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An integer fixed-charge multicommodity flow
(FCMF) model for train unit scheduling ⋆

Zhiyuan Lin a,1 Raymond S. K. Kwan a,1

a School of Computing, University of Leeds, Leeds, UK, LS2 9JT

Abstract

An integer fixed-charge multicommodity flow (FCMF) model is used as the first part
of a two-phase approach for train unit scheduling, and solved by an exact branch-
and-price method. To strengthen knapsack constraints and deal with complicated
scenarios arisen in the integer linear program (ILP) from the integer FCMF model,
preprocessing is used by computing convex hulls of sets of points representing all
possible train formations utilizing multiple unit types.

Keywords: train unit scheduling, fixed-charge multicommodity flow, convex hull

1 Introduction

A train unit is a set of train carriages (or cars) with its own built-in engine(s).
Without a locomotive, it is able to move in both directions on its own. A train
unit can also be coupled with other units of the same or similar types.

Given a railway operator’s timetable on a particular week day, and a fleet
of train units of different types, the train unit scheduling problem aims at
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and Physical Sciences Research Council (EPSRC) and Tracsis Plc.
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determining an assignment plan such that each train trip (or shortly train)
is appropriately covered by a single or coupled units, with certain objectives
achieved and certain constraints respected. From the perspective of a train
unit, the scheduling process assigns a sequence of trains to it as its daily
workload. The main objectives are to minimize the number of units used
and/or the operational costs. It is also a common requirement to meet the
passenger capacity demands.

Besides the basic requirements like trip covering, fleet size limit, compati-
bility between vehicle types and routes, etc, the train unit scheduling problem
is found to be difficult due to some of its particular features listed below:

• Train units may be coupled/decoupled in response to passenger capacity
demands for particular trains. Coupling/decoupling may take time that is
not negligible, and some locations are banned/restricted for such activities.

• There are compatibility relationships among unit types when coupled.

• Unit coupling for individual trains is limited by an upper bound on the
number of coupled cars, determined by many factors such as unit types,
routes, platform lengths, time horizon, etc.

• Passenger capacity demand is expressed in number of seats (rather than
number of units), leading to knapsack constraints that may yield very weak
linear programming (LP) relaxations.

• Units may block each other on tracks and/or at platforms.

In [6], the authors have proposed a two-phase approach for the train
unit scheduling problem. This approach is consisted of Phase I, an inte-
ger FCMF model, and Phase II, a multidimensional matching model resolv-
ing unit station blockage. The Phase I model is similar to [4], but impor-
tant additional abilities for real-world conditions have been added, includ-
ing forbidding coupling/decoupling at banned/restricted locations, ensuring
coupling/decoupling time allowances, type compatibility, etc. The model ex-
plicitly uses knapsack constraints to satisfy many requirements, which has
drawbacks as mentioned above. Moreover, the model uses extra variables and
constraints to achieve unit type compatibility, which significantly increases
the number of ILP constraints.

In this paper, we propose an updated variant of the Phase I model in
[6]. The variant employs a convex hull computation preprocessing, with less
number of constraints and much stronger LP relaxation, and is more flexible
for complicated scenarios. The convex hull method is similar to previous works
by Schrijver [8] , Ziatati et al [9], Cacchiani et al [4][3], except we deal with



an improved new model with important additional features derived from [6],
take a more straightforward enumeration to satisfy complicated validity rules,
and consider type compatibility issues with an ad hoc branching method.

2 Model and formulation

2.1 Model description

Similar to [4] and [6], the integer FCMF model is based on a directed acyclic
graph (DAG) G = (N ,A). We define the node set N = N ∪ {s, t}, where N

is the set of train nodes, and s and t are the source and sink node; the arc
set A = A ∪ A0, where A is the linkage arc set and A0 the sign-on/off arc
set. A linkage arc a ∈ A links two train nodes i and j (a = (i, j), i, j ∈ N),
representing a potential link such that after serving train i a unit can continue
to serve train j as its next task. A sign-on arc (s, j) ∈ A0 starts from s and
ends at a train node j ∈ N ; a sign-off arc (j, t) ∈ A0 starts from a train node
j ∈ N and ends at t. Generally all train nodes have a sign-on arc and a sign-off
arc. We use δ−(j) and δ+(j) to denote all arcs that terminate at / originate
from node j respectively. Finally, a path p ∈ P in G represents a sequenced
daily workload (the train nodes in the path) for a unit.

For the fleet, we denote K the set of all unit types. As for type-route
compatibility, type-graphs Gk representing routes each type k ∈ K can serve
are constructed based on G, including all entities, e.g. P k refers to the set of
all paths in type-graph Gk.

It is well-known that for multicommodity flow problems there are two
equivalent formulations based on arcs and paths, with the same LP-relaxation
bounds ([5] [4]). The model in this paper uses the latter, with path variable
xp ∈ Z+, ∀p ∈ P k, ∀k ∈ K to indicate the number of units used in path p.
Note there is other blockflow variable ya ∈ {0, 1}, ∀a ∈ A indicating whether
an arc a is used.

2.2 Model ILP formulation

(P ) min W1

∑

k∈K

∑

p∈Pk

cpxp +W2

∑

a∈A

ya (1)

∑

p∈Pk

xp ≤ bk, ∀k ∈ K; (2)



∑

k∈Kj

∑

p∈Pk
j

D
j
f,kxp ≤ d

j
f , ∀f ∈ F̄j, ∀j ∈ N. (3)

∑

k∈Ka

∑

p∈Pk
a

xp ≤ maya, ∀a ∈ A; (4)

∑

a∈δ−(j)

ya = 1, ∀j ∈ N−
B ;

∑

a∈δ+(j)

ya = 1, ∀j ∈ N+
B ; (5)

τDarr(i)

(

∑

a∈δ+(i)

ya − 1

)

+ τCdep(j)

(

∑

a∈δ−(j)

ya − 1

)

≤ eij, ∀(i, j) ∈ A∗; (6)

xp ∈ Z+, ∀p ∈ P k, ∀k ∈ K; ya ∈ {0, 1}, ∀a ∈ A. (7)

In the first term of Objective (1), cp is the overall cost for path p. It can be
a weighted linear combination of several sub-costs to achieve multiple effects
and/or preferences. The second term minimizes total number of used arcs,
leading to minimization of the total number of coupling/decoupling activities,
thus eliminating unnecessary ones; it also partly drives ya to desired binary
values. W1,2 are weights for the two terms, and generally W1 > W2.

Constraints (2) ensure the deployed number of units for each type k ∈ K

is within its fleet size upper bound bk. Constraints (3) are used to fulfil the
following requirements for individual trains: (i) passenger capacity demands;
(ii) coupling upper bounds due to various factors; and (iii) type compatibility.
Constraints (3) will be discussed in detail in Section 2.3. Constraints (4) calcu-

late binary blockflow variables ya, ∀a ∈ A such that ya =
{

1,
∑

k∈Ka

∑
p∈Pk

a
xp>0,

0,
∑

k∈Ka

∑
p∈Pk

a
xp=0,

where P k
a is the set of paths in Gk passing through arc a, Ka is the type set

allowed at arc a, and ma is the maximum number of coupled units flowing
through arc a. Constraints (5) are to forbid coupling/decoupling at banned
locations, where N−

B ⊆ N is the set of trains whose departure locations are
banned for coupling/decoupling, and N+

B ⊆ N for arrival locations. Con-
straints (6) are to ensure time allowance validity for coupling/decoupling at
some linkage arcs A∗ ⊆ A where a time violation may occur; τDarr(i) is the time

for a single decoupling operation at the arrival location of train i, τCdep(j) the
time for a single coupling operation at the departure location of train j, and
eij is the time slack between i and j. Finally (7) gives the variable domain.



2.3 Computation for convex hulls associated with trains

Similar to [4], let Kj be the set of permitted types for train j ∈ N , and wj

= (wj
1, w

j
2, · · · , w

j

|Kj |
)T ∈ Z

Kj

+ , where w
j
k is the number of units of type k used

for j. We define a unit combination set by enumerating all valid unit formation
for a train:

Wj :=

{

wj ∈ Z
Kj

+

∣

∣

∣

∣

∀wj : a valid unit combination for train j

}

, (8)

such that

(i)
∑

k∈Kj
qkw

j
k ≥ rj, where qk is the capacity of unit type k and rj is the

passenger capacity demand, both measured in numbers of seats.

(ii) n(wj) ≤ u(wj), ∀wj ∈ Wj, where n(w
j) and u(wj) are number of coupled

cars and coupling upper bound for combination wj respectively.

(iii) the used types (k : wj
k > 0) are compatible;

Notice while it is easy to satisfy demand requirement as in (i) by linear con-
straints, it is generally very difficult for (ii) and (iii) in the same way. Moreover,
enumeration generally suits any validity rules, which in our cases are more
complicated than those in [4] and [6]. It also avoids knapsack constraints and
excludes a large proportion of incompatible types.

For all Wj in our instances, due to their small dimensions (|Kj| ≤ 4, ∀j ∈
N), and numbers of points (|Wj| ≤ 9, ∀j ∈ N), it is possible to explicitly
compute the convex hulls of all unit combination sets, which we refer to as
train convex hulls :

conv(Wj) =

{

wj ∈ R
Kj

+

∣

∣

∣

∣

Djwj ≤ dj
}

, ∀j ∈ N, (9)

described by a set of facets f ∈ Fj, with Dj ∈ R
Fj×Kj and d ∈ R

Fj . Note
we only need the nonzero facets f ∈ F̄j ⊆ Fj. Finally, all w-variables will be
replaced by x-variables in the same way as in [4], which forms Constraints (3)
in (P ).

Example We use an example from the real data of a UK rail operator to
illustrate the above preprocessing approach. For a train “1C11”, train units of
Type 318 (3-car, 219 seats), 320 (3-car, 230 seats) and 156 (2-car, 145 seats)
are permitted, and only Type 318 and 320 are compatible for coupling. When
served by Type 318 and/or 320, the coupling upper bound is 6 cars, and when



served by Type 156, this bound changes to 4 cars. In addition, “1C11” has a
passenger capacity demand of 230 seats. Then we have:

W1C11 = {(w318, w320, w156)|(2, 0, 0), (0, 1, 0), (0, 2, 0), (1, 1, 0), (0, 0, 2)} ,

and its corresponding train convex hull:

conv(W1C11) =

{

w ∈ R
3
+

∣

∣

∣

∣

∣

f1 : w318 + 2w320 + w156 ≥ 2

f2 : w318 + w320 + w156 ≤ 2

}

,

which is a polytope with two nonzero facets {f1, f2} = F̄1C11, giving two
corresponding constraints for “1C11” in Constraints (3).

3 Solution approach

3.1 A branch-and-price ILP solver

The above ILP (P ) is solved by a branch-and-price [2] method based on column
generation [7] where path variables xp are generated dynamically.

Let αk ≤ 0, βf,j ≤ 0, γa ≤ 0 be the dual variables from Constraints (2), (3)
and (4), Np and Ap the set of train nodes and arcs in path p respectively, the
reduced cost of a path p ∈ P k is,

c̄p = cp − αk −
∑

j∈Np

∑

f∈F̄j

D
j
f,kβf,j −

∑

a∈Ap

γa, (10)

finding the smallest value of which can be regarded as a shortest path problem
with train node weight −

∑

f∈F̄j
D

j
f,kβf,j, ∀j ∈ Nk, arc weight −γa, ∀a ∈ Ak,

plus a source-sink weight cp − αk. There are |K| subproblems from Dantzig-
Wolfe decomposition.

3.2 Branching rules

Although all vertices are feasible points for each conv(Wj), it may still con-
tain points with incompatible types serving the same train, which have to be
eliminated. This can be realized by a train-family branching proposed in [6].
We introduce the concept of train unit family such that unit types that are
compatible belong to the same family. The symbol Φj is used to denote the
set of all families that can serve train j.

The main idea of train-family branching is to check the LP relaxation
solution and select a train j that is covered by more than one family, say



families φ1, φ2, · · · , φn (n is usually not a large number). Then we form n+ 1
branches with respect to families φ1, φ2, · · · , φn.

• For the first n branches 1, · · · , n, say at a branch i ∈ {1, · · · , n}, only family
φi is allowed to serve train j. To achieve this, in the restricted master
problem (RMP), all paths indicating any families in Φj \ {φi} serving j are
deleted; in the shortest path problem of type k whose family is not φi, node
j is deleted from the shortest path network.

• In the last (n+1)th branch, if |Φj\{φ1, · · · , φn}| ≥ 1, then we forbid families
φ1, · · · , φn to serve train j, which can be realized by similar path/node
deleting ways as described above; if Φj = {φ1, · · · , φn}, then the (n + 1)th
branch is no longer needed.

Notice this branching rule does not add any extra constraints to the RMP. It
actually reduces the number of columns in the RMP and the network scale of
the shortest path subproblems, which effectively divides the search space and
forces the trains to be served by compatible types.

It should be mentioned that it is not enough to drive all variables into
integers only by train-family branching. When all trains have been served
by compatible types, the branching strategy will be switched to arc variable
branching, e.g. the method proposed in [1] for integer multicommodity flow
problems.

4 Preliminary experiments and conclusions

The experiments are based on the data from a UK rail operator with around
2250 train trips on a weekday. All possible unit combinations have been com-
puted, and the convhull() and convhulln() functions provided by Matlab
R2012a are used for convex hull computation. We find that the numbers of
nonzero facets of train convex hulls are very small (2.11 facets per train on av-
erage), which can be proved in a similar way as in [9]. Among the 2250 trains,
51 trains (2.2%) have a number of nonzero facets of 1, 1987 trains (88.3%)
of 2, 176 trains (7.8%) of 3, 13 trains (0.57%) of 5, and 23 trains (1.0%) of
7. This implies in the ILP (P ) the number of constraints will be greatly re-
duced, compared with the original model. Further results and analysis will be
presented at INOC2013 and in a post-conference full paper.

This paper has proposed an updated model of a previous version for real-
world train unit scheduling. A method by explicitly computing convex hulls
for each train is used thereby making it easier to solve the complex integer
model within practical computational time. The preliminary experiments have



shown promising results that the numbers of facets for most train convex hulls
are small.

Testing and analyzing the final scheduling results with the rail operator
we are collaborating are ongoing.
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