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Abstract

We study a problem of minimising the total number of zeros in the gaps between
blocks of consecutive ones in the columns of a binary matrix by permuting its rows. The
problem is refered to as the Consecutive One Augmentation Problem, and is known
to be NP-hard. An analysis of the structure of an optimal solution allows us to focus
on a restricted solution space, and to use an implicit representation for searching the
space. We develop an exact solution algorithm, fixed-parameter tractable with respect
to the number of columns, and two constructive heuristics to tackle instances with
an arbitrary number of columns. The heuristics use a novel solution representation
based upon row sequencing. In our computational study, all heuristic solutions are
either optimal or close to an optimum. One of the heuristics is particularly effective,
especially for problems with a large number of rows.

Keywords: Combinatorial Optimisation; Scheduling; Heuristics

1 Introduction

In this paper, we consider a Combinatorial Optimisation problem which has several prac-
tical applications. Given a binary matrix with m rows and n columns, we aim to find a
permutation of its rows with the minimum total number of zero-entries situated between
the blocks of consecutive ones in the columns of the permuted matrix.

This study was motivated by the following real-world problem arising in the food testing
process at Premier Food UK’s microbiological laboratory. Food samples each undergo a suite
of food safety tests. Each of these tests requires a specific type of agar media suitable for
growing the particular contaminant which is being tested for. The food samples presented to
the laboratory have a broad range of required tests, as raw peanuts and pre-cooked pizza, for
example, are subject to a very different combination of bacteria and moulds. The test suites,
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and hence the combinations of agar requirements, thus vary greatly. Now, the laboratory
produces its own agar, and is therefore responsible for the scheduling of the process. Each
type of agar must be made before any test sample in which it is required can begin processing
at the agar pouring stage. However, agar has a limited shelf life. The available volume of
agar should, therefore, ideally be used in as many tests as possible before it expires. In
order to better coordinate the production of the different types of agar with its usage, it
is therefore important to sequence test samples for processing so that consumption of each
agar is not unnecessarily drawn out. This can be achieved by selecting a sequence of test
samples which minimises the total elapse time during which any agar is in demand.

The microbiology laboratory scheduling problem can then be formulated using a (0,1)
incidence matrix whose columns correspond to agar types and rows to test samples. The
matrix thus specifies the agar combination required for the suite of tests of each test sample.
Changing the sequence in which test samples are processed in the laboratory, corresponds
to reordering the rows in the matrix. Now the equipment pours agar onto test plates one
at a time, and each test plate takes the same length of time to process. Thus, the sample’s
processing time is proportional to its number of test plates. Any agar not involved in the
sample’s test suite will remain unused while the sample is being processed. Gaps in usage of
agar, correspond to 0’s which occur between consecutive 1’s in the corresponding column of
the matrix, so called gap-zeros. Thus, by taking the total number of test plates associated
with each sample as the corresponding row weight, the weighted sum of gap-zeros in a
column, measures the length of the gap(s) in usage of the corresponding agar.

The solution approach developed in this article could therefore be applied in the mi-
crobiology laboratory context, to contribute to significant efficiency gains, of over 20%, as
reported in [8]. The saving is achieved by judicious batching of agar production, following
the approach to batching perishable goods described in [7]. It is only at this further stage of
analysis that account is taken of the volume of the individual agar requirement of test sam-
ples. Other applications discussed in the literature include the design of the storage schemes
for sparse matrices [22] and the physical mapping of chromosomes in computational biology
[14].

Our problem extends the class of problems concerned with the consecutive ones prop-
erty for binary matrices. A given (0,1)-matrix satisfies the Consecutive Ones Property (for
columns) (C1P) if there exists a permutation of its rows in which the 1’s in each column
appear consecutively. The C1P was introduced by Fulkerson and Gross [11] in the context
of recognising interval graphs. A broader survey of the C1P problem is provided by Dom
[9]. Dom also demonstrates how the C1P property of input data infer polynomial solvability
on both Integer Linear Programming and certain variants of Set Covering. Ruf and Schobel
UMLAUT! extend the result for Set covering by showing how input matrices which almost
have the C1P property, allow an efficient solution using a Branch and Bound scheme.

The problem of verifying the C1P arises in archaeology [18], file organisation [13], [19],
and especially in computational biology (DNA sequencing) [1], [2], [4], [14]. A permutation
of rows with the desired property can be found efficiently, if one exists. This can be done by
decomposition techniques [11], [17], which can be implemented in O (n2) and O (m+ n+ r)
time, and using the PQ-tree data structure proposed in [5], [6] in O(max{n,m} + r) time,
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recognising interval graphs in [15] in linear time. where m, n and r are the number of rows,
of columns and of 1’s in the matrix, respectively.

For many practical problems, the C1P is not satisfied and it is therefore important to
transform a given matrix to one in which the 1-entries are consecutive in as many columns
as possible. There are two versions of such a problem. The first formulation is known as
the Consecutive Ones Submatrix problem (COS) [12]: find the largest possible subset of
columns of a given matrix so that for the resulting submatrix the C1P is satisfied. The
decision version of the COS problem is known to be NP-complete [16] and it remains NP-
complete even for some special cases, see [4] and [21]. For matrices with a restricted number
of 1’s in rows and columns, approximation algorithms are developed in [21] and [10].

In the second formulation, which we call the Consecutive Ones Blocks (COB) problem,
the objective is to find a permutation of rows of a given binary matrix for which the number
of blocks of consecutive 1’s in the permuted matrix is minimised, see [14], [19]. An equivalent
interpretation is to minimise the number of gaps in the matrix, i.e., the number of blocks
of 0’s between blocks of consecutive 1’s in each column of the matrix [2]. This problem is
proved to be NP-hard in [19]. It is equivalent to the Hamming Distance Travelling Salesman
Problem, in which the cities are the rows of the matrix together with an additional row
consisting of all 0’s, and the distance between two cities is the Hamming distance between
the corresponding rows, see [1], [2] and [14]. Heuristics for the COB problem such as greedy
algorithms and local search techniques are discussed in [2].

Our problem is essentially concerned with how close a matrix is to having the C1P, except
for gap zeros. The decision version, referred to as C1PRk, to decide if changing no more
than k 0 entries to 1’s results in a matrix with the C1P. The matrix is then said to have the
k-augmentation consecutive one property. This problem is referred to as the Consecutive
One Matrix Augmentation Problem in the literature [20]. Booth [5] proves that the problem
is NP-hard, as described in [20]. Veldhorst considers the problem of efficient storage of
sparse matrices which is equivalent to the Gap0 problem with the transpose of the input
matrix, in [22]. Each column (row in [22]) of the matrix is stored as a vector of the entries
between the first and the last block of 0’s, along with the row (column in [22]) index of the
first non-zero entry and the length of the significant vector. Minimising gap-zeros provides
a good mechanism for coding sparse matrices with low storage requirements. Veldhorst
studies a number of two-stage algorithms which perform row (column in [22]) sorting first
and on-line insertion next, and shows that no approximation bounds can be derived for this
class of algorithms. A heuristic algorithm for the Gap0 problem is suggested by Greenberg
and Istrail [14]. They experiment with the so-called spectral algorithm initially developed
for the C1P problem in [3], evaluating its performance mainly in biological terms in the
context of genome reconstruction without assessing the quality of heuristic solutions from
the combinatorial optimisation point of view.

Thus, there is no effective solution method for the Gap0 problem in the literature, and
limited performance analysis except for the negative result for on-line algorithms which
provides yet another motivation for this research.

The contribution of this paper is threefold. Firstly, we identify a novel solution represen-
tation which provides an efficient solution space for search algorithms. Secondly, we develop
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an exact solution algorithm for the Gap0 problem, whose complexity may be expressed as
a function of the number of columns alone, independent of the number of rows, and hence
is constant time for instances with a fixed number of columns. Thirdly, we propose two
heuristic algorithms which are capable of finding high quality solutions quickly. These three
aspects are developed in the paper in the following manner. In Section 2, we reformulate the
Gap0 problem in terms of a so-called end-zero problem with non-duplicate weighted rows,
derive its general properties, and classify problem instances as those with and without, so
called, overlapping 0’s. In Section 3, we introduce a new representation of solution classes
specified by their common structure. Based on this representation, we develop an exact
algorithm for the Gap0 problem with a fixed number of columns. The exact algorithm is
based on indirect enumeration of the solution space by considering solution classes one at a
time, finding an optimal solution in each class. The best such solution found determines the
global optimum. Section 4 then describes our two heuristics for the Gap0 problem, GRIN
and MAZE. These are both based on insertion of row(s) iteratively into a partial solution.
Heuristic GRIN considers rows in a random order and selects the insertion position in a
greedy fashion, while heuristic MAZE has a fixed position for insertion at each step and
for that position it selects the most appropriate row(s) in a greedy fashion. In our compu-
tational experiments, we focus on instances with unit row weights and without duplicate
rows. However, both heuristics, as well as the exact algorithm, can be generalised to handle
instances with duplicate rows and arbitrary row weights, as outlined in Sections 3.3 and 4.3.
The results of computational experiments with our heuristics are reported in Section 5. We
show that both heuristics are very effective, especially MAZE which frequently finds optimal
solutions for a range of problem instances. Finally, conclusions are presented in Section 6.

2 Preliminaries

In this section, we first formulate two version of the gap-zero problem, and explore some basic
properties of optimal solutions. Instances are then classified into two types, in Section 2.2.

2.1 Problem Formulation

Let A be a binary matrix with m rows and n columns, i.e., A = (aij), aij ∈ {0, 1} , i =
1, . . . ,m, j = 1, . . . , n, and ai be a row-vector of length n which represents row i of matrix
A, i = 1, . . . ,m. A 0-entry aij = 0 of matrix A is called a gap-zero, if there exist two 1′s in
column j, one above aij and another one below aij in matrix A; otherwise, aij is referred to
as an end-zero.

Example 1 Consider the binary matrix instance A below, with 8 rows and 4 columns. The
unpermuted solution contains 12 gap-zeros (highlighted in bold) and 7 end-zeros.
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A =

























0 1 1 0
0 1 0 0
1 0 0 1
1 0 0 0
0 0 1 1
1 1 0 0
0 0 0 1
1 0 1 0

























.

Denote by µ = (i1i2 . . . im) a permutation of row indices of the original matrix A. Let
solution, S or S(µ), refer to an m×n matrix which contains the rows of the original matrix A
taken in the order given by µ, and let g(S) denote the total number of gap-zeros in matrix S
defining the gap-zero function g. Let Ω denote the set of solutions defined by all m! possible
row permutations of the original matrix A. Since solutions are equivalent up to matrix row
inversion, the size of the solution space can be reduced by half to m!/2. The Gap0 problem
may now formally be defined as follows.

Problem Gap0: Given a binary matrix A, find a permutation µ∗ of the rows for which
the corresponding solution S∗ has the minimum number of gap-zeros i.e.,

g(S∗) = min
S∈Ω

g(S).

Observe that instances are equivalent up to column permutation.
The search space may be further reduced when row duplication is taken into account as

we now show.

Lemma 1 There exists an optimal solution to problem Gap0 in which rows with identical
entries are adjacent.

The lemma can be proved by considering pairs of identical non-adjacent rows and moving
the one that contains more gap-zeros to be adjacent to the other one (observed also in
Lemma 2.3 from [22]).

As a consequence of Lemma 1, we only need to consider solutions with adjacent duplicate
rows. Suppose that zi denotes the number of gap-zeros in row i in an optimal solution S∗

and that there are wi duplicates of row i which are adjacent to each other in S∗. Then the
total contribution of the wi duplicate rows to the objective function g(S∗) is wizi. Thus, an
instance A of the original unweighted problem Gap0 with duplicate rows, can be simplified
by replacing each set of identical rows by a single row with the corresponding weight. This
leads us to another equivalent formulation, with row weights and a weighted g function.
Observe that the above argument may also be applied to the broader class of matrices
which already have row weights, to remove row duplication.

Problem WGap0: Given a binary a matrix A with row weights wi and no duplicate rows,
find a permutation of the rows µ∗ which minimises the weighted sum g(S∗) of gap-zeros.
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This formulation has the advantage that the solution space is limited in size depending only
on the number of columns of matrix A, however many rows it has. Thus, for an arbitrary
Gap0 instance, we can perform pre-processing to achieve a reduced instance in which there
are no duplicate rows, or zero rows. The upper limit on the number of different rows, m, is
thus effectively 2n − 1.

We now explore the nature of the objective function, and transform the problem to one
which is more amenable to algorithmic approaches. We define an end-zero function f(S)
representing the total number of end-zeros in a solution S. Denote by z the total number
(weighted sum) of 0-entries in matrix A (and, therefore, in any solution S). The next result
follows immediately from the fact that g(S) = z − f(S).

Lemma 2 Maximising the total number (weighted sum) of end-zeros is equivalent to min-
imising the total number (weighted sum) of gap-zeros.

As we show in Section 3, any solution may be characterised by the structure of end-zeros
in its top and bottom parts and, therefore, function f(S) is preferable for algorithm design
purposes. On the other hand, function g (S), which should be as close to 0 as possible in
an optimal solution, is more convenient for evaluating the accuracy of heuristics. For ease
of exposition, and to simplify the evaluation of heuristics, we focus on the unweighted case.
However, each algorithm which we develop is easily extended to the weighted case, and the
mechanism for doing so is given alongside.

2.2 Instance Classification Related to Overlapping End-Zeros

Consider a solution S obtained from the initial matrix A by applying some permutation of
rows. We split the set of end-zeros in matrix S into top-zeros, i.e., zeros situated above the
first 1-entry in a column, and bottom-zeros which are below the last 1-entry in a column.

Example 2 Given matrix A of Example 1, compare solutions S and S ′ shown below. So-
lution S has 9 top-zeros and 6 bottom-zeros which are separated by the borders. Solution S ′

is obtained from solution S by swapping row 4 (1010) and row 5 (0110). It has 9 top-zeros
and 7 bottom-zeros, one more than S. thus, f (S ′) = f (S) + 1 matrix S ′, and S ′ is a better
solution than S.

S =

























1) 1 0 0 0
2) 0 1 0 0
3) 1 1 0 0
4) 1 0 1 0
5) 0 1 1 0
6) 1 0 0 1
7) 0 0 1 1
8) 0 0 0 1

























, S ′ =

























1) 1 0 0 0
2) 0 1 0 0
3) 1 1 0 0
4) 0 1 1 0
5) 1 0 1 0
6) 1 0 0 1
7) 0 0 1 1
8) 0 0 0 1

























.

Top-zeros and bottom-zeros in the same row of a solution S are said to be overlapping
end-zeros. It appears that solutions without overlapping end-zeros are easier to specify and
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to handle. For algorithmic purposes we now develop the means of identifying instances in
which overlapping end-zeros cannot occur. We refer to an instance as overlapping if there
exists a solution with overlapping zeros, and as non-overlapping otherwise. Observe that an
instance is non-overlapping if it contains a row of all 1’s.

Theorem 1 An instance of the Gap0 problem given by an m×n matrix A is non-overlapping
if and only if for any pair of 0-entries in columns j and k of row i, i.e. aij = aik = 0, there
exists a pair of 1-entries in another row i′ in the same columns j and k, i.e. ai′j = ai′k = 1.

Proof. Suppose first that conditions of the theorem hold for all pairs of columns of matrix
A which contain 0-entries in some rows. Then for any pair j and k of such columns with
0-entries in row i, the presence of 1 simultaneously in both columns in another row prohibits
entries aij and aik from being overlapping end-zeros.

Suppose that the condition in the Theorem does not hold. Then there is a two, i, and
two columns, j and k say, for which aij = ai′k = 0, and aij + ai′k ≤ 1 for all i′ = i. Consider
the solution constructed from top to bottom as follows: rows i′ with ai′j = 0 in any order;
then row i; followed by rows i′ with ai′k = 0 in any order. This solution has overlapping
end-zeros in row i, and hence A is overlapping, as claimed in the Theorem.

Theorem 1 implies that recognising overlapping or non-overlapping instances requires
O(mn2) time, since there are n(n − 1)/2 pairs of columns to test and for each pair of
columns, m− 1 pairs of entries should be scanned once.

3 Exact Algorithm

In this section we formulate an exact algorithm for finding an optimal solution for the Gap0
problem and then generalise it for WGap0. The algorithm is applicable to instances with a
fixed number of columns n. Observe that the number of rows m can be as large as 2n − 1
for reduced instances and even larger for arbitrary Gap0 instances with duplicate rows.
Therefore the straightforward enumeration of all m! row permutations is impractical. Our
objective is to develop an algorithm which is polynomial with respect to the number of rows
m.

The algorithm is based on splitting the solution space into classes and finding an opti-
mal solution within each class. We define solution classes for instances with and without
overlaps in Sections 3.1-3.2 and explain how an optimal solution can be found within each
class. Finally, the generalisation of the exact algorithm for the weighted case is discussed in
Section 3.3.

3.1 The Algorithm for Non-Overlapping Instances

Consider the case of a non-overlapping problem instance introduced in Section 2.2. Each
row in a solution can only contribute to either top-zeros or bottom-zeros. The middle rows
(if any) contain insignificant zeros which do not contribute to f (S) and their sequence is of
no consequence. We may therefore focus upon the rows at the top and at the bottom of the
solution matrix separately when evaluating the end-zero function f (S).
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The main idea of the approach we propose is based on splitting the solution space into
solution classes, characterised by the shapes of top-zeros and bottom-zeros. In each class
the algorithm either finds a solution with the maximum number of end-zeros or it finds a
solution which does not belong to the class but has more end-zeros than any solution in
that class. Before giving the required definitions and algorithm description, we provide an
illustrative example.

Example 3 Consider the input matrix A which satisfies non-overlapping properties identi-
fied in Theorem 1, and solution S with the same row sequence as matrix A.

A = S =





























1 0 0 0
1 1 0 0
1 0 1 0
0 1 0 1
1 0 0 1
1 0 1 1
1 1 1 0
0 1 1 0
0 1 0 0





























The top-zeros of S are characterised by permutation π = (1234) ranking the columns in
increasing number of top-zeros and the bottom-zeros of solution S are characterised by per-
mutation σ = (2314) of column numbers, similarly.

Given a pair of permutations π and σ, we can introduce the associated sequence of row
patterns Pπ,σ (or simply ‘patterns’) which emulate the shapes of end-zeros corresponding to
π and σ. For example, for π = (1234) and σ = (2314) we have

Pπ,σ =





















∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗
∗ ∗ ∗ 0
0 ∗ ∗ 0
0 ∗ 0 0





















. (1)

Each pattern consists of 0’s which contribute to the end-zero function f (S) and ∗ corre-
sponding to an arbitrary 0/1-element whose actual value is insignificant for this purpose. We
refer to the end zeros in a row pattern as significant 0’s. Observe that the zero row vector
will not arise as a row pattern, since we have restricted attention to reduced instances which
exclude matrices with a zero row. The solution space may thus be partitioned into classes
C(π, σ) of solutions whose top end-zero columns have length ranked in the order given by π,
and the bottom end-zero columns satisfy σ, for all pairs of column permutations (π, σ). We
therefore refer to the sequence of patterns Pπ,σ as a description of the class C(π, σ).
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We have illustrated how a solution gives rise to an end-zero row-pattern sequence. We
now describe how to construct a solution with the maximum number of significant zeros
within a given solution class C (π, σ). We say that a row i of matrix A matches a pattern
within sequence Pπ,σ, if that row has 0’s in all significant positions of the pattern. Thus,
allocating a matching row i to a pattern with k significant 0’s ensures a contribution of k to
the end-zero function f (S). If row i has several matching patterns, it is therefore beneficial
to allocate it to a matching pattern with the maximum number of significant 0’s. Having
performed allocation of rows to patterns, a solution S can be constructed by placing the
rows allocated to each pattern in the order the patterns appear in Pπ,σ; the rows allocated
to the same pattern can be sequenced arbitrarily without losing the significant end-zeros
related to Pπ,σ. The formal description of this procedure is captured in algorithm ClassOpt
presented at the end of the section.

Figure 1: Two possible allocations of the rows of matrix A to the patterns of class C (π, σ)

It is worth noting that this procedure may result in a solution with some additional
end-zeros which lay outside the initial description Pπ,σ. For example, there are two options
for allocating row 1010 in Example 3, each resulting in one significant 0 in Pπ,σ, see Fig. 1
(a) and (b). The first allocation represented in Fig. 1 (a) results in solution S; the second
allocation represented in Fig. 1 (b) results in solution S ′, which has two additional top-zeros
(marked by double lines) not in Pπ,σ:

S =





























1 0 0 0
1 1 0 0
1 0 1 0
0 1 0 1
1 0 0 1
1 0 1 1
1 1 1 0
0 1 1 0
0 1 0 0





























S ′ =





























1 0 0 0
1 1 0 0
0 1 0 1
1 0 0 1
1 0 1 1
1 0 1 0
1 1 1 0
0 1 1 0
0 1 0 0





























.

9



Thus, the solution S ′ constructed for the description Pπ,σ actually belongs to a different
class, namely C (π′′, σ) where π′′ = (1243).

To handle cases similar to the one described above, we introduce an auxiliary function
fπ,σ (S) defined as the number of significant 0’s of solution S with respect to pattern Pπ,σ.
Thus,

f (S) ≥ fπ,σ (S) for any solution S, and (2)

f (S) = fπ,σ (S) if solution S belongs to class C (π, σ) . (3)

In particular, for the above example we have

fπ,σ (S) = 12, f (S) = 12,
fπ,σ (S

′) = 12, f (S ′) = 14.

We then denote the maximum value of fπ,σ(S) over all solutions from the class C (π, σ) by
f ∗

π,σ, and refer to a solution S as being optimal in the class C (π, σ) if

f(S) = fπ,σ(S) = f ∗

π,σ. (4)

We now establish key properties of an optimal solution in a given solution class C (π, σ).

Theorem 2 For a given pair of permutations π and σ and a solution S∗ optimal in class
C (π, σ), each row of S∗ is positioned to correspond with a matching pattern from the class
description Pπ,σ which has the maximum number of significant 0’s amongst all matching
patterns.

Proof. Consider a schedule S∗ which is optimal in class C(π, σ) but does not satisfy the
theorem. Then there exists a row, say i, which matches another pattern in the description
Pπ,σ with a larger number of significant 0’s. Moving row i to the position corresponding to
the pattern with more significant 0’s increases the value of the end-zero function fπ,σ (S),
which contradicts the optimality of S∗ within class C(π, σ).

Corollary 1 If the solution class C(π, σ) is not empty, then allocating the rows of matrix
A each to a matching pattern with the maximum number of significant 0’s amongst those in
Pπ,σ, produces a solution S with fπ,σ (S) = f ∗

π,σ.

Proof. Consider an optimal solution S∗ in class C (π, σ) and also a solution S obtained
by allocating the rows of matrix A to matching patterns with the maximum number of
significant 0’s. From Theorem 2, each row i of matrix A contributes the same number of
significant 0’s to function fπ,σ in both solutions S and S∗, so that fπ,σ (S) = fπ,σ(S

∗) = f ∗

π,σ.

Thus, for a given pair of permutations, allocating the rows of the original matrix A to the
matching patterns, within Pπ,σ, with the maximum number of significant 0’s, gives rise to a
solution S with fπ,σ (S) = f ∗

π,σ. Now, if Pπ∗,σ∗ is the description corresponding to a globally
optimal solution, S∗, then S∗ is optimal in class C(π∗, σ∗), and f(S∗) = fπ∗,σ∗(S∗) = f ∗

π∗,σ∗ .
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A globally optimal solution to the Gap0 problem can therefore be identified by enumerating
all classes C (π, σ), finding a solution which has the optimal value, f ∗

π,σ, for each class,
according to Corollary 1. In each class, a solution is constructed by allocating each row
of the original matrix A to a matching pattern with the maximum number of significant
0’s and the value of function fπ,σ is recorded as described in procedure ClassOpt(A, π, σ).
Observe that if for some class C (π, σ) a solution S is found which does not belong to that
class, then f (S) > fπ,σ (S) and the global optimal solution will be found in a different class.
A formal description of algorithm ClassOpt is given below.

Algorithm ClassOpt(A, π, σ)
Input: m× n binary matrix A and permutations π, σ
Output: solution matrix S (at least as good as the optimal solution

in class C (π, σ)) and the value of the function fπ,σ(S)

1. Initialisation: create a sequence of row-patterns Pπ,σ for class

C (π, σ) and set fπ,σ(S)← 0.

2. FOR each row of matrix A

2.1. Select a matching pattern among the rows of Pπ,σ, with the maximum

number of significant 0’s (break ties arbitrarily)

2.2. Allocate the row to the selected pattern and update fπ,σ(S) by

adding the number of significant zeros matching the current row-

pattern

ENDFOR

3. Construct a solution S by placing the rows in the order of the class

description Pπ,σ from top to bottom. If there are several rows

allocated to the same pattern, place them in an arbitrary order.

4. Return S and f ∗

π,σ = fπ,σ(S)

Algorithm ClassOpt(A, π, σ) can be implemented in O(mn) time, as shown in Ap-
pendix A. Since there are (n!)2 different classes C(π, σ) and for each class there exists an
equivalent counterpart with a reverse order of patterns, it is sufficient to consider (n!)2/2
solution classes, so that the overall time complexity of finding the globally optimal solution
is O(mn(n!)2).

3.2 The Algorithm for Overlapping Instances

We introduce a permutation ρ of 2n elements {1−, 1+, 2−, 2+, . . . , n−, n+} which we call
the end-zero sequence of solution S. Permutation ρ defines the order in which the top-
zero columns terminate and bottom-zero columns start if the solution matrix is scanned
from top to bottom. Element j− (j+) relates to the top-zero (bottom-zero) portion of
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column j and its position in the permutation ρ indicates when top-zeros (bottom-zeros) in
column j terminate (start) relative to end-zeros in other columns. For example, end-zero
sequences for solutions S and S ′ in Example 2 are given by ρ = (1−2−3−4−2+1+3+4+) and
ρ′ = (1−2−3−2+4−1+3+4+), respectively. The overlap in columns 2 and 4 of solution S ′

is indicated by entry 2+ appearing before 4−. On the other hand, the end-zero sequence
ρ corresponds to a solution without overlaps, since all entries 1−, 2−, 3−, 4− for top-zeros
precede to entries 2+, 1+, 3+, 4+ for bottom-zeros.

Each end-zero sequence ρ defines a class of solutions which we denote by C(ρ). It can be
described by a sequence of patterns P(ρ) in a similar way as for non-overlapping instances.
For example, the class of solutions C(ρ′) is described by the sequence of patterns

Pρ′ =





















∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0
∗ 0 ∗ 0
∗ 0 ∗ ∗
0 0 ∗ ∗
0 0 0 ∗





















.

It is easy to check that Theorem 2 and Corollary 1 hold for overlapping instances and
therefore algorithm ClassOpt(A, π, σ) can be converted into a corresponding algorithm Class-
Opt(A, ρ) . Step 1 is modified so that the sequence of patterns is created for the class C (ρ)
rather than for C (π, σ) , and Step 2.1 is extended to take care of the situation in which a
row of matrix A does not have a matching pattern, and hence no feasible solution exists
in class C (ρ) . Recall that, by contrast, any class description of non-overlapping instances
contains the ‘universal’ pattern (∗ ∗ . . . ∗ ∗) , and hence a matching pattern always exists.

2.1. Select a matching pattern with the maximum number of significant 0’s,
if one exists; (break ties arbitrarily).

If no such matching exists, return ‘no solution in class C (ρ)’ and STOP.

In order to implement efficiently algorithm ClassOpt for overlapping instances, the ideas
of Section 3.1 can be adopted so that the same time complexity of O(mn) can be achieved,
see Apendix B. To estimate the number of permutations ρ (classes C(ρ)) which should be
enumerated, observe that there are (2n)! permutations ρ consisting of 2n elements j−, j+,
j = 1, . . . , n. Note that if a permutation contains an entry j+ appearing before j−, then
this permutation is infeasible. Hence, we can discard all but one of the 2n combinations
of pairwise orientations of j+ preceding j− for each j = 1, . . . , n. Taking into account that
for each class defined by a permutation ρ, there exists an equivalent counterpart with a
reverse order of patterns, the overall number of classes which need to be enumerated by
the algorithm ClassOpt(A, ρ) is therefore (2n)!/2n+1. Thus the time complexity of finding
the globally optimal solution is O(mn(2n)!/2n+1). Notice that the number of classes for
overlapping instances is much larger than that for non-overlapping instances and therefore
it is inefficient to use the class description C (ρ) for non-overlapping instances.
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3.3 An Exact Algorithm for the Weighted Case

The above approach is equally applicable to the general problem in which rows may be
duplicated. Moreover, it can be easily generalised to tackle problem instances with arbitrary
weights of the rows. The only change required is related to calculating the objective value:
instead of counting the number of end-zeros in a solution, the weighted number of end-
zeros should be calculated in Step 2.1 of algorithms ClassOpt(A, π, σ) or ClassOpt(A, ρ).
Conversely, given a Gap0 instance, preprocessing to obtain the equivalent non-duplicate
weighted instance of WGap0 and then applying the generalised algorithm, may be more
efficient than applying the ClassOpt algorithm directly. To be precise, if the original instance
has m rows, m′ of which are distinct, m′ ≤ m, then m′ ≤ 2n and the computational
complexity of solving the instance to optimality reduces to O((2n)n(n!)) or O(n(2n)!). The
problem is thus fixed-parameter tractable with respect to the parameter n.

4 Heuristics

In this section, we present two constructive heuristics for our problem Gap0.

4.1 A Greedy Insertion Heuristic

Our first heuristic, GRIN (for GReedy INsertion), employs a greedy strategy for constructing
the sequence of rows. The rows are taken one at a time in some pre-specified order. At
each iteration, a next currently unscheduled row, which we call a target row, is inserted
into the partial sequence at the best possible position. This is achieved by considering all
possible positions for row insertion and selecting the one for which the number of additional
end-zeros created by the insertion is maximum. A formal description of heuristic GRIN
appears in Appendix B; as we show there, its time complexity is O(m2 +mn).

We carried out initial experiments to establish suitable choices for pre-ordering the rows
of the matrix A and for selecting between solutions of apparently similar quality. The
experiments revealed that results produced by heuristic GRIN are highly dependent on
the order of insertion of rows, and to a lesser extent on the tie-breaking rule. However,
no specific ordering of rows, e.g. by the number of zero-entries, gives consistently good
results across a range of problem instances. These observations are in line with Veldhorst’s
proposition [22] which states that no approximation bound can be derived for this class of
greedy insertion algorithms. Since it is not clear in advance which order of row insertion
should be selected to obtain the best outcome, we opted for running the heuristic GRIN on
randomly generated orderings, multiple times, to get a range of solutions. In each separate
run, the initial ordering of the rows of matrix A is generated randomly.

4.2 A Top-Bottom Construction Heuristic

In our second heuristic, MAZE (for MAximising the number of end-ZEros), we separately
construct two parts of a solution matrix, namely the upper and the lower parts, aiming to
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maximise the total number of end-zeros at both ends. The algorithm starts with allocation
of two rows with the maximum number of zero-entries as the first and the last row, thus
initialising the solution. The positions of zero-entries in these two rows define initial patterns
p and p of end-zeros for the upper and lower parts of the solution.

At each subsequent iteration, the remaining empty rows of the solution matrix are filled
in by unallocated rows of matrix A in two directions, by inserting rows in turn at the bottom
of the upper part and then at the top of the lower part, thus moving towards the middle
of the solution matrix. First an attempt is made to allocate row(s) to the upper part. We
check for unallocated rows which match significant 0’s of pattern p in all positions except
for one position. If no such row exists, one arbitrarily selected 0 in p is declared insignificant
(replaced by ∗). Otherwise the largest subset of unallocated rows is selected, all of which
match the same pattern corresponding to p with one 0 ignored, and these rows are inserted
in an arbitrary order below the upper part of the solution; pattern p is modified accordingly
by replacing one significant 0 by ∗.

The similar (symmetric) procedure is then applied to the bottom part of the solution
which is characterised by the pattern p. As a result, either the lower part remains unchanged
and pattern p is modified by replacing one significant 0 with ∗ arbitrarily, or the largest
possible set of rows, which match significant 0’s of pattern p in all positions except for one
position, is added just before the lower part of the solution.

Proceeding in this manner, we decrement by one the number of significant 0’s in patterns
p and p for both parts of the solution at each iteration. The algorithm stops when all rows
of the solution matrix S are filled in with rows of matrix A. A formal description of the
algorithm is presented in Appendix C; its time complexity is O(mn3).

Note that there may be ties related to the choice of rows for insertion into the upper and
the lower parts of the solution matrix. Our experiments show that such a choice may have
an impact on the quality of a solution to the problem. For that reason, we run heuristic
MAZE multiple times, breaking ties arbitrarily, in order to obtain a range of solutions.

4.3 Generalisation for the Weighted Case

Both of the heuristics described above can be generalised to handle the gap-zero problem
with row weights, WGap0. The only modification needed for heuristic GRIN is related to
calculating the contribution of allocating a target row to a selected position in the current
partial solution. As far as heuristic MAZE is concerned, two additional modifications are
needed. The first one relates to the initial allocation of the rows to the upper and the lower
parts of the constructed solution matrix. The following criterion can be used: select two
rows with the largest weighted numbers of zeros. However, such a criterion may lead to a
very limited choice of the two initial rows and, therefore, restrict the variety of solutions
obtained in different runs of heuristic MAZE. To overcome this drawback, a wider choice
of initial rows may be allowed and some randomness in their selection may be introduced.
The second important modification concerns the selection of the subsets of matching rows.
Instead of the largest subset in the original version of heuristic MAZE, we can select the
subset with the maximum cumulative weight of significant zeros, thus ensuring the maximum
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weighted contribution to the end-zero objective function at each iteration.

5 Computational Experiments

In this section, we evaluate the performance of our heuristics GRIN and MAZE, on a wide
range of problem instances, while testing out our optimisation algorithm, GlobalOpt, on a set
of small instances. For small instances the heuristics are benchmarked against the optimal
solution values. As no suitable comparator heuristic is available from the literature for larger
instances, we use the heuristic which takes a random permutation of rows of the original
matrix, A, referred to as RAND. The results are presented for the original minimisation
version of the problem with function g representing the total number of gap-zeros.

5.1 Experimental Design

The heuristics were evaluated systematically on one main test set, of small instances, and a
subsidiary set of large instances. The first set consists of instances with up to 10 columns,
n taking values 4, 5, 6, 7, 8, and 10, to be precise. For a given value of n, there are
2n − 1 possible different rows, excluding the all-zero-row. Therefore, in order to maintain
consistency for different values of n, instances are classified by the number of possible rows,
m, as a proportion of the maximum possible number of rows, i.e., m = ⌈α(2n − 1)⌉, 0 <
α ≤ 1. For each value of n, we select α = 0.1, 0.3, 0.5, 0.7, 0.9, 1, corresponding to 10%,
30%, 50%, 70%, 90% and 100% of all possible rows, respectively. Note that we do not
consider α = 0.1 for n = 4 since it corresponds to trivial instances with only 2 rows. For
all combinations of parameters n and α, we randomly generate 50 problem instances. Note
that when α = 1 each instance contains the same (whole) set of possible rows, and the
instances differ from each other only in their row order, for each value of n. The second test
set consisted of five much larger instances, with 25 columns and 20000 rows. The rows of
a matrix, are generated by randomly selecting a decimal number from the range [1, 2n − 1]
and then convert it into the corresponding binary string of length n.

Our exact algorithm GlobalOpt was executed for the full range of instances with n =
4, 5, 6, and for a selection of instances with n = 7 and 8. For n = 7, algorithm GlobalOpt is
applied to all 50 instances with α = 0.5 and to only a single, randomly chosen, instance for
each other value of α. For n = 8, algorithm GlobalOpt takes too long to be practical (over 6
days) and only a single run for α = 0.5 has been performed. The test set of larger instances
could certainly not be evaluated with GlobalOpt. Recall that both of our heuristics have a
stochastic element: GRIN in the order for row insertion and tie breaking, and MAZE in
breaking ties at Step 2. We, therefore, opt to run our heuristics 50 times for each problem
instance, using different random seeds.

For a better evaluation of results of our heuristics, we also run a simple heuristic RAND in
which a solution is generated as a random permutation of rows of the original matrix. Similar
to GRIN and MAZE, heuristic RAND is executed 50 times for each problem instance, i.e.,
we evaluate 50 randomly chosen row permutations. In total, we perform 2500 runs of each
heuristic for every combination of n and α. All algorithms have been programmed in the
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C++ language and tested on a PC with AMD XP-M 2.2GHz CPU and 1024 MB RAM
running under Microsoft Windows XP.

5.2 Comparison between Heuristics

First, we compare the performance of our two heuristics, GRIN andMAZE, against heuristic
RAND which constructs random permutations. The results for instances with 6 columns are
summarised in Fig. 2, which shows average percentages of gap-zeros in heuristic solutions
relative to the total number of 0’s in problem instances. The averages are taken over 50
problem instances generated for each value of parameter α. The graphs for other values of
n are quite similar and we therefore do not present them here. The results demonstrate a
significant superiority of solutions constructed by algorithms GRIN and MAZE over those
obtained by random permutations of rows of the matrices, with RAND performing, on
average, over 50% worse in all cases. This observation is confirmed by the results for the
range of n values but fixed α = 0.5 shown in Fig. 3. We compared the quality of the solutions
found to random permutations produced by heuristic RAND. On average, both heuristics
GRIN and MAZE outperformed RAND with approximately 14% improvement in the value
of the gap-zero function g.

Figure 2: Average proportion of gap-zeros over 50 runs of each heuristic for matrices with 6
columns
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Another observation is that heuristic MAZE outperforms heuristic GRIN for all values
of α except for α = 0.1. A possible explanation of the advantage of GRIN over MAZE
for small instances, is that rerunning heuristic MAZE for such instances gives very little
variation in solutions, as the choice of the initial pair of top and bottom rows may be
highly restricted due to the limited number of rows with the largest number of 0’s. On the
other hand, it seems that 50 runs of heuristic GRIN cover most of the possible options for
insertion of each row, if the number of rows is small. It is therefore better to run GRIN as
an alternative to MAZE for small instances. However, MAZE could be modified to search
the solution space more widely, by introducing some randomness in the initial selection of
top and bottom rows.

Figure 3: Average proportion of gap-zeros over 50 runs of each heuristic for matrices with
different number of columns and α = 0.5

Further evidence of the stronger performance of heuristic MAZE over GRIN for large
problems is demonstrated for α = 0.5 and a range of values for n in Fig 3. Both heuristics
produce similar results for smaller values of n and heuristic MAZE outperforms GRIN for
n ≥ 6, although by only a small margin. Moreover, for instances with n = 8 and 10, heuristic
MAZE outperforms heuristic GRIN for every value of α, including α = 0.1.

The experiments conducted on large instances also confirmed the advantage of heuristic
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MAZE over GRIN : the former heuristic produced better results than the latter one for 4
instances out of 5, with the difference in values of the gap-zero function g ranging from 300
to 3000, and averaging 1070, or 0.5% of the g function value. Moreover, computation time of
MAZE remained quite small (37 sec for 50 runs on average), while GRIN was significantly
slower (about 1.5 hours for 50 runs).

5.3 Comparison to an Optimal Solution

Having identified the superiority of heuristic MAZE over GRIN on many occasions, we
now discuss the quality of heuristic solutions by comparing their results to optimal values
obtained by algorithm GlobalOpt. For instances with 6 columns and various numbers of
rows, the number of optimal solutions (out of 50) found by each heuristic, is shown in
column Nopt in Table 1. A complementary measure of the solutions quality is the proximity
of heuristic solutions to the optimal ones, in those cases when heuristics fail to hit the
optimum, calculated as the difference between the number of gap-zeros of a heuristic solution
and that of an optimum, gH − g∗, and denoted by D(H−opt).

Nopt D(H−opt)

α GRIN MAZE GRIN MAZE

0.1 50 42 0 1.25

0.3 30 39 1.1 1.18

0.5 9 45 1.39 1

0.7 4 49 1.93 1

0.9 3 50 1.6 0

1 47 50 1 0

Table 1: Comparative performance of heuristics GRIN (G) and MAZE (M) to optimal, for
instances with n = 6

Analysing the figures for Nopt and D(H−opt), we observe that heuristic MAZE constructs
optimal solutions for the majority of problem instances for all values of α and comes very
close to the optimum for the remaining instances, with the average deviation from the
optimum of around only one gap-zero. Heuristic GRIN works particularly well for α ≤ 0.3
and α = 1, but rarely finds optimal solutions for instances with α = 0.5, 0.7, and 0.9. Note
that for easier problems with n = 4 and 5 both heuristics often produce more optimal
solutions than for n = 6.

We now briefly discuss results of our algorithms for n = 7, 8 and 10. For n = 7, α = 0.5
50 instances were taken. Heuristic MAZE constructed optimal solutions for 43 instances out
of 50 with the average deviation from the optimum D(H−opt) of just 1.7 gap-zeros. For for
each other values of α, a single instance generated MAZE constructed optimal solutions in
each case. By contrast, heuristic GRIN was able to solve to optimality only a few instances
corresponding to α = 0.1 and α = 1, with D(H−opt) = 5.0 for α = 0.5. For n = 8, only a
single instance with α = 0.5 was solved by algorithm GlobalOpt, as it took 6 days. Heuristic
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MAZE constructed an optimal solution for that instance while solution of GRIN contained
15 gap-zeros more than the optimal one. The advantage of heuristic MAZE over GRIN
for n = 8 and 10 is demonstrated in Fig. 3 for α = 0.5. Similar results were obtained for
other values of α. All these results suggest that we can expect a very strong performance of
heuristic MAZE for large size problems where our exact algorithm is inefficient.

Since the run time of algorithm MAZE is linear in the number of rows m (its time
complexity is O(mn3)) and the number of columns is relatively small in our experiments, it
is very fast for all problem instances discussed above. The total CPU time required for 50
runs ofMAZE is always under a second. Heuristic GRIN works slower as the number of rows
grows (its running time is of the order O(m2n)). It takes less than 1 second to perform all 50
runs of GRIN for all problem instances with n ≤ 6 and 4, 37 and 332 seconds on average for
largest instances (α = 1) with n = 7, 8, and 10, respectively. Finally, algorithm GlobalOpt
requires 0.2, 4, and 120 seconds for problems with 4, 5, and 6 columns, respectively, and
nearly 2 hours in case of 7 columns. It becomes impractical for n = 8 taking around 6 days
to find an optimal solution to a single problem.

Finally, we tested our heuristics on larger instances, for which optimal solutions were
known in advance. We took matrices with n = 25, 50, 100 and 500 columns and m = 2n− 1
rows without duplication with the C1P (Consecutive Ones Property), since the optimal value
is then known in advance. The value 2n−1 corresponds to the maximum number of different
rows in a C1P matrix, a greater number leads to a repetition of rows. Each column of such
a matrix contains exactly n ones and n− 1 zeros. As before, 50 runs of each heuristic were
performed. The heuristic RAND consistently produced very poor solutions in which 99% of
zeros appeared as gap-zeros. We found that heuristic GRIN achieved optimum in its best
runs for each instance. For example, for the instances with n = 500 and m = 999, 36 out
of 50 runs resulted in optimal solutions without any gap-zeros. Heuristic MAZE was even
more successful constructing an optimal solution in every single run for all four instances.

6 Conclusions

In this paper we have developed three algorithms for tackling the NP-hard problem of
minimising the total number of gap-zeros in columns of a binary matrix by permuting its
rows. We have proposed algorithms which between them provide optimal, or close to optimal
solutions for instances of all sizes: an exact algorithm for smaller instances with no more than
7 columns, and a heuristic, MAZE, for larger instances. These approaches accommodate
instances expressed in terms of weights on the rows of the binary matrix.

Our exact algorithm is based on indirect enumeration of the solution space by means of
classes of solutions with a common structure. The algorithm can be efficiently applied to
matrices with a small number of columns, even when the number of rows is quite large. In
order to tackle larger problems, we have developed two heuristic approaches. One, GRIN, is
based on the greedy insertion of randomly pre-sorted rows of the original matrix into a partial
solution. The other, MAZE, constructs a solution by allocating matching rows to the upper
and the lower parts of the solution matrix. Both heuristics involve multiple runs. Extensive
testing was carried out on instances with a relatively small number of columns (n ≤ 10), and
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on large instances. The first heuristic, GRIN, worked particularly well for smaller problems,
while the second one was able to produce optimal or near-optimal outcomes for a wider
range of generated problems. The good performance of the first, multiple run, heuristic,
GRIN, contrasts starkly with the known result that no performance bound exists for a
single run of any such greedy heuristic employing any given type of pre-ordering of row
inputs with on-line row selection [22]. Moreover, the second heuristic, MAZE, proved to
be particularly effective and solves all of the test instances with known optimal value, to
optimality, including very large instances. In all cases where the optimal value is known,
both of our heuristics produced solutions within 3% of optimal.

An additional contribution of the article is a deeper understanding of the structure of
the Gap0 problem. A new representation of the solution space, in terms of the ranking
of the lengths of columns of end-zeros, is offered, and used successfully. We also highlight
the phenomenon of overlapping end-zeros and associated complications. An open challenge
is that of estimating the optimality gap related to ignoring overlapping end-zeros. Some
evidence to support the restriction to non-overlapping zeros, is given by the computational
investigations, reported in the Appendix, which indicate that instances with overlapping
end-zeros become rare for larger sizes of problem.

Many real world problems may be abstracted as a Gap0 problem. In particular, we have
successfully applied the approach developed in this paper in the context of microbiological
food testing. The methodology is used to resequence food samples, and is combined with
an optimisation approach for scheduling agar production presented in [7], to take account of
the limited shelf life of agar. This approach provides a methodology for increasing efficiency
of food testing in the laboratory by 20%.
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Appendix A: Complexity Analysis of Algorithm Class-

Opt

Overlapping Instances
The time complexity of algorithm ClassOpt(A, π, σ) is defined by Step 2. The number of

patterns which characterise a class C (π, σ) is 2n−1: there are n−1 patterns with significant
top-zeros, n − 1 patterns with significant bottom-zeros and one additional middle pattern
(∗ ∗ . . . ∗ ∗) without significant 0’s. There are up to n − 1 zero-entries in each row which
should be checked against significant 0’s of each pattern in order to establish a match.

In order to implement Step 1 efficiently, we consider the entries of the current row of A
in reverse order of π noting when the first 1-entry is identified. This provides the maximum
number of significant 0’s if the current row is allocated to the top patterns of Pπ,σ. In
a similar way we calculate the maximum number of significant 0’s if the current row is
allocated to the bottom patterns of Pπ,σ. The best pattern out of the two is selected as the
output of Step 2.1, so that the time complexity of this step is O(n). Thus finding the best
matches for all m rows of matrix A incurs O(mn) time.

Non-overlapping Instances
First we perform pre-processing by constructing patterns which characterise class C(ρ),

counting the number of significant zeros for each pattern. The number of patterns is 2n− 1
since there are n− 1 zeros in the top pattern and each subsequent pattern differs from the
previous one by one 0 removed or one 0 added until the bottom row with n − 1 zeros is
reached. Thus the pre-processing can be done in O(mn) time.

Suppose the row-patterns in class C(ρ), which contain all top-zeros, have numbers 1,
2, . . . , t, and those which contain all bottom-zeros have numbers b, b + 1, . . . , 2n − 1,
where 1 < b < t < 2n − 1 for overlapping instances. The matching patterns can be
identified in the same way as in the case of non-overlapping instances; one just needs to
introduce permutations π and σ associated with ρ to characterise top-zeros and bottom-
zeros, respectively. The following three cases may occur.

• Both sets of matching top-zeros and bottom-zeros are empty: then no matching pat-
terns exist and there is no solution in the class C(ρ).

• One of the sets is empty and the other one is non-empty: then the row with the
maximum number of significant zeros is selected in the same way as for non-overlapping
instances.

• Both sets are non-empty and they are given by row-patterns t′,t′ +1, . . . , t, 1 ≤ t′ ≤ t
for top-zeros and patterns b,b+ 1, . . . , b′, b ≤ b′ ≤ 2n− 1 for bottom-zeros: if b′ < t′,
then no matching patterns exist; otherwise select a row-pattern from the range t′,
t′ + 1, . . . , b′ which has the maximum number of significant zeros.

Thus Step 2.1 of algorithm ClassOpt can be implemented in O(n) time. Therefore finding
the best matches for all m rows of matrix A incurs O(mn) time in Step 2. We conclude that
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the time complexity of algorithm ClassOpt is the same as in the non-overlapping case, i.e.,
O(mn).

Appendix B: Formal Description of Heuristic GRIN

and its Analysis

Algorithm GRIN (for GReedy INsertion)
Input: rows of matrix A in a pre-specified order

Output: solution matrix S and objective value f (S)

1. Insert the first row of A into a new empty solution S

2. REPEAT until all rows of A are inserted into partial solution S

2.1. Select the next row of matrix A respecting the given ordering

2.2. For each position in the partial solution calculate the number of

end-zeros after each insertion of the target row

2.3. Insert the target row into a position in the partial solution S
which corresponds to the option with the maximum value of the

objective function f among those considered in Step 2.2. Break ties

by applying Rules 1-4 described in the Appendix

END

3. Return the constructed solution matrix S and objective value f (S)

If there are several equally “good” options for target row insertion in Step 2.3 of algorithm
GRIN, we use the following rules, which provide consistency, in breaking ties. Note that
the rules with the choice of options opposite to those used in Rules 1, 2, and 4 can also be
applied, which leads to the reverse sequence of rows in the resulting solution.

Rule 1. In case of a choice between inserting the target row immediately before or imme-
diately after some selected row in the partial solution, put the target row before the
selected one if the former contains more zero-entries than the latter, otherwise insert
it after the selected row.

Rule 2. In case of a choice between inserting the target row into the very first or into the
very last position in the partial solution, make the target row first if it contains more
zero-entries than the current first row in the solution, and make the target row last
otherwise.
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Rule 3. In case of a choice between inserting the target row in between two rows of the
partial solution or into the very first (into the very last) position, always select the
former option.

Rule 4. In case of more than two possible options for inserting the target row, first apply
Rule 3 to eliminate insertions at the ends of the partial solution (if such options are
present). Then apply Rule 1 (if there are appropriate pairs of options) to further
restrict the choice. If there are still multiple positions for insertion, place the target
row into the lowest position among them, i.e. into the position which is the closest to
the beginning of the partial solution.

The selection rules in GRIN, are designed to imitate the structure of no-gap solutions
for matrices which satisfy the consecutive ones property. In such solutions the rows with
greater number of 1’s are usually concentrated in the middle of the solution matrix while
the rows mostly consisting of 0 entries are distributed towards the end rows of the matrix.

We analyse the time complexity of heuristic GRIN. There are O(m) repetitions of Step 2.
For each target row, there are O(m) different options for insertion. The straightforward
evaluation of f (S) for each option, which is done in Step 2.2, requires O(mn) time: one can
insert the target row in S temporarily and count the number of end-zeros in the resulting
matrix. A more efficient approach is to maintain the value f (S) for a current partial solution
S together with additional markers for each element of S which indicate whether an element
is a top-zero, a bottom-zero or an insignificant element. Then the evaluation of f (S) , after
a possible insertion of the target row, can be implemented in O (n) time by comparing the
target row with its two neighbours. Finally, the actual insertion of the target row in S in
Step 2.3 requires O (mn) time. Therefore, with efficient implementation of Step 2.2, the
inner loop consisting of Steps 2.1-2.3 can be implemented in O (mn) time, leading to the
O(m2n) time complexity of heuristic GRIN.

Appendix C: Formal Description of Heuristic MAZE

and its Analysis

Algorithm MAZE
Input: rows of matrix A
Output: solution matrix S and objective value f (S)

1. Initialise S by allocating two rows of matrix A with the maximum

number of 0’s to positions i′ ← 1, i′′ ← m of S; break ties arbitrarily

For row i′, define pattern p of significant 0’s and calculate z, the

number of its 0’s

For row i′′, define pattern p of significant 0’s and calculate z, the

number of its 0’s

Assign unallocated rows to the set R
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2. REPEAT until R = ∅

2.1 Consider the upper part of S

FOR k = 1, . . . , z
Construct pattern pk by replacing the kth 0 in p by ∗, and

the set of rows Rk ⊆ R which match pattern pk

ENDFOR

IF R1 = · · · = Rz = ∅
Replace pattern p by a pattern pk with one significant 0 less

(k can be selected arbitrarily)

z ← z − 1

ELSE

Select the set Rℓ corresponding to the largest number of

matching rows; break ties arbitrarily

Allocate all rows from Rℓ after row i′ in S
Update the set of unallocated rows: R← R\Rℓ

Set i′ ← i′ + |Rℓ|, p← pℓ and z ← z − 1

2.2 Repeat the actions similar to those of step 2.1 for the bottom

part of S, updating R, i′′, p and z accordingly

END

3. Return the constructed solution matrix S and its objective value f (S)

We analyse the time complexity of Algorithm MAZE. It is determined by Step 2. Step
2.1 is repeated O(n) times since pattern p contains no more than n − 1 significant 0s, and
at each iteration one significant 0 is replaced by ∗. Similarly, Step 2.2 is repeated O(n)
times. At each iteration, O(m) rows from R are checked for matching against each of the
patterns p1,. . . ,pz, z < n, in order to form subsets Rk, and each matching test requires O(n)
comparisons of individual entries. Assigning selected rows Rl and updating variables takes
O(mn) time. Therefore, each iteration of Step 2 requires O(mn2) time and the overall time
complexity of algorithm MAZE is O(mn3).
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