where n is the number of properties and
m is the number of cells in the input complex.

A fourth approach observed that statistics of isosur-
faces were closely related to histograms [6]. Further
developed by inverse gradient weighting [36], the latest
work has shown that the relationship is defined by
formal models of integration over interval volumes [14],
typically defined by unit intervals in the range. This
approach was used to improve scatterplot visualisations
of continuous phenomena by using graphics hardware
to project tetrahedra into the range of a function [2]. The
relevance of this line of work is that it projects the graph
of the function from an m + n-dimensional embedding
space. As we will see later, this provides a method for
accelerating computation of the Joint Contour Net.

In short, while some work has been done on multi-
variate topological analysis, what is lacking is a simple,
efficient algorithm that computes usable structures. We
report such an algorithm for the Joint Contour Net or
JCN, which computes an approximate representation of
multi-variate topology. Where m > n, the JCN is an
approximation of the Reeb space. For m = n, the Reeb
space is identical to the manifold of the function, but for
m < n, the Reeb space is undefined. This is of particular
concern when analysing scientific data, as it is common
to compute many properties on a grid, so that m << n.

In contrast to the Reeb space, since the JCN is based
on explicit subdivision of geometry, it can be computed
even when m ≤ n. For such cases, however, the JCN does
not compute either the Reeb space or an approximation
to it. Instead, it computes a graph representation of a
remeshed version of the input data. We will, however,
defer discussion of the details of this until Section 7, and
start by generalising the notion of contour contraction.

4 GENERALIZED CONTOUR CONTRACTION

It is straightforward to extend level sets to multi-variate
functions. Instead of a scalar function f : IRm → IR, we
shall consider scalar functions of the form f : IRm → IRn,
and define a level set for an isovalue h ∈ IRn to be:

f−1(h) = {x ∈M ⊆ IRm : f(x) = h} (2)

As before, a contour is a connected component of a
level set: one method of constructing the level set for a
multi-variate isovalue h = (h1, . . . , hn) is to decompose
f into scalar functions f1, . . . , fn, and take the level set
f−1

1
(h1) of the first component h1 of the isovalue. As

an example, we will define a bivariate function f : A ⊂
IR3 → IR2 where A = [−1, 1] × [−1, 1] × [0, 1], and f =
(f1, f2), where f1(x, y, z) =

√

x2 + y2 + z2 is a spherical
distance field centred at the origin, and f2(x, y, z) = z is

3

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

arbitrary1 2 3 4 5 6

0.25

0.50

0.75

1.00

f h
1 1

1−
()

f h f h
1 1 2 2

1 1− −
∩() ()

IR3

Contour lines of f1 restricted to f2
1 h()()

Contour trees of f1 restricted to f2
1 h()()

Contour lines of

f2 restricted to f1
1 h()()

Contour trees of

f2 restricted to f1
1 h()()

Joint Contours can be found by

intersecting contours of the individual

functions: here, a single hemispherical

contour of f1 (distance) is shown with

a joint contour found by intersection

with a planar contour of f2 (z-height)

f1 (distance)

f2 (z-height)

Fig. 1: The variation in level sets of a bivariate function can be expressed as a 2-manifold. Here, the function f1 is
a distance field, and the function f2 is a height field. If we take an isosurface of f1 then compute the Reeb graph of
f2 restricted to that surface, we get the sequence shown on the right. If we take an isosurface of f2 then compute
the Reeb graph of f1 restricted to that surface, we get the sequence displayed along the top. Note that the Jacobi
Set in this example is a subset of the edges of the Reeb Space projected back into the domain of f .

linear in z. As shown in Figure 1, the level sets of f1 are
hemispheres. We take as a second function f2(x, y, z) =
z, whose level sets are planes parallel to z = 0. Then,
where the domain of the function is a 3-manifold, the
level sets of f1 and f2 are 2-manifolds, possibly with
boundary, and the level sets of f are 1-manifolds.

Figure 1 shows a small example of a bivariate function
combining a distance function as f1 and a height func-
tion as f2. Isosurfaces of f1 are hemispheres truncated
to the domain A, (right). We show contours of f2 on
these isosurfaces, and their contour trees. As h1 varies,
the Reeb graph sweeps out the Reeb space, as shown.
Equally, we can fix h2 to get isosurfaces of f2, in this

case flat sheets. Plotting the contours of f1 on these
sheets, we get the sequence along the top. Here, the
Reeb graph remains combinatorially consistent across all
isovalues, but the values of the critical points change,
and unsurprisingly, the Reeb space is again swept out.

As with the Reeb graph, any contour of f contracts
to a point on the Reeb Space. And, since Jacobi Sets
track the evolution of critical points of one property
with respect to level sets of another, it then follows
that the Jacobi Sets in this representation are a subset
of the edges of the Reeb Space. To be precise, the critical
points of f1 or f2 trace out the internal edges of the
Reeb Space, but not necessarily all of the edges at the

4

8

4

3

7

5

6

1

2

9

8

5

6

7

4

3

4

6

7

8 9

3
2

1

7 8 9

4

1

5

2

6

3

3

9

5

1
2

4

6

7

8

9

1

5

9

1

8

3

(3,1)

(4,1)

(3,2)

(4,2)

(4,3)

(5,2) (6,2) (7,2)

(4,4)

(5,4)

(6,5)

(7,6)

(8,7)

(7,7)

(6,6)

(5,5)

(6,7)

(5,4)

(6,4)

(6,3)

(7,4)

(8,3) (9,3)

(3,5)

(1,8)

(1,9)

(4,9) (3,9) (2,9)(6,8)

(3,6)

8/7

4/4

3/1

1/9

2/6

9/3
6/2

7/8

(1,9)
(2,9)(8,7)

(3,1)
(9,3)

Fig. 2: Contour trees & JCN where f : IR2 → IR2.
Note how the JCN retessellates the manifold based on
properties of the range rather than of the domain.

extreme values of the domain. In Figure 3, for example,
computing the Jacobi set by analysing critical points of
f2 on isosurfaces of f1 extracts all non-manifold edges of
the Reeb space, but doing so by analysing critical points
of f1 on isosurfaces of f2 does not extract the edges
at minimum and maximum values of f2. This occurs
because the formal definition of Reeb space assumes
a manifold without boundary, where our example has
boundaries. Moreover, the Jacobi Set is usually shown
in the domain of f , rather than in the Reeb Space.

This process of contracting contours to points has a
drawback. Each time we fix an isovalue, we reduce the
dimensionality of the graph of the function M by one.
Thus, for m ≤ n, our level sets will in general have
dimension zero (points) or be empty, and the Reeb space
will be the original manifold M .

5 FRAGMENTS AND SLABS

Following Hilaga et al. [27], we use connected compo-
nents of interval regions instead of contours. As ob-
served by Duffy et al. [14], these are of full dimension,
allowing intersection without dimension loss.

In Figure 2, we show a simple two-dimensional exam-
ple. Here, instead of contour lines, we consider quantised
contours: note how the dashed lines divide the mesh into
regions of uniform connectivity. For clarity, we will use
fragment to refer to such a region in a single cell, but slab
to refer to such a region with respect to the entire mesh.

Since fragments are adjacent across cell boundaries,
we collect them across cells to compute the contour tree,

as shown on the sides of Figure 3. For quantized data
on a simplicial mesh, the resulting tree is identical to the
contour tree for a suitable choice of quantization.

For multi-variate data, we intersect slabs, as in Fig-
ure 3. We define a Joint Level Set at isovalue h ∈ ZZn as:

f−1(h) = {x ∈M : round(f(x)) = h} (3)

For simplicial meshes, Joint Level Sets are not always
connected, so we define a slab to be a single connected
component of a Joint Level Set, in the same way that a
contour is a single connected component of a level set.

In practice, we assume f is piecewise linear over a
simplicial mesh. The slabs in each simplex are convex
polytopes of full dimension - polygons in 2D, polyhedra
in 3D. Combining the Joint Slabs of all simplices gives a
slab decomposition of the entire domain, where adjacent
slabs may or may not share the same discrete isovalue(s).

6 JOINT CONTOUR NETS

After extracting fragments for each simplex, each slab
in the entire mesh is a union of connected fragments in
different simplices. By computing fragment connectivity,
we can therefore identify the slabs.

Since fragments are adjacent between cells, the Joint
Contour Graph G is their dual graph. Here, nodes repre-
sent fragments and edges represent adjacencies. We then
see that slabs are equivalent to connected components of
isovalued nodes in the Joint Contour Graph.

We now perform a final reduction to find the con-
nected components of each Joint Level Set, applying Tar-
jan’s union-find [39] to edges of the Joint Contour Graph
between isovalued nodes. This contracts components as
identified by Reeb [34], and results in the Joint Contour
Net or JCN, an abstraction which captures the systematic
variation of all properties simultaneously.

Expressed in pseudo-code, the JCN algorithm consists
of four phases: division of the domain into fragments,
construction of the Joint Contour Graph G, union-find
to find slabs (i.e. nodes in the JCN J), and a final phase
to identify the edges of J . In practice, Phases I and II
can be combined, as can Phases III and IV.

In Phase I, we start off with the mesh M0 = M . At each
iteration of Steps 4-8, mesh Mi−1 has each cell divided
with respect to property fi, generating a new subdivided
mesh Mi at each stage. When complete, Mn then holds
the Joint Contour Slabs as defined above.

Phase II then constructs G from the fragment adjacen-
cies. In practice, this will actually be computed during
Phase I as part of the mesh data structure.

Phase III then applies Union-Find to identify the
nodes of J . Initially, each representative in the Union-
Find corresponds to a fragment - i.e. a node of G. As
each fragment Ka is processed, each neighbour Kb is
examined. If fi(Ka) = fi(Kb) for all i, then the fragments
have identical values, and an edge (a, b) is added to
the Union-Find structure. When complete, the connected
components of U represent the nodes of J .

5

1/7

3/6 2/8

4/5

1

3 2

4

First Function Value

7

6 8

5

Second Function Value

Joint Function

1

3 2

41.5

1.5

1.5

2.5 3.5

2.5

3.5

2.5

2.5

2

3

4

3

2

1
1

7 5

86

6.5

6.5

6.5

6.5
7.5

7.5

7.5

5.5

5.5

6

7

8 8

7

6
5

First Contour Fragments Second Contour Fragments

1/7

3/6 2/8

4/5

2/7

3/7

2/6

3/6
2/8

1/7

1/7

2/7

2/8

2/6

3/6

3/7

4/5

4/6

3/5

Joint Contour Fragments

4/53/5

4/63/62/6

3/72/71/7

2/8

2/7

1/7

2/82/6

3/73/6

(Dual) Joint Contour Graph

4/53/5

4/63/62/6

3/72/7

2/7

1/7

2/8

2/6

3/73/6

Joint Contour Net

4

3 3

2

1

2

1

88

77

6 6

5

(Dual) First
Contour Graph

(Dual) Second
Contour Graph

4/5

3/5

4/6

3/6

2/6

3/7

2/7

1/7

2/82/72/6

3/73/6

4/5 3/5

4/6 3/6 2/6

3/7 2/71/7

2/8

2/7

2/6

3/7

3/6

First Contour Tree
Second Contour Tree

Phase I:

Fragment
Extraction

Phase I:

Fragment
Extraction

Phase I:

Fragment
Extraction

Phase II:

Dual Graph
Construction

Phase II:

Dual Graph
Construction

Phase II:

Dual Graph
Construction

Phase III/IV:

Contour Tree
Construction

Phase III/IV:

Contour Tree
Construction

Phase III/IV:

Joint Contour
Net (JCN)
Construction

Fig. 3: The Joint Function is divided into fragments by intersecting fragments for each individual function. The
Joint Contour Graph G is then constructed as the dual graph of the fragments. Finally, the JCN J is constructed
by contracting adjacent nodes in G with matching values. Note that the same contraction can be used to compute
individual contour trees either from the JCN or directly from the individual Contour Graphs.

6

Algorithm 1 Algorithm for Computing JCN

Require: For simplicial mesh M with functions
f1, . . . , fn sampled to integer values at vertices of
M , compute Joint Contour Net J

1: PHASE I: CREATE FRAGMENTS
2: Set M0 = M

3: for i = 1 to n do
4: for all Cells K ∈Mi−1 do
5: Initialize subdivided mesh Mi ← ∅
6: for j = min(fi|K) to max(fi|K) do
7: Add fragment K

⋂

f−1([j−0.5, j+0.5]) to Mi

8: end for
9: end for

10: end for
Ensure: Mn holds the fragments Fi of f
11:

12: PHASE II: COMPUTE JOINT GRAPH G

13: for every fragment Fi in Mn do
14: for every fragment Fj adjacent to Fi do
15: Connect F1, F2 in G

16: end for
17: end for
Ensure: G is the dual graph of the fragments
18:

19: PHASE III: COMPUTE NODES OF JCN J

20: Let Nf = Size(Mn) be the number of fragments in
Mn

21: for a = 1 to Nf do
22: Initialize Union-Find: U(a) = a

23: end for
24: for a = 1 to Nf do
25: for all cells Kb ∈Mn adjacent to Ka do
26: if fi(Ka) = fi(Kb)∀1 ≤ i ≤ n then
27: Union(U, a, b): Add e = (a, b) to U

28: end if
29: end for
30: end for
Ensure: The representatives of U are the slabs
31:

32: PHASE IV: COMPUTE EDGES OF JCN J

33: for a = 1 to Nf do
34: If U(a) = a, add a as node to J

35: end for
36: for all edges (Kb,Ka) ∈ G do
37: if fi(Ka) 6= fi(Kb) for any 1 ≤ i ≤ n then
38: Add edge (U(a), U(b)) to J

39: end if
40: end for
Ensure: J now holds the Joint Contour Net

Finally, Phase IV strips out connected components of
U to be used as nodes in J , then iterates through all cells
Ka,Kb. For each pair of cells Ka,Kb that are which share
a common m − 1 dimensional face but do not share all
isovalues, Ka cannot be in the same component of U as
Kb, so an edge is added between their representatives

in J (if already present, this operation has null effect).
When complete, the JCN J has been constructed.

6.1 Algorithmic Analysis

To analyse this algorithm, we observe that it is depen-
dent on the number N of simplices in the input mesh,
the number Qi of levels of quantization for each function
fi, the number r of functions defined, and the number
d of input dimensions.

In Phase I, the loops over d and over the cells are
functionally independent, so we assume each cell K ∈M

is subdivided d times. The analysis then depends on
the number of cells produced by intersecting Q1, . . . , Qd

fragments. Barycentric interpolation of f on the simpli-
cial mesh means that each set of fragments has parallel
cuts: an easy upper bound on the number of fragments

is k =
∏d

i=1
Qi, although finer analysis might be found

in the extensive literature on ham-sandwich cuts [16].
Accordingly, an upper bound on the computation time
for Phase I is O(rNf) time where Nf = O(kN). Here,
the factor of r is because each cell is r-dimensional, so
insertion of new cells is assumed to take O(r) time.

Phase II iterates over every fragment in the mesh, then
over every adjacent fragment. Assuming that retrieving
each pair of adjacent fragments takes O(1) time, as does
storing them in the graph G, then this phase takes
O(Ne + Nf) time, where Ne is the number of edges in
G, i.e. the number of adjacencies between fragments.

While graph connectivity means that Ne may be
O(N2

f), a tighter bound exists. As we will see in Section 7,
each fragment is the projection of a hypercube in the
range onto the graph of the function - i.e. a form of
rasterisation. Thus, each fragment is a convex distorted
hypercube, possibly intersecting faces of the simplex.

Now, a hypercube of dimension r has 2r faces, and
each side of the simplex can only add one face by trun-
cation. Thus, each fragment can have at most 2r+ d+ 1
faces, each of which contributes at most one edge to
G. Thus, Ne = O((2r + d)Nf), which is dimension-
dependent but not quadratic in the number of fragments.

Phase III performs a Union-Find to identify slabs
(nodes in the JCN J). Here, each adjacency is considered
twice, but comparing n fields means that the cost will be
O(r) each time, for an overall cost of O(rNe). However,
once the comparison is complete, at most Ne edges will
be added to the union-find structure, giving an overall
cost for this phase of O(rNe + Neα(Ne)), where α(x) is
the slow-growing inverse Ackermann function [39].

Phase IV iterates through the Union-Find U in at
most Nfα(Nf) time to extract the vertices of J , then
iterates through the adjacencies. Each comparison may
take O(r) time, giving at most O(rNe) time. Adding
edges to J however is assumed to take O(1) time, for
an additional time of O(Ne), which can be subsumed.
Phase IV therefore takes O(Nfα(Nf)+rNe) time in total.

Adding the costs, we get O(Nf)+O(Ne+Nf)+O(rNe+
Neα(Ne))+O(Nfα(Nf)+rNe). Since Ne = O((2r+d)Nf),
we can collapse this and get O(rNe +Neα(Ne)).

7

While this is polynomial, the upper bound is very
loose: the algorithm is primarily sensitive to k, the
product of the number Qi of quantization levels of the
properties. Recent work [13] has shown that up to 95%
of cells have only one quantization level, and most
cells only have a few quantization levels. As a result,
the worst-case behaviour is likely to occur only in a
small number of cells, and can probably be bounded by
examining the Jacobian of the function [14].

7 PROPERTIES

The JCN has a number of interesting properties that
are likely to be useful for multi-variate analysis. Some
of these properties are essentially theoretical and or
algorithmic, while others are practical and related to
known visualization tasks.

7.1 Theoretical Properties

It should be clear from the discussion in previous sec-
tions that the JCN and the Reeb Space are effective
generalisations of the Reeb Graph and the Contour Tree
and closely related to the analysis of singular fibers.
Thus, the JCN can be viewed as part of the iterative
process by which we explore the relationship between
formal analysis, algorithmic development, and practi-
cal computations. Since the implications are broad, we
list some of the issues we have identified, along with
sketches of potential developments.

Reeb Graph / Contour Trees: Good generalisations
can often be reflected back to the original example to
develop further insights. Since the JCN generalizes Reeb
Graph computations, new algorithms may be expected,
although the work of Hilaga et al. [27] can now be
recognized as essentially the same computation..

Pascucci showed a sort-based Ω(t log(t)) bound on
contour tree computation [42]. However, quantization in
the form of the radix sort escapes the general O(t log(t))
bound on sorting. Since the JCN algorithm exploits
quantization, so this lower bound does not apply.

A less obvious point is that most existing Contour Tree
and Reeb graph algorithms rely on a global sort order
of the vertices, and that this global property hampers
parallel computation. Our algorithm processes each sim-
plex independently in Stage I: as a form of rasterisation,
fragment creation can be parallelized. While further
work is needed to produce an efficient implementation,
the absence of any global ordering means that the new
algorithm can be expected to parallelize relatively easily.
The mapping from discrete fragments onto JCN nodes
should replace the global sorting step of existing algo-
rithms with a radix sort, which is easy to parallelize.

Re-meshing: As identified by an anonymous reviewer,
the effect of the fragment and slab computation is to
retessellate the function with respect to range properties
instead of domain properties. To see this, consider the
bottom row of Figure 2, in which the left hand image
shows the original mesh with each cell broken up into

fragments, and the middle image shows the slabs. Since
these slabs fill the space, they constitute a remeshing of
the domain. Moreover, one can project them onto the
graph Gr(f) of the function and observe that each slab
constitutes an identifiable fragment of Gr(f).

However, since this small example is IR2 → IR2, Gr(f)
is embedded in IR4, which is difficult to illustrate. We
instead show a simplified example in Figure 4 of a
function g : IR → IR2: i.e. a space curve in IR3, in this
instance a helix, i.e. g(x) = (y = cosx, z = sinx). Since
our fragments and slabs are defined by taking intervals
in the ranges of y, z, the effect of this is to retessellate the
graph into the coloured segments shown (note that they
have no thickness except for the purposes of illustration).

Given this retessellation, we can now see that as the
number of slabs increases, the tessellation will converge
to the original space, with each coloured region in
general representing a slab composed of one or more
fragments. And, since the JCN is the dual edge graph of
these slabs, convergence to the connectivity of the Reeb
Space then follows, although true convergence requires
handling higher-order faces as well.

Relationship to Reeb Space: In Section 4, we observed
that m > n, m = n and m < n need to be treated
separately. For m > n, the Reeb Space, the JCN and the
singular fiber analysis are well defined, and the JCN is
an approximation of the connectivity of the Reeb space.

For m = n, joint contours or fibers (i.e. inverse images
of values in the range) will in general be of dimension 0
- i.e. finite collections of individual points, and the Reeb
space is identical to the graph of the function. For the
same reason, singular fiber analysis does not handle this
case at present. The JCN, however, can still be computed,
as it is explicitly based on geometric subdivision.

For m < n, no Reeb space is defined, but the JCN can
still be computed, as shown in Figure 4. Since the JCN
remeshes Gr(f), and varying mesh representations is of
practical value, we expect that geometric [9] information
can be captured and analysed this way.

For example, in the JCN, the density (resolution) of the
tessellation will be related to the rapidity with which the
quantization changes - i.e. to the Jacobian of f . We note
that high gradients in volumetric data lead to aliasing
problems, and observe that, in previous work, aliasing
was resolved by exploiting continuity [14]. As a result,
we may be able to look at local correlation of variables
by examining the density in the domain of the slabs.
Second, there may be graph algorithms which use prop-
erties of the JCN to identify boundaries that do not map
to isovalued boundaries or Joint Contours. And third,
the slab density and the related graph representation
may still be useful even for cases where m < n, and
the Reeb Space is equivalent to the original domain.

7.2 Practical Properties

In addition to theoretical relationships, another set of
properties can be identified, all related either to practical

8

R
an

g
e

(y
,z

)

Domain (x)

Domain (x)

R
an

g
e

(y
,z

)
Range (y,z)Domain Tessellation

Range Tessellation

Fig. 4: A function g : IR → IR2 that defines a helix. At left, Gr(g) is shown as a space curve, once with segments
coloured by uniform tessellation of the domain (top), once coloured by uniform tessellation of the range (below). At
right, Gr(g) shown by projection into the range: the same coloured segments now become fragments with respect
to the range, even though multiple components may project to the same range cell. As a result, computation of
the JCN is equivalent to rasterising Gr(g) with respect to pixels in the range (as with Continuous Scatterplots [2].
Note that the segments are of zero thickness, but are exaggerated for the purposes of illustration.

properties of the Reeb Graph / Contour Tree, or to
potential visualization tasks:

Representation of Multi-Variate Contours: Each uni-
variate or multi-variate contour corresponds to a con-
nected set in the JCN. This follows directly from the
characterization of the slabs as equivalence classes of
contours used in the proof above.

Extraction of Contours: Either uni-variate or multi-
variate slabs can be extracted using the JCN. Again, from
the characterization of the slabs as equivalence classes
of contours, this follows provided that we store a single
fragment as a representative of each slab (i.e. node in
the JCN). Extracting a contour can then be done with
depth-first or breadth-first search through the cells of
the mesh, following to adjacent fragments. Alternately,
since the fragment adjacency is encoded in the Joint
Contour Graph, a simple flood-fill can be used to extract
all relevant fragments.

Contours and Features: Uni-variate contours cut the
domain into pieces, thus defining features: moreover,
the nesting relationship induced by this property is one
of the definitions of the Contour Tree [3]. Most multi-
variate contours, however, do not cut the domain into
pieces. However, and perhaps more interestingly, not all
algorithms use contours. Instead, methods such as level
sets use alternate formulations to construct boundary
surfaces that separate an inside from an outside, or
otherwise segment the domain into features.

Given any such boundary that cuts the domain into
pieces, let B be the set of slabs through which the
boundary passes. Since B is a superset of the boundary,
removing it will also disconnect the domain. Since each

slab corresponds to a JCN node, removing the nodes
corresponding to B must also disconnect the JCN.

Inversely, since each node in the JCN represents a
slab in space, and the edges of the JCN represent face-
adjacencies of the slabs, a connected set N of nodes in the
JCN represents a contiguous region of the domain. And,
if N is a cut set for the JCN, each cut component will
correspond to a disjoint region of the domain - hence, cut
sets in the JCN induce cuts in the domain that separate
potential features. It then follows that graph properties
such as minimal cut sets in the JCN are likely to reveal
interesting boundary phenomena in the multifield f .

Representation of Sub-Nets: For any subset of the
variables fi, the JCN for those variables can be computed
by repeating Phases III & IV, using the JCN for all
variables as the input graph, and collapsing nodes that
match on the chosen subset of variables. Thus, partial
relationships between variables can be found directly
from the JCN. In particular, the Reeb Graph and Contour
Tree for any variable can be extracted directly from J .

Quantization Simplifies: Varying the level of quan-
tization simplifies the Joint Contour Graph. This is a
direct consequence of the construction being a form of
retessellation of the graph of the function. Simplified
versions of the JCN then follow, as they are constructed
from a simplified Joint Contour Graph in the first place.

Moreover, if coarse quantization levels use a subset of
the boundaries at the finest level, adaptive refinement
can be used to compute the Joint Contour Graph. In
short, the quantization need not be uniform in the range,
and it should even be possible to vary it according to
topological properties of a coarsely computed version.

Also, topological simplification can be driven by suit-

9

20 10 4

Resolution of Slabs in Distance Field:

R
es

o
lu

ti
o

n
 o

f
Sl

ab
s

in
 L

in
ea

r
F

ie
ld

:

4

10

20

Fig. 5: Effects of Quantization. The bivariate function f : IR3 → IR2 shown in Figure 1 was sampled onto a tetrahedral
mesh, and the JCN was computed with slab intervals of 20, 10 and 4 with respect to both properties. Note that as
the slab interval decreases, the JCN converges to the manifold structure of Figure 1, as predicted. Graph layout is
still an issue, as appropriate aesthetics are as yet unclear. Here and elsewhere unless otherwise stated, force-directed
layout has been used (vtkForceDirectedLayoutFilter). Each layout uses the same random seed for initial positioning
of vertices, but final results are sensitive to graph structure and there is no guarantee of layout consistency between
structurally similar graphs.

able geometric measures [9], topological simplification
can be driven by geometric information, as with the Con-
tour Tree and much of the existing literature on remesh-
ing. We also note that this idea – of varying the level
of simplification, was prefigured by Hilaga et al. [27]
and Zhang et al. [46] in their computations of coarser
versions of the Reeb Graph and Contour Tree.

We show the effects of varying levels of quantization
in Figure 5 using a synthetic two-field dataset. One field
has constant values along each row, decreasing from
top to bottom. The second field approximates a radial
distance function, with the origin at the center of the
mesh. As expected, the combined fields exhibits a four-
fold symmetry; the figure shows that the JCN captures
this feature even at quite coarse resolutions.

This ability of the JCN to discriminate features at
coarse levels has already been exploited to analyse data
arising in a specific domain problem, identifying the
point of “scission” within simulations of heavy nu-

clei [15], derived from density functional theory (DFT).
Figure 6 uses four JCNs to show the joint topologi-
cal structure of proton and neutron density fields for
fermium. These JCNs were computed from volumetric
density data in turn derived from two sites along a
trajectory in the high-dimensional space underlying DFT.
The data are 8-bit samples; the top row was constructed
using a slab width of 32, the lower row a slab width
of 16. Rectangles highlight the position of a significant
combinatorial event, the point at which a nucleus split
into multiple (in this case two) fragments.

Graph Layout: We have deliberately not considered
the design and implementation of graph layout specific
to the JCN. Any such layout algorithm needs to begin
with an understanding of the graph aesthetics, that is,
the mapping between layout and relevant information
encoded within the JCN, and how these might interact
with more generic criteria from graph perception and
comprehension. Having identified the JCN as an ab-

10

Pre-Scission Post-scission

Slab width 16Slab width 8

Pre-Scission

Post-scission

Fig. 6: Joint Contour Nets of nuclear density data used to locate the scission (nucleus fragmentation) point along
a trajectory in a higher-dimensional space defined by density functional theory. JCN’s in the left column are pre-
scission, those in the right are post-scission. Identification of combinatorial change in the JCN structure is marked
by boxes. The top row is computed at slab width 16, the second row at slab width 8. Although the bottom-left
figure shows some branching in the structure, the scission point is marked by the appearance of extended linear
branches, a hypothesis supported by blind calibration experiments carried out by our physics collaborators [15].

straction for multifield topology, further work will be
needed to map out structural properties of the network
that should be highlighted in its external representation.
There is clearly a “chicken and egg” problem here; we
break the cycle by using force-directed layout in the first
instance, on the grounds that there has been success in
using the algorithms to highlight structural symmetry
and other regularities in both local and global network
structure. As recent work on layout of Contour Trees
demonstrates [25], it can take signficant time and effort
between identifying important abstractions, and having
effective algorithms for their representation.

Summary: In short, many properties of the Contour
Tree that have been applied for visualization have direct
equivalents in the JCN, and we can predict that this will
allow the development of topological tools for multifield
visualization. As an example of the use of the JCN to
analyse multivariate data, Figure 6 shows illustrations
from an application paper [15] applying JCN analysis
for nuclear fission simulations. Figure 7 shows the JCN
for a vector field from the meso-scale atmospheric simu-
lation [26]: the relationship between the JCN (operating
on arbitrary collections of scalar fields), and tools for the
topological analysis of ‘multifields’ representing vector
and tensor quantities, is an interesting but open question.

8 IMPLEMENTATION: BASE ALGORITHM

The JCN algorithm has been implemented as a filter
for the Visualization Toolkit (VTK) [38]. As proof-of-
concept, our initial implementation favours brute-force
simplicity and generality over performance. The filter
takes as input an unstructured grid, which is assumed
to contain simplicial cells (either all triangles, or all
tetrahedra), and generates three outputs:

1) the Joint Contour Net, as an undirected graph

2) (optionally) each individual fragment, as a polyg-
onal mesh

3) (optionally) each contour slab, as a polygonal mesh

Dataset processing goes through three phases. In the
first, simplicial cells are converted into fragments. In-
ternally we maintain a queue of (partially fragmented)
polytopes (polygons or polyhedra, depending on dimen-
sionality). We iterate over cells, initialising the fragment
queue to the cell itself. Then for each scalar field and
threshold, we run through the fragment queue, cutting
each polytope against the current field threshold, and
requeuing the resulting fragments. Once a polytope can-
not be clipped further, it is placed in the output. Second,
the dual graph of fragments is computed using tables
from the first phase that record information about shared
fragment edges/faces. The dual graph is then simplified
by collapsing adjacent nodes with the same combination
of field values. Last, Joint Contour Slab boundaries are
computed by iterating over fragment facets (edges or
faces) and discarding those internal to a slab.

Testing has been carried out on both synthetic datasets
(allowing for verification of the JCN implementation),
and on the real fermium and plutonium datasets referred
to in the application paper [15]. In the case of single-
field data (e.g. the nucleon dataset), the JCN analysis
shows that the JCN reduces to a tree, as expected. As a
baseline for future work, Tables 1 and 2 set out the results
of runtime tests. The former reports dataset sizes, while
the latter gives performance measurements: the width
(granularity) of each slab across each data dimension;
the total number of fragments generated; the number of
slabs; and the size of the resulting contour net.

Table 2 shows that the relationship between dataset
size, slab granularity and performance indicators is not
straightforward. Doubling the granularity does not au-
tomatically double the runtime, but depends on the

11

Fig. 7: Fields U and V (horizontal vector components) from time Step 11 of the Limited Area Meso-Scale Prediction
System (LAMPS) data set [26]. In this example JCN nodes on the right are positioned in a 3D space at the
barycenter of the corresponding slabs on the left. The circular structure in the JCN appears to correspond to
rotational movement in the simulation: we expect to explore this further in future work.

TABLE 1: Dataset Statistics

Dataset Spatial Dimensions Simplices Field Widths
simple 3 × 3 8 9 × 9
sphereBox 11 × 6 × 11 2,500 [0,6] × [-4,71]
nucleon 41 × 41 × 41 320,000 256
fermium 19 × 19 × 19 29,160 256 × 256 × 256

underlying field. For fermium, the trials reported involve
doubling the resolution of three fields, so in the worst
case we might expect an 8-fold increase in runtime
and output size. Other than in the transition to (1,1,1),
runtime growth is closer to a factor of 2, while changes in
JCN node and edge size vary by around 5. These figures
should be treated with caution, since our implementation
was proof-of-concept rather than production-oriented.
For example, it explicitly constructs and discards large
volumes of fragment geometry.

9 RASTER ACCELERATION

As noted above, the effect of the JCN is to tessellate
the function manifold with respect to the range of the
function rather than the domain. Moreover, since the
slabs are defined by intervals in each univariate channel
in the range, the effect is to project a regular grid in
the range onto the function manifold, with each Joint
Contour Slab corresponding to a Euclidean box in the
range. For a function f : IR2 → IR2, these boxes are
pixels, and the relationship to Bachthaler & Weiskopf’s
work on continuous scatterplots [2] becomes apparent.

Since the neighbourhood relationships of pixels are
easily described, this simplifies the computation of the

8/7 7/8

4/4 5/5

5 6 7 84

5

6

7

8

4

Fig. 8: Rasterising the JCN. Each slab (left) corresponds
to a Euclidean box (pixel) in the range (right), trans-
forming this into a rasterisation problem. Each pixel
rasterised corresponds to a fragment.

JCN by transforming it to a well understood rasterisation
problem. For two dimensions, this immediately gives an
effective method of computing the JCN without explic-
itly extracting geometric slabs. This gives a full order of
magnitude speed up compared with the naı̈ve algorithm,
at a slight cost in accuracy because rasterisation algo-
rithms do not necessarily rasterise every pixel intersected
by the primitive. However, since the JCN is already an
approximate computation, this is an acceptable cost in
some circumstances, and does give the basis for further
acceleration once efficient and accurate rasterisation al-
gorithms are available in arbitrary dimensions.

Figure 9 shows that rasterization preserves important
topological features. These figures, based on the appli-
cation in physics illustrated in Figure 6 [15], show the

12

Explicit

geometry

Rasterized
Approximation

Explicit

geometry

Rasterized

Approximation

Fermium sCF, pre-scission (site 25) Fermium sCF, post-scission (site 26)
S
la

b
w

id
th

 1
6

S
la

b
w

id
th

 8
S
la

b
w

id
th

 4

Fig. 9: Comparison between explicit geometric construction of JCN, and rasterization for two different methods
of inter-cell linking, both before (site 25) and after scission (site 26) in fermium sCF dataset [15]. Differences in the
graph structure, particularly at slabwidth 4, are a result of the approximation in rasterization (visible by comparing
graphs at high slabwidth), and compounded by sensitivity of force directed layout to graph structure.

scission point of a fermium nucleus, at which a single
nucleus breaks into two fragments. Within each figure
the top row shows the images generated using explicit
geometric construction of JCN slabs, for three different
levels of quantization (slab widths 16, 8, and 4). The
bottom row shows the rasterised approximation, with
major features clearly carrying over, but some artifacts
in the form of isolated nodes. We have not included
a qualitative comparison of the LAMPS data, as for
this JCN the appropriate layout positions nodes at the
barycenter of the corresponding geometric slab [15], and
the raster implementation does not generate this data.

Dataset statistics and timing information are shown
in Table 3, using the system configuration described in
Table 2. For the nucleon data (which consists of a single
scalar field), we note that the geometric and raster im-

plementations return the same (tree) structure, and that
the performance gain from the raster implementation
improves substantially as finer levels of quantization.

10 CONCLUSIONS AND FUTURE WORK

We have shown that the contour tree can be extended
to multi-variate fields, opening up possibilities for topo-
logical analysis and visualization. In the future, we will
refine algorithms for computing the JCN, methods of
simplification and secondary analysis of the JCN, and
methods for visualizing the underlying multi-variate
data. We expect that many of the techniques that work
for the contour tree and Reeb graph will then extend to
the JCN. It has also become clear that while the JCN
itself captures topological and geometric structures of

13

TABLE 3: Runtime statistics for rasterization, for a subset of the 2D range datasets from 2. Statistics for explicit
geometry have been copied over for ease of comparison. Rasterization results for lower-dimensional (1D) datasets
are also shown. Speedup was computed by taking the ratio of the times stated.

Explicit Geometry Rasterization
Dataset Quantization nr-frags nr-nodes nr-edges time nr-frags nr-nodes nr-edges time Speedup
Fermium sc25 16,16 83,744 163 307 2.75 104,619 157 280 0.59 4.7
Fermium sc25 8,8 144,576 547 1,063 5.32 142,451 268 497 1.01 5.3
Fermium sc25 4,4 264,320 1,749 3,501 11.44 266,817 917 1,769 2.16 5.3
Fermium sc25 2,2 531,552 8,810 18,189 28.43 547,360 2,755 5,536 6.61 4.3
Fermium sc25 1,1 1,103,632 38,351 85,064 79.00 1,193,128 9,042 18,216 24.72 3.2
LAMPS 9 (U,V) 10, 10 197,197 241 490 5.96 163,428 310 444 1.54 3.8
Nucleon 32 405,556 48 47 8.35 402,104 48 47 1.62 5.2
Nucleon 16 505,932 64 63 11.33 500,831 64 63 1.72 6.6
Nucleon 8 703,557 103 102 17.61 774,496 103 102 1.94 9.1
Nucleon 4 1,095,526 166 165 29.80 1,091,981 166 165 2.44 12.2

TABLE 2: Runtime Statistics. All timings were performed
on a 2GHz MacBook Air with 8GB memory, running
OSX 10.7.5, and using VTK 5.10 configured as a re-
lease build: times are substantially lower than previously
reported[15], which used a debug build. Fermium tim-
ings in this table use site 25 of the sCF trajectory, and
proton and neutron density fields (see [15] for details).
To broaden the results, a further set of timings has
been included from a different trajectory from the same
dataset, site aEF. This uses a third, derived, field (total
density) that was not required for the study reported in
[15]. LAMPS timings are for time step 9 of the dataset.

dataset Slab widths Runtime Fragments Slabs Edges
simple (1,1) 0.20s 73 46 71
simple (0.2,0.2) 0.23s 945 810 1,515
sphereBox (4,4) 0.48s 9,068 68 97
sphereBox (2,2) 0.70s 15,900 199 318
sphereBox (2,1) 0.71s 15,900 329 576
sphereBox (1,2) 1.00s 27,300 400 647
sphereBox (1,1) 1.10s 27,300 650 1,145
nucleon 32 8.42s 405,556 48 47
nucleon 16 11.80s 505,932 64 63
nucleon 8 17.84s 703,557 103 102
fermium sc25 (32,32) 1.60s 53,448 16 15
fermium sc25 (16,16) 2.66s 83,744 103 307
fermium sc25 (8,8) 5.32s 144,576 547 1,063
fermium sc25 (4,4) 11.44s 264,320 1,749 3,501
fermium sc25 (2,2) 28.43s 531,552 8,810 18,189
fermium sc25 (1,1) 79.00s 1,103,632 38,351 85,064
fermium ae10 (32,32,32) 1.94s 59,928 14 13
fermium ae10 (16,16,16) 3.66s 97,728 195 373
fermium ae10 (8,8,8) 7.60s 172,424 852 1,808
fermium ae10 (4,4,4) 18.48s 325,296 5,934 13,596
fermium ae10 (2,2,2) 25.86s 681,240 31,711 81,341
fermium ae10 (1,1,1) 183,80s 1,494,731 194,109 599,581
LAMPS 9 U,V (10,10) 5.96s 197,197 241 409
LAMPS 9 U,V (20,20) 3.75s 142,891 82 117
LAMPS 9 P,T,H (10,100,4) 25.6s 237,168 387 823
LAMPS 9 P,T,H (20,200,8) 15.9s 158,501 83 145

the graph of the function, extracting and storing a fully
meshed complex [4] will be useful for some problems,
but that for other problems, such as parameter space
analysis, construction from graph structures such as the
Gabriel graph [11] will be more fruitful.

We also intend to study the relationship between
the JCN and Jacobi Sets, and consider whether there
is an equivalent to the Morse-Smale Complex. While
the current work has used existing two-dimensional

rasterisation methods, future work will necessarily ex-
tend to higher-dimensional rasterisation, which will be
applicable not only to the JCN, but also to many other
multi-variate analysis and visualisation techniques.

ACKNOWLEDGEMENTS

Acknowledgements are due to Bob Laramee and Eugene
Zhang, presentation of whose work triggered this line of
thought. Our initial results on the nuclear fission datasets
were produced in collaboration with Aaron Knoll, Nico-
las Schunck, Hai Ah Nam, and Andrzej Staszczak. This
work is supported by the UK Engineering and Physical
Sciences Research Council under Grant EP/J013072/1.
Thanks are also due to the anonymous reviewers for
suggestions on how to improve the presentation and for
the significant observation that the JCN re-tessellates the
graph of the function with respect to the range.

REFERENCES

[1] M. Allili, M. Ethier, and T. Kaczynski. Critical Region Analysis
of Scalar Fields in Arbitrary Dimensions. In Proceedings of Visual-
ization and Data Analysis 2010, pages 753008–12, 2010.

[2] S. Bachthaler and D. Weiskopf. Continuous Scatterplots. IEEE
Transactions on Visualization and Computer Graphics, 14(6):1428–
1435, 2008.

[3] R. L. Boyell and H. Ruston. Hybrid Techniques for Real-time
Radar Simulation. In Proceedings, 1963 Fall Joint Computer Confer-
ence, pages 445–458. IEEE, 1963.

[4] D. Canino, L. de Floriani, and K. Weiss. IA*: An Adjacency-
Based Representation for Non-Manifold Simplices in Arbitrary
Dimensions. Computers and Graphics, 35(3):747–753, 2011.

[5] G. Carlsson, G. Singh, and A. Zomorodian. Computing Multi-
dimensional Persistence. Journal of Comp. Geometry, 1(1):72–100,
2010.

[6] H. Carr, B. Duffy, and B. Denby. On Histograms and Isosurface
Statistics. IEEE Transactions on Visualization and Computer Graphics,
12(5):1259–1266, September/October 2006.

[7] H. Carr and J. Snoeyink. Representing Interpolant Topology
for Contour Tree Computation. In H.-C. Hege, K. Polthier, and
G. Scheuermann, editors, Topology-Based Methods in Visualization
II, Mathematics and Visualization, pages 59–74. Springer, 2009.

[8] H. Carr, J. Snoeyink, and U. Axen. Computing Contour Trees in
All Dimensions. Computational Geometry: Theory and Applications,
24(2):75–94, 2003.

[9] H. Carr, J. Snoeyink, and M. van de Panne. Flexible Isosurfaces:
Simplifying and Displaying Scalar Topology Using the Contour
Tree. Computational Geometry: Theory and Applications, 43(1):42–58,
2010.

14

[10] Y.-J. Chiang, T. Lenz, X. Lu, and G. Rote. Simple and Optimal
Output-Sensitive Construction of Contour Trees Using Monotone
Paths. Computational Geometry: Theory and Applications, 30:165–195,
2005.

[11] C. D. Correa and P. Lindstrom. Towards Robust Topology of
Sparsely Sampled Data. IEEE Transactions on Visualization and
Computer Graphics, 17(12):1852–1861, 2011.

[12] H. Doraiswamy and V. Natarajan. Computing Reeb Graphs as
a Union of Contour Trees. IEEE Transactions on Visualization and
Computer Graphics, page DOI: 10.1109/TVCG.2012.115, 2012.

[13] B. Duffy and H. Carr. Interval based data structure optimisation.
In Proceedings, Theory and Practice of Computer Graphics 2010, pages
151–158, 2010.

[14] B. Duffy, H. Carr, and T. Möller. Integrating Histograms and Iso-
surface Statistics. IEEE Transactions on Visualization and Computer
Graphics, 19(2):263–77, 2013. DOI: 10.1109/TVCG.2012.118.

[15] D. Duke, H. Carr, A. Knoll, N. Schunck, H. A. Nam, and
A. Staszczak. Visualizing nuclear scission through a multifield
extension of topological analysis. IEEE Transactions on Visualization
and Computer Graphics, 18(12):2033–40, 2012.

[16] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-
Verlag, 1987.

[17] H. Edelsbrunner and J. Harer. Jacobi Sets of Multiple Morse
Functions. In Foundations in Computational Mathematics, pages 37–
57, Cambridge, U.K., 2002. Cambridge University Press.

[18] H. Edelsbrunner, J. Harer, A. Mascarenhas, V. Pascucci, and
J. Snoeyink. Time-Varying Reeb Graphs for Continuous Space-
Time Data. Computational Geometry, 41(3):149–166, 2008.

[19] H. Edelsbrunner, J. Harer, and A. K. Patel. Reeb Spaces of
Piecewise Linear Mappings. In Proceedings of ACM Symposium
on Computational Geometry, pages 242–250., 2008.

[20] H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical
Morse Complexes for Piecewise Linear 2-Manifolds. In Proceed-
ings, 17th ACM Symposium on Computational Geometry, pages 70–
79. ACM, 2001.

[21] H. Edelsbrunner and E. P. Mücke. Simulation of Simplicity: A
Technique to Cope with Degenerate Cases in Geometric Algo-
rithms. ACM Transactions on Graphics, 9(1):66–104, 1990.

[22] R. Forman. Discrete Morse Theory for Cell Complexes. Advances
in Mathematics, 134:90–145, 1998.

[23] W. Harvey and Y. Wang. Generating and Exploring a Collec-
tion of Topological Landscapes for Visualization of Scalar-Valued
Functions. Computer Graphics Forum, 29(3), 2010.

[24] W. Harvey, Y. Wang, and R. Wenger. A Randomized O(m log m)
Algorithm for Computing Reeb Graphs of Arbitrary Simplicial
Complexes. In ACM Symposium on Computational Geometry, pages
267–276, 2010.

[25] C. Heine, D. Schneider, H. Carr, and G. Scheuermann. Drawing
contour trees in the plane. IEEE Transactions on Visualization and
Computer Graphics, 17(11):1599–1611, 2011.

[26] W. Hibbard and D. Santek. Visualizing Large Data Sets in the
Earth Sciences. Computer, 22(8):53–57, 1989.

[27] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii. Topology
Matching for Fully Automatic Similarity Estimation of 3D Shapes.
ACM Transactions on Graphics, pages 203–212, 2001.

[28] S. Maadasamy, H. Doraiswamy, and V. Natarajan. A hybrid
parallel algorithm for computing and tracking level set topology.
In High Performance Computing (HiPC), 2012 19th International
Conference on, pages 1–10. IEEE, 2012.

[29] D. Morozov and G. Weber. Distributed merge trees. In Proceedings
of the 18th ACM SIGPLAN symposium on Principles and practice
of parallel programming, PPoPP ’13, pages 93–102, New York, NY,
USA, 2013. ACM.

[30] S. Nagaraj and V. Natarajan. Simplification of Jacobi Sets. In
V. Pascucci, X. Tricoche, H. Hagen, and J. Tierny, editors, Topo-
logical Data Analysis and Visualization: Theory, Algorithms and Ap-
plications, Mathematics and Visualization, pages 91–102. Springer,
2011.

[31] S. Parsa. A Deterministic O(m log m) Time Algorithm for the
Reeb Graph. In ACM Symposium on Computational Geometry, pages
269–276, 2012.

[32] V. Pascucci and K. Cole-McLaughlin. Parallel Computation of the
Topology of Level Sets. Algorithmica, 38(2):249–268, 2003.

[33] V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas. Robust
On-line Computation of Reeb Graphs: Simplicity and Speed. ACM
Transactions on Graphics, 26(3):58.1–58.9, 2007.

[34] G. Reeb. Sur les Points Singuliers d’une Forme de Pfaff
Complètement Intégrable ou d’une Fonction Numérique. Comptes
Rendus de l’Acadèmie des Sciences de Paris, 222:847–849, 1946.

[35] O. Saeki. Topology of Singular Fibers of Differentiable Maps. Number
1854 in Lecture Notes in Mathematics. Springer, 2004.

[36] C. E. Scheidegger, J. M. Schreiner, B. Duffy, H. Carr, and C. T. Silva.
Revisiting Histograms and Isosurface Statistics. IEEE Transactions
on Visualization and Computer Graphics, 14(6):1659–1666, 2008.

[37] D. Schneider, A. Wiebel, H. Carr, M. Hlawitschka, and G. Scheuer-
mann. Interactive Comparison of Scalar Fields Based on Largest
Contours with Applications to Flow Visualization. IEEE Transac-
tions on Visualization and Computer Graphics, 14(6):1475–1482, 2008.

[38] W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit:
An Object-Oriented Approach to 3D Graphics. Kitware, Inc., fourth
edition, 2006.

[39] R. E. Tarjan. Efficiency of a Good but not Linear Set Union
Algorithm. Journal of the ACM, 22:215–225, 1975.

[40] J. Tierny, A. Gyulassy, E. Simon, and V. Pascucci. Loop Surgery for
Volumetric Meshes: Reeb Graphs Reduced to Contour Trees. IEEE
Transactions on Visualization and Computer Graphics, 15(6):1177–
1184, 2010.

[41] M. van Kreveld, R. van Oostrum, C. L. Bajaj, V. Pascucci, and
D. R. Schikore. Contour Trees and Small Seed Sets for Isosurface
Traversal. In Proceedings, 13th ACM Symposium on Computational
Geometry, pages 212–220, 1997.

[42] M. J. van Kreveld, R. van Oostrum, C. L. Bajaj, V. Pascucci,
and D. R. Schikore. Topological Data Structures for Surfaces: An
Introduction for Geographical Information Science, chapter 5: Efficient
contour tree and minimum seed set construction, pages 71–86.
John Wiley & Sons, May 2004.

[43] G. Weber, P.-T. Bremer, and V. Pascucci. Topological Land-
scapes: A Terrain Metaphor for Scientific Data. IEEE Transactions
on Visualization and Computer Graphics, 13(6):1416–1423, Novem-
ber/December 2007.

[44] G. Weber, S. Dillard, H. Carr, V. Pascucci, and B. Hamann.
Topology-Controlled Volume Rendering. IEEE Transactions on
Visualization and Computer Graphics, 13(2):330–341, March/April
2007.

[45] G. Weber, G. Scheuermann, and H. Hagen. Detecting Critical
Regions in Scalar Fields. In Proceedings of Eurographics-IEEE
Symposium on Visualization 2003, pages 85–94,288, 2003.

[46] X. Zhang, C. L. Bajaj, and N. Baker. Fast Matching of Volumetric
Functions Using Multi-resolution Dual Contour Trees. Technical
report, Texas Institute for Computational and Applied Mathemat-
ics, Austin, Texas, 2004.

Hamish Carr completed his PhD at the Uni-
versity of British Columbia in May 2004 and
has worked as a lecturer at University College
Dublin and a senior lecturer at the University of
Leeds. His research interests include scientific
and medical visualization, computational geom-
etry and topology, computer graphics and geo-
metric applications. He is a member of the IEEE
and the IEEE Computer Society and Chair of the
UK Chapter of the Eurographics Association.

David Duke David Duke received his PhD from
the University of Queensland, Australia in 1992,
subsequently working at the Universities of York
and Bath in the UK, before joining the visualiza-
tion group at Leeds in 2004. His research has
encompassed formal methods, HCI, and func-
tional programming, but since 2000 his primary
interests are visualization systems, graph visu-
alization, and programming technologies. He is
a Fellow of the Eurographics Association, and
a member of the IEEE and IEEE Computer

Society.

