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Abstract

This work extends a well-balanced second-order Runge-Kutta discontinuous Galerkin 

(RKDG2) scheme to provide conservative simulations for shallow flows involving wetting 

and drying over irregular topographies with friction effects. For this purpose, a wetting and 

drying technique designed originally for a finite volume (FV) scheme is improved and 

implemented, which includes the discretization of friction source terms via a splitting implicit 

integration approach. Another focus of this work is to design a fully conserved RKDG2 

scheme to provide conservative solutions for both mass and momentum through a locally 

slope limiting process. Several steady and transient benchmark tests with/without friction 

effects are simulated to validate the new solver and demonstrate the effects of different slope 

limiting processes, i.e. globally and locally slope limiting processes. 

 

Keywords: discontinuous Galerkin method; local slope-limiter vs. global slope-limiter; 

wetting and drying; irregular topography; friction term discretization; conservative scheme. 
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1. Introduction

In practice, free-surface flows are commonly modelled by the shallow water equations 

(SWE). Accurate and conservative numerical solutions to the SWE may be obtained by a 

high-order discretization technique in the context of a Godunov-type method [26,48-50]. 

During the past few decades, finite volume (FV) Godunov-type schemes have gradually 

become a standard numerical tool in the computational hydraulics and a recent trend is to use 

them to solve the real-world shallow flow problems (see [4,6,8,9,21,22,26,36,37,40,45,54] 

and the references therein). In spite of all the attractive properties that a Godunov-type 

discretization has already owned [47,52], e.g. automatic shock-capturing, many well-suited 

FV schemes appear in the literature to survey important issues that must be considered for 

practical numerical calculations. These include treating irregular domain topography, 

handling moving wet/dry fronts and representing high value of bed roughness [11,12,35]. In 

respect of this, we are interested in the second-order schemes and the popular method of 

hydrostatic reconstruction reported by Audusse et al. [3]. Audusse et al.�s model pioneers a 

modern class of well-balanced and non-negative (in terms of water depth) FV schemes based 

on modified expressions to the fluxes and topographic source terms that entail extra 

hydrostatic pressure terms. While also considering the friction effects, Liang and Marche [35] 

and Liang [36] revisited the method of Audusse et al. [3] and delivered an alternative 

formulation in the context of a MUSCL FV scheme [49], which does not need those extra 

hydrostatic terms in the discretization of the fluxes and the bed slope source terms. 

 In the last decade, the Godunov-type methods incorporated with a Runge-Kutta (RK) 

discontinuous Galerkin (DG) local discretization [15,16] have been traded further in the field 

of hydrodynamic modelling [1,7,10,17-19,22-24,27,28,31,32,39,42,44,50,51]; due to many of 

their advantages compared with the traditional finite element and non-oscillatory FV methods 

[28,30-32,53]. However, the RKDG methods have not yet attained the same level of 
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robustness as the FV schemes and their application to realistic flow simulations is still in the 

embryonic stage [3,4,6,8,14,20,21,26,34-38,40,45,54]. In particular, the topic of treating 

wetting and drying over irregular topographies in the frame of an RKDG algorithm has just 

started to occupy the area of computational hydraulics. Among the very few existing RKDG 

wetting and drying strategies [7,10,17,24], most of them can only guarantee mass 

conservation but overlook the issue of momentum conservation [10,24]. However, allowing 

violation of momentum conservation is not theoretically recommended [48], and in practice, 

this issue is noticed to influence the accuracy and/or the well-balanced property of an RKDG 

scheme [10]. Furthermore, among these wetting and drying algorithms [7,10,17,24], no effort 

has been made to provide stable and accurate discretization to the friction source terms as in 

the FV methods [11,12,35,38]. 

 Similar to the FV methods, RKDG schemes also employ slope limiters to remedy the 

numerical oscillations that may emerge around a discontinuous solution. However, slope 

limiting in an RKDG method is more troublesome than that in an FV scheme. Krivodonova et 

al. [29] and Qiu and Shu [41] showed that an FV slope limiter applied uncontrollably within 

an RKDG method may essentially deteriorate the order of accuracy for a smooth numerical 

solution and also bulk a discontinuous solution. This stipulates the necessity for localizing the 

slope limiting process, which is currently an ongoing research topic for the RKDG methods. 

In relation to wetting and drying over irregular topographies, it is often said that a slope 

limiter may induce drastic numerical instabilities [10,17]. But no factual insights are yet 

available. 

 This work therefore considers all of the above concerns while improving an FV 

wetting and drying technique [35] in the context of an RKDG2 scheme, which is 

implemented with a locally slope limiting process (RKDG2-LL). For numerical flux 

calculations, the non-negative (in terms of water depth) reconstruction of Riemann states 
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described in Liang and Marche [35] is implemented and then the interface fluxes are 

calculated using the HLL solver [48]. These non-negatively reconstructed Riemann states are 

also used to, locally and temporary, regenerate the approximating coefficients defining the 

RKDG2 solutions of the flow variables and topography when discretizing the bed slope 

source terms and calculating the fluxes in the local Gaussian points. This is actually a critical 

step in maintaining the well-balanced and non-negative properties of the scheme. A splitting 

implicit scheme [12,35] that was proposed to discretize the friction source terms in an FV 

scheme is further modified and extended to the current RKDG2 framework. Analytical and 

experimental benchmark tests are simulated to demonstrate the incapability of the globally 

limited RKDG2 model (denoted by RKDG2-GL) in handling certain flow conditions. 

Meanwhile, these test cases also validate the current RKDG2 in handling the moving wet/dry 

fronts over non-uniform topographies as well as revealing the benefits of using the locally 

limited model (referred to as RKDG2-LL) to provide more accurate and conservative 

predictions. 

2. Improved RKDG2 shallow flow scheme

The conceptual underpinning of RKDG methods for solving the hyperbolic conservation laws 

is attributed to Cockburn and Shu [51] and other co-workers (see within [15,16]) and is not 

re-considered in this work. We directly outline a well-balanced RKDG2 scheme for solving 

the SWE [28] and then focus on the issues related to practical hydrodynamic modelling, i.e. 

wetting and drying over irregular topography, conservative slope limiting and stable 

discretization of friction terms. 

2.1 Governing shallow water equations

Many different forms of the 1D SWE exist in the literature, e.g. [3,4,8,9,33,34]. The one 

expressed in terms of the free-surface elevation  = h + z (where h denotes the water depth 
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and z is the topography function) and the unit-width discharge q = hu (where u gives the 

depth-averaged velocity) is used in this work, which is written in a matrix form as [34] 

t x fb SU F S      (1) 

in which, 

q
U , 2

2

2
2

q g

z

q

z
F , 

0

xg z
bS  and 

0

| |fC u ufS   (2) 

where U is the vector of flow variables, F contains the fluxes, Sb represents the topography 

source terms and Sf lists the friction source terms, , g is the acceleration due to gravity, 

2

1/ 3

Mgn

f z
C  is the coefficient of bed roughness and Mn  is the Manning coefficient. 

2.2 Well balanced RKDG2 framework

In solving the 1D governing equations using an RKDG2 scheme, the computational domain 

[xmin, xmax] may be subdivided into N uniform cells via interface points xmin = x1/2 < x3/2 < ... < 

xN+1/2 = xmax such that a random cell Ii = [xi-1/2, xi+1/2] is centred at xi = ½(xi+1/2 + xi-1/2) and of 

length x = xi+1/2 - xi-1/2. The well-balanced RKDG2 scheme [28] seeks a local approximate 

linear solution Uh = [ h, qh]
T
 to (1), defined by the time-evolving average and slope 

coefficients ( 0 ( )i tU  and 1( )i tU ), i.e. 

0 1

/ 2
, ( ) ( ) i

i

x x

i i ixI
x t t t x IhU U U                (3) 

Associated with the given initial conditions U0(x) = U(x,0), the corresponding initial 

coefficients are [28] 

0,1 1
1/ 2 1/ 22

(0) ( ) ( )i i ix x0 0U U U      (4) 

A local linear (continuous) approximation of topography with a similar structure as (3) and 

(4) provides automatically the well-balanced property for those simulations taking place in a 

fully wet domain [28,50]. Subsequently, by denoting the topography associated (scalar) 
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coefficients by 1/ 2 1/ 2( ) ( )0,1

2
i iz x z x

iz , the momentum entry of the bed slope source terms can be 

finally expressed as 

1
1/ 2 1/ 2 2

( ) i i i

i

z x z x z

x h x xI
z x      (5) 

The time derivative terms of the local coefficients are then approximated by 

0 0 0,1 0,1 0,1

1 1

1 1 0,1 0,1 0,1

1 1

, ,

, ,

t i i i i i

t i i i i i

U L U U U

U L U U U
     (6) 

in which, 
0,1

i
L  are regarded as the discrete local representations of the conservation laws (1) 

for the average and the slope coefficients, respectively. They can be manipulated to give [15] 

1/ 2 1/ 20 0 1,i i

i i ix
z

F F
bL S U        (7) 

1 1 1 1

1 1

� �1 0 0 0 03
1/ 2 1/ 2 3 3 3 3

� �0 1 0 13

6 3 3

, ,

, ,

i i i i

i i

z z

i i i i i i ix

x
i i i i

z z

z z

U U

U U
b b

L F F F U F U

                        S U S U
  (8) 

The fluxes, e.g. 1/ 2iF  across the interface xi+1/2 (shared by the adjacent cells Ii and Ii+1), are 

obtained by solving the local Riemann problem defined by the two sets of states 
1/ 2i iIU  

and 
1/2 1i iIU  

1

0 1

1/ 2 1/ 2

0 1

1/ 2 1/ 2 1 1

�,

�,

i

i

i i i i
I

i i i i
I

x t

x t

h

h

U U U U

U U U U
    (9) 

In (8) and (9), the slope coefficients with a �hat� symbol (e.g. 1�
iU ) have been slope-limited 

using approaches described later in Subsection 2.4. In the mean time, a �depth-positivity-

preserving� version of the Riemann sates are reconstructed and then employed in the HLL 

flux formulae to evaluate the flux 1/ 2iF  as will be detailed in Subsection 2.3. 

 Finally, the approximate coefficients are advanced in time by a two-stage RK time 

integration scheme with a CFL = 0.3 for the time stepping constraint [15], i.e. 
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1/ 2
0,1 0,1 0,1U U L

n n n

i i it      (10) 

1 1/ 2 1/ 2
0,1 0,1 0,1 0,11

2

n n n n

i i i i
tU U U L    (11) 

2.3 Wetting and drying condition

Similar to (9), the face values of water depth at either side of an interface 1/ 2i
x  (denoted by 

1/ 2ih ) are evaluated by using the polynomial approximation to h-zh, which is defined from 

free-surface elevation and topography data, i.e.  

0 0 1 1

1/ 2

0 0 1 1

1/ 2 1 1 1 1

i i i i i

i i i i i

h z z

h z z

    (12) 

which results in the slope-limited components of the water depth using the same slope-

limiting approach as that for the flow variables (i.e. Section 2.4). Here, the depth slope 

component 1 1

i iz  represents the slope-limited output of the three input slope quantities 

1 1

i iz , 0 0 0 0

1 1i i i i
z z  and 0 0 0 0

1 1i i i i
z z . 

 The associated velocities and topography approximations must be numerically 

evaluated from (9) and (12) for consistency (see the recent study of Mungkasi and Roberts 

[55]), i.e. 

1/ 2 1/ 2 1/ 2

1/ 2 1/ 2 1/ 2

/i i i

i i i

u q h

z h
     (13) 

In a dry cell Ii, in which the water depth is less than 10
-8

, the face values of velocity are 

directly set to zero but not computed by (13). Obviously after (13), the continuity property of 

zh may not hold anymore (since h and/or hh can be discontinuous across 1/ 2i
x ). It is 

necessary to define a single value of the bottom level at 1/ 2ix  as 

*

1/ 2 1/ 2 1/ 2
( , )

i i i
z max z z      (14) 
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Based on this single value of bed elevation, the positivity-preserving Riemann states of water 

depth can be defined as 

,* *

1/ 2 1/ 2 1/ 2
(0, )

i i i
h max z     (15) 

which are then used to reconstruct the associated depth-positivity-preserving Riemann states 

,* ,* *

1/ 2 1/ 2 1/ 2

,* ,*

1/ 2 1/ 2 1/ 2

i i i

i i i

h z

q h u
     (16) 

Fig 1: Second sub-case of a motionless wet/dry interface (i.e. 
*

1/ 2 1/ 2i iz ). (a) Initial free-surface 

states; (b) Forged free-surface states reconstructed by (13)-(16); (c) Local and temporal corrections 

(17)-(18) to bring back the original still free-surface state. 

 

 For a wet/wet interface at 1/ 2i
x  (i.e. *

1/ 2 1/ 2i iz ), the new Riemann states of the 

free-surface elevation obtained by (16) maintains its original level. The discharge 

components are defined according to the velocity components in (13) and therefore the initial 

momentum is conserved. 

If 1/ 2ix  is a dry/dry interface (i.e. 
1/ 2 1/ 2i iz ), (15) produces zero water depths and 

hence (16) defines a continuous free-surface elevation that is equal to the single bottom level 

given in (14). Apparently, the discharge components of Riemann states are both zero due to 

the zero water depths. 
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 For a wet/dry interface 1/ 2ix  (where a dry/wet interface can be treated similarly), two 

sub-cases must be considered, depending on the water level at the wet side. The first sub-case 

has a bed level at the dry side (right) that does not block the flow from the wet side (left), i.e. 

*

1/ 2 1/ 2i iz
 
(it should be noted that this condition cannot hold stagnant water surface). This 

situation is correctly modelled by (13)-(16), which is essentially transferred into a standard 

Riemann problem onto a horizontal dry bed. For the second sub-case, the ground level at the 

dry side (right) is higher than the still water level at the wet side (left), i.e. *

1/ 2 1/ 2i iz  (see 

Fig. 1a). Following (13)-(16), the initial Riemann state of free-surface elevation at the wet 

side ( 1/ 2i ) is overwritten to become, unrealistically, the same as the ground level defined at 

the dry side (i.e. ,* *

1/ 2 1/ 2 1/ 2i i iz ), which is actually equal to the free-surface elevation at 

the dry side (i.e. ,* *

1/ 2 1/ 2i iz ; see Fig. 1b). This can trigger a fake momentum flux across the 

wet/dry interface and therefore affects the well-balanced property of the numerical scheme. 

To avoid this, the Riemann states of the free-surface elevation and the single value of bed 

topography are locally and temporally adjusted to be consistent with the initial wet free-

surface level, ensuring continuous water surface at the concerned wet/dry interface (see Fig. 

3c) [36], i.e. 

,* ,*

1/ 2 1/ 2 1/ 2i i i     (17) 

* *

1/ 2 1/ 2 1/ 2i i i
z z      (18) 

where, 

*

1/ 2 1/ 2 1/ 20,i i imax z    (19) 

The Riemann states of discharge are correctly set to zero by (13)-(16) and therefore remain 

unchanged. By looking into Fig. 1 and Eq. (19), it is noted that 1/ 2i  is only positive in the 

case of a wet/dry interface with the wet side obstructed by the dry side (i.e. *

1/ 2 1/ 2i iz ). 
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Moreover, 
1/ 2 0i

 represents the erroneously increased level in the wet free-surface state 

(left) produced by (13)-(16). Therefore, (17)-(18) essentially bring back a continuous 

motionless state for the free-surface elevation and the single topography so that a balanced 

flux is produced by the HLL Riemann solver. 

 The non-negative Riemann states reconstructed after (13)�(16) and (17)�(19) are 

employed by the HLL solver to estimate the flux vector 1/ 2Fi  across 1/ 2ix . Denoting 

T
,* ,*

1/ 2 1/ 2;i iqLU  and 
T

,* ,*

1/ 2 1/ 2;i iqRU , together with *

1/ 2iz , the HLL flux 1/ 2Fi  writes 

[48] 

1/ 2

if  0

if  0

if 0

L

L R

i

R

S

S S

S

L

LR

R

F                 

F F                

F                  

   (20) 

where, 
L LF F(U ) , 

R RF F(U )  and 
LRF  contains the intermediate fluxes and is given by 

R L L R

R L

S S S S

S S

L R R L

LR
F F U U

F    (21) 

The wave speeds 
L

S  and 
R

S  are calculated as [48] 

82 if  10

min 2 , 2 otherwise

R R L

L

L L LR LR

u gh h
S

u gh u gh

                                          

          
   (22) 

82 if  10

max 2 , 2 otherwise

L L R

R

R R LR LR

u gh h
S

u gh u gh

                                         

        
   (23) 

where, 
,* *

1/ 2 1/ 2

L

i ih z , 
,* *

1/ 2 1/ 2

R

i ih z , 
,*

1/ 2 /
L L

iu q h  (when 
8

10
L

h ; otherwise 

0
L

u ) and 
,*

1/ 2 /
R R

iu q h  (when 
8

10
R

h ; otherwise 0
R

u ). The intermediate states of 

depth and velocity components are found by 

1
2

LR R L R L
u u u gh gh     (24) 
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2

1 1 1
2 4

LR R L R L

g
h gh gh u u    (25) 

 In the frame of an RKDG2 scheme, values of the average and slope coefficients of the 

approximate solution and topography are also needed in order to evaluate the source terms for 

the local spatial operator 
0

i
L  in (7) and the source and flux terms at the local Gaussian points 

for 
1

i
L  in (8). In order to ensure a well-balanced scheme that preserves the non-negativity of 

water depth, the values of these local coefficients available at cell centres cannot be directly 

used but must be regenerated in compliance with the reconstructed positivity-preserving 

Riemann states and the associated topographic data. They may be obtained by recalculating 

the relationship (4) using the amended Riemann states and face values of topography 

0,1 ,* ,*1
1/ 2 1/ 22i i iU U U      (26) 

0,1 ,* ,*1
1/ 2 1/ 22i i i

z z z       (27) 

 As a whole, the fluxes 1/ 2Fi  and 1/ 2iF  (estimated by a similar way as 1/ 2Fi ) as well 

as to the modified coefficients provided by (26)-(27) are used to evaluate the local spatial 

operators 
0

i
L  and 

1

i
L  and hence to update the flow variables in each cell during both stages of 

the RK flow updating procedure. It is worth noting that, at each RK stage, the original 

topography coefficients ( 0,1

i
z ) stored at the cell centres are not changed and the adjustments in 

(27) are only locally and temporally generated for the evaluation of the spatial operators 
0

i
L  

and 
1

i
L . 

2.4 Local slope limiting

The controlled slope coefficients (i.e. those with the �hat� symbol) in (9) and (12) represent 

the output slope components provided by the FV minmod slope limiting approach, namely 

[15] 
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1 1 0 0 0 0

1 1
� , ,i i i i i iminmodU U U U U U      (28) 

The minmod function yields a zero slope if the signs of any two of the three input slopes are 

different. Otherwise, 1�
iU  equals the slope with smallest magnitude. If it is uncontrollably 

performed as in an FV scheme (e.g. [34,49]) to limit the slope coefficient at all computational 

cells, (28) is referred to as a �Global Limiter� (GL). Although it is able to alleviate the 

numerical instability that may occur at the vicinity of the solution with steep gradients, a GL 

is reported to have a number of undesirable side effects as discussed in the Introduction. 

Whenever possible, the limiting process should be localized to those necessary zones 

by adding a preliminary step to (28). The preliminary step collects those troubled-slope-

components and specifies where slope-limited solution is necessary. The limiter thus becomes 

a �Local Limiter� (LL). Using an LL, (28) is only applied to those troubled-slope-

components and the untroubled-slope-components are conserved, i.e. 1 1�
i i

U U . In this work, 

the parameter-free discontinuity-detection criterion of Krivodonova et al. [29] is 

implemented to localize the limiting process, i.e. (28) is locally active if the following 

condition is true 

1/ 2 1iDS  or 1/ 2 1iDS      (29) 

where 
1/ 2iDS  and 

1/ 2DS i
 are the discontinuity detectors at the two cell edges ( 1/ 2ix  and 

1/ 2ix ) within cell Ii. An explicit expression of 
1/ 2iDS is given by  

1/ 2 1/ 2

1 1
0 0

1/ 2
,

2 3 3

i i

i i
i i

i
x

max

U U

U U
U U

DS     (30) 

and 
1/ 2DS i

 may be similarly obtained. 

As a result, the numerical solver associated with the LL is referred to as RKDG2-LL 

while the one implemented with the GL is called RKDG2-GL. Both of them will be tested 

and discussed further in Section 4. 
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 Furthermore, it is reported that the slope limiting process (28) may become 

problematic if it is active in the vicinity of a wet/dry front (e.g. [10,17]). For instance, if cell Ii 

admits a wet/dry front at xi+1/2 (i.e. cell Ii+1 is dry), the slope-limiter may (unnecessarily) 

remove the actual local slope at cell Ii (defining the wet/dry front) and replace it by an 

irrelevant, or possibly an indefinite, slope quantity (e.g. for a dam-break wave propagating 

over an initially dry land). It is also important to note that the use of the localized limiting 

process, via (29), is not the best option to secure this problem as (30) may redundantly 

classify a local slope coefficient defining the wet/dry front as a damaged slope. Therefore, in 

the current wetting and drying algorithm, the principal slope ( 1

iU ) is necessarily retained near 

a wet/dry front, i.e. 1 1�
i i

U U , if the cell under consideration is dry or adjacent to a dry cell. By 

noting that the solution to a wet/dry interface does not mathematically involve a shock wave 

formation [48], this measure not only removes the troublesome slope limiting process near a 

wet/dry front, but also maintains the second-order accuracy of the scheme (as will be seen 

later in Section 4). 

2.5 Discretization of the friction source terms

To avoid the possible numerical instability induced by the inclusion of the friction terms [38], 

these terms should not be explicitly discretized in (7) and (8) but implicitly calculated using a 

splitting approach as in the FV schemes [11,12,35]. In an RKDG scheme, the local linear 

approximation to the friction terms may be denoted as , , |
ih h h Ih

q zf fS S . The friction 

effect is then evaluated by implementing the following splitting implicit scheme 

1n

h

d

dt

h
f

U
S      (31) 

Since the friction increment is zero for the continuity equation, only the momentum 

component is actually considered, i.e. 
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1n
h

f h

dq
S

dt
     (32) 

This may be approximated by 

1
1

1

n
n n

n n f n nh h h
f f h h

Sq q
S S q q

t q
  (33) 

which produces the following time stepping formula for qh 

1

n

fn n h
h h n

h

S
q q t

D
      (34) 

and n

hD  is the implicit coefficient given by 

1 2 /
n

n n n

h f h hh
D t C u h      (35) 

This implicit discretization of friction source term automatically ensures 1 0n n

h hq q  

and will not predict a reversed flow. In the current RKDG2 scheme, the above splitting 

implicit scheme (34) is applied to each wet cell to compute the averaged coefficients ( 0

iq ) in 

a pointwise manner. In order to add the friction contribution to the slope coefficients ( 1

iq ), 

one simple way is to perform two pointwise friction updates at the intermediate Gaussian 

points ( 1nqG1  and 1nqG2 ) and then deduce the slope coefficients by the following P
1
-projection 

approximate relationship [15,28] 

1
1 1 13

2

n
n n

i
q q qG1 G2     (36) 

In (36), 1nqG1  and 1nqG2  represent the two friction updates 0 1 / 3
n

n

i iq q qG1,G 2 , which are 

obtained by following (34). 

The above friction calculations are only necessary in those wet cells as no friction 

exists due to zero flow in a dry cell. At the beginning of each RK stage, the implicit friction 
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discretization is performed and the resulting flow updates are used as the initial values for the 

operators in (7) and (8). 

3. Main properties of the current RKDG2 scheme

Theorem 3.1: The RKDG2 scheme, with the Riemann states reconstructed by following 

(13)-(19) and their associated local adjustments obtained from (26)-(27) for the flow 

variables and the topography coefficients, is well-balanced for the still water stationary state. 

Proof: For a general problem of lake at rest defined by constant  at the wet areas and 

0q , after removing the terms with zero velocity in the shallow water equations (1)-(2), 

only the following part of the momentum equation mathematically remains 

2 2
2

xx

g
z g z      (37) 

The momentum flux, which will be evaluated by the HLL Riemann solver, becomes 

2 2
2 x

g
f z      (38) 

For the 0L i  operator, the bed slope source term is numerically approximated as 

1
0 1 0 2
, i

b i i i

z
S z g

x
    (39) 

For the 1L i  operator, the local intermediate fluxes must also be calculated 

2
1 1 1 1 1

0 0 0 0 0, 2
23 3 3 3 3

i i i i i
i i i i i

z zg
f z z   (40) 

and the corresponding contribution of the source term is 

1 1 1
0 1 0 2

,
3 3

i i i
b i i i

z
S z g

x
   (41) 
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Herein 0,1

i
 and 0,1

iz  are the local linear approximations to the free-surface elevation ( h ) and 

the topography ( h
z ) produced by (26) and (27). 

 We first prove that the solution to a still steady flow over irregular topography is 

numerically retained for a cell ( iI ) with wet/wet interfaces at both 1/ 2ix  and 1/ 2ix  (i.e. cells 

1i
I , i

I
 
and 1i

I  are all wet). In this case, the wetting and drying reconstruction following 

(13)-(16) conserves the original free-surface elevation at both interfaces (i.e. ,*

1/ 2 1/ 2i i
 

and ,*

1/ 2 1/ 2i i
) and (26) thus retrieves the local initial free-surface elevation (i.e. 0 0

i i
 

and 1 1

i i
) defined by (4). Moreover, the free-surface elevation is continuous across 1/ 2i

x  

and 1/ 2ix  (i.e. 
1/ 2 1/ 2i i

), owing to the constant (wet) free-surface level. The lake at rest 

hypothesis holds at the approximate level and h  is locally constant, i.e. 0

i  and 1 0i . 

Therefore (26)-(27) yields 0 ,* ,*

1/ 2 1/ 2i i i
. Consequently, 0 ,* ,*

1/ 2 1/ 2i i i
 and 

(38) and (39) write 2 *

1/ 2 1/ 22
2

g

i if z  and 
120 1, iz

b i i x
S z g . The momentum entry 

for 0L i  in (7) is then balanced to zero, i.e. 

1

0 0 11
1/ 2 1/ 2

2* *1
1/ 2 1/ 22

,

( 2 )

0

i

mom

i i i b i ix

zg

i ix x

L f f S z

z z g           

            

   (42) 

Eqs. (40) and (41) condenses to 
1 1 1

0 0 2 0

23 3 3
, 2i i iz zg

i i if z z  and 

1 120 1

3
,i iz

b i i x
S z g , respectively, which compute zero momentum component for the 

1L i  operator in (8), i.e. 
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1 1 1 1

1 1

1 1

1 0 0 0 03
1/ 2 1/ 2 3 3 3 3

0 1 0 13

6 3 3

2 * * 2 0 2 03
1/ 2 1/ 22 2 23 3

, ,

, ,

2 2 2 2

i i i i

i i

i i

mom z z

i i i i i i ix

x
b i i b i i

z zg g g

i i i ix

L f f f z f z

S z S z

z z z z

                    

1 12 2 2 0 2 03 3
6 2 2

2 4 2 4 0i iz z g gx
i ix x x

g g z z

 (43) 

Obviously, the initial quiescent conditions stay unchanged within each RK time stage for the 

wet-bed cases. Hence, the well-balanced solutions are ensured in the wet parts of the domain. 

 For a wet cell i
I  with a partially wet interface, without loss of generality, we assume 

that 1/ 2ix  is wet (wet/wet) while 1/ 2ix  is wet/dry (i.e. cells 1i
I  and i

I  are wet but cell 1i
I  is 

dry). At 1/ 2ix , the present reconstruction process yields ,* ,*

1/ 2 1/ 2i i . At 1/ 2ix , lake at 

rest problem can only exist in the case with the dry ground higher than or equal to the actual 

water level at i
I  (i.e. 1/ 2 1/ 2i iz ). After implementing the non-negative reconstruction of 

Riemann states in (13)-(16) and obtaining ,* *

1/ 2 1/ 2i iz , (17)-(19) are then active to ensure 

that ,* *

1/ 2 1/ 2i iz = . This case is now similar to the aforementioned fully wet case and 

therefore the well-balanced solution is guaranteed. 

 For a dry cell iI , with dry/dry interfaces at both 1/ 2ix  and 1/ 2ix  (i.e. cells 1iI , iI  and 

1iI  are all dry), ,* *

1/ 2 1/ 2i iz  and ,* *

1/ 2 1/ 2i iz , the fluxes from (38) and the source term in 

(39) reduce, respectively, to 
2

*

1/ 2 1/ 22

g

i if z  and 
120 1 0, iz

b i i i x
S z gz , which result in 

zero momentum entry in (7) as follows 

1

* ** *
1/ 2 1 / 21 / 2 1 / 2

0 0 11
1/ 2 1/ 2

2 2 2* * 01
1/ 2 1/ 22

* * * *1
1/ 2 1/ 2 1/ 2 1/ 22 2

,

0

i

i ii i

mom

i i i b i ix

zg

i i ix x

z zz zg

i i i ix x

L f f S z

z z gz

z z z z g            

  (44) 
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The fluxes (40) and source terms (41) become 
1 1 1 2

0 0 0

23 3 3
,i i iz zg

i i if z z  and 

1 1 1
20 1 0

3 3
,i i iz z

b i i i x
S z g z , which also lead to zero operator of (8), i.e. 

1 1 1 1

1 1

1 0 0 0 03
1/ 2 1/ 2 3 3 3 3

0 1 0 13

6 3 3

2 2 2 2 22* * 0 1 13 1
1/ 2 1/ 22 3 3

, ,

, ,

i i i i

i i

mom z z

i i i i i i ix

x
b i i b i i

g g

i i i i ix

L f f f z f z

S z S z

z z g z z z

                    

           

         

* * * *
1/ 2 1 / 2 1 / 2 1 / 2

2 2 2 2
* * 0 13

1/ 2 1/ 22

2 22 2
* *3

1/ 2 1/ 22 2 2

2 2 2
* * *3

1/ 2 1/ 2 1/ 22 2

i i i i

g

i i i ix

z z z zg

i ix

g g

i i ix

z z g z z

z z g

z z z z

            

              
2

*

1/ 2 0i

  (45) 

Hence, the well-balanced solutions are ensured in the dry zones. 

 For a dry cell i
I  with a partially wet interface; for instance, a wet/dry interface 1/ 2ix  

and a dry/dry interface 1/ 2ix . At 1/ 2ix  (13)-(16) reconstruct ,* *

1/ 2 1/ 2i iz .At the dry side of 

1/ 2ix , which should be obstructing the flow from the other side, we should at least have 

,* *

1/ 2 1/ 2i iz . This case can be treated similarly to the fully dry case investigated previously 

and therefore the well-balanced solution is guaranteed at a dry cell that admits a dry/wet 

interface (i.e. adjacent to a motionless wet cell). 

 

Theorem 3.2: The RKDG2 scheme, with the Riemann states reconstructed by following 

(13)-(19) and their associated local adjustments obtained from (26)-(27) for the flow 

variables and topography coefficients, conserves the positivity of the time-evolving average 

water depth. 

Proof From (13)-(15), the following inequality can be easily derived 

,*

1/ 2 1/ 20 i ih h      (46) 
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The local average and slope coefficients of water depth, used in the space discretization 

operators (7) and (8), can be calculated using (26) and (27) together with (16) as: 

0 0 ,* ,*1
1/ 2 1/ 22

1 1 ,* ,*1
1/ 2 1/ 22

i i i i

i i i i

z h h

z h h
    (47) 

It is evident from (46) and (47) that the reconstructed local average coefficient of the water 

height is always non-negative (i.e. 0 0 0i iz ). When calculating the space discretization 

operator 
1

iL  in (8), the water depth at the intermediate Gaussian points must also be available, 

which can be expressed as a linear combination of ,*

1/ 2ih , ,*

1/ 2ih  with positive weights 

3

3
1 0 , i.e. 

0 0 1 1 ,* ,*3 3 31
1/ 2 1/ 23 2 3 3

1 1i i i i i iz z h h   (48) 

Therefore, although the slope coefficient 1 1

i iz  does not own the non-negative property, the 

water depth at the intermediate Gaussian points is positivity-preserving. From (46), (47), (13) 

and (4) it can be also demonstrated that 

0 0 0 00
n

i i i iz z      (49) 

where 0 0
n

i iz  is the water depth at the cell centre of cell Ii at t = n. 

 Based on the above conditions, we can now prove that the present wetting and drying 

approach ensures non-negativity of water depth (i.e. the average coefficient of water depth) at 

an arbitrary cell Ii. In practical simulations, there are two types of wet/dry fronts, i.e. 

advancing wet/dry fronts (assuming u  0) and retreating wet/dry fronts (assuming u  0). We 

only investigate the advancing wet/dry fronts but the retreating wet/dry fronts can be 

investigated by following a similar procedure. An advancing wet/dry front with u  0 may be 

generalized into the following two classes: 
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(a) Cell Ii has a wet/wet interface on the left at xi-1/2 and a wet/dry one on the right at 

xi+1/2, i.e. cells Ii-1, Ii are wet while cell Ii+1 is dry; 

(b) Cell Ii has a wet/dry interface on the left at xi-1/2 and a dry/dry one on its right at xi+1/2, 

i.e. cells Ii-1 is wet while cells Ii and Ii+1 are dry. 

 There are actually two sub-cases in class (a), depending on whether the ground level 

at the dry cell Ii+1 is higher than the actual water level at Ii or not. If the flow is blocked by the 

dry cell, i.e. the dry bed level is higher than the incoming water level, the discharge leaving 

the cell under consideration (Ii) is calculated to be zero by the aforementioned wetting and 

drying technique. Therefore, the water depth at cell Ii will be always predicted to be positive. 

However, the case with the ground level at cell Ii+1 lower than the water level at Ii is not as 

trivial and will be investigated in more details in this section. In this case, the worst scenario 

occurs when cell Ii does not receive mass from cell Ii-1 but loose water to cell Ii+1. We have to 

prove that the mean water height at cell Ii at t = n+1 is non-negative, i.e. 
1

0 0 0
n

i iz , 

provided that 0 0 0
n

i i
z  at t = n. 

 Without losing generality, we consider the discrete update of the mass equation using 

an explicit Euler-forward time stepping, which may be regarded as one of the updating steps 

of the two-stage RK method in (10). The average coefficient of the free-surface elevation is 

forwarded to the next time level as 

1
0 0

1/ 2 1/ 2

n n
mass masst

i i i ix
f f     (50) 

where 
1/ 2

mass

if  are the HLL fluxes computed after applying the wetting and drying algorithm 

(13)-(19). As previously mentioned, we assume 1/ 2 0mass

if  and the flux between cell Ii and cell 

Ii+1 is determined by the HLL Riemann solver as 
,*

1/ 2 1/ 2

mass

i if h u . Therefore, after subtracting 

0

iz  from both sides, (50) may be rewritten as 
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1
0 0 0 0 ,*

1/ 2

n n
t

i i i i ix
z z h u     (51) 

From (47) and (49), the following inequality can be also obtained 

,* 0 0 0 0

1/ 2
2 2

n

i i i i i
h z z     (52) 

Combining (51) and (52), we have 

1
0 0 0 01 2CFL

n n

i i i iz z     (53) 

where CFL t
x

u  denotes the CFL number, which is defined based on the fact that the water 

depth is vanishing near the wet/dry front and so the wave speed is near zero. From (53), it is 

evident that the water depth at the new time step is non-negative if the CFL number is chosen 

to be no greater than 0.5. The condition is satisfied as CFL = 0.3 is used in this work as 

mentioned in Section 2.2. 

 For the case (b), non-negativity of water depth is more trivial to prove as no 

calculation is involved between cell Ii and Ii+1 while Ii is receiving mass from cell Ii-1, i.e. 

1
0 0 0 0 ,*

1/ 2

n n
t

i i i i ix
z z h u     (54) 

Since 0 0 0
n

i iz  and the ,*

1/ 2
t

ix
h u  is also positive, it can be clearly concluded that 

1
0 0

0
n

i iz . 

4. Numerical results and discussions

This section validates the present RKDG2 algorithm and meanwhile assesses the importance 

of the local slope limiting in practical flow simulations. For these purposes, the numerical 

codes are used to simulate several challenging wet or dry-bed test cases involving steady and 

unsteady shallow flows over continuous/discontinuous topographies with/without friction. 
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Fig. 2: Quiescent flow: RKDG2 predicted flow profiles at t = 5000s.

 

 

 
(a) (b) 

 
(c) 

(d)
Fig. 3: Smooth steady flow over irregular topography; flow profiles at t = 5000s: (a) free-surface 

elevation, (b) velocities; (c) RKDG2-LL discharge and (d) RKDG2-GL discharge. 

 

4.1. Quiescent flow test with wet/dry fronts

We consider a quiescent flow test case in a 1500m long frictionless domain with an irregular 

topographic profile that contains non-differentiable points [28]. The domain is first assumed 
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to be partially submerged and closed by solid walls. The initial conditions are (x,0) = max[6, 

z(x)] and q(x,0) = 0, which should be numerically maintained by a well-balanced numerical 

scheme. A uniform grid with 80 cells is used for the simulations and reflective boundary 

conditions are imposed. The RKDG2-LL predictions at t = 5000s are presented in Fig. 2, 

where the free-surface elevation remains unperturbed throughout the simulation and the zero 

discharge is accurately reproduced. Although it is not displayed, the current numerical 

scheme also guarantees mass conservation and the mass error also remains in the range of 

round-off error. In this test the RKDG2-LL and RKDG2-GL give nearly identical results. 

 The test case is slightly modified so that the domain is submerged and a smooth 

steady flow is assumed to have a water level of 11m and a discharge of 4m
2
/s. To allow a 

quantitative comparison between the RKDG2-GL and the RKDG2-LL codes, simulations are 

run with N = 40 cells until t = 5000s when steady-state solutions are obtained. Transmissive 

boundary conditions are imposed with fixed inflow discharge and outflow depth. The 

RKDG2-GL and the RKDG2-LL calculations are illustrated in Fig. 3, compared with the 

exact solutions. Both the RKDG2-GL and RKDG2-LL predictions are observed to follow 

closely the analytical water level (i.e. Fig. 3a) and the velocity (i.e. Fig. 3b)�where the 

RKDG2-LL traces more accurately the local flow zone over the steepest gradients. For the 

discharge only RKDG2-LL gives satisfactory result (i.e. Fig. 3c) and the RKDG2-GL output 

is apparently divergent from the analytical solution at certain locations (see Fig. 3d�also 

notice the difference between the q-axis scales). However, although it is not illustrated here, 

it is important to note that the RKDG2-GL calculation of discharge tends to significantly 

improve with increasing grid refinement (e.g. N  80). While proving the capability of the 

current RKDG2 scheme in handling general steady flow problems, the test also provides an 

insight on the inability of a global limiter in conserving momentum. 
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Fig. 4: RKDG2 solutions to the Riemann problem at different output times (N = 320). Sub-case 1: 

vacuum-type flow. 

 

4.2. Riemann problems over a frictionless flat bed

As in [10], two-type of Riemann problems involving wetting and drying are considered to 

demonstrate the capability of the current RKDG2 codes in maintaining non-negative water 

depth. The first sub-case involves a vacuum-type flow in a 600m long domain defined as [-

200m; 400m]. The initial conditions are provided as in [48] 

20       if 0
( ,0)

10       otherwise

x
h x  and 

0       if 0
( ,0)

60       otherwise

x
u x    (55) 

After it is released at t = 0s, the initial flow develops into two depression waves and produces 

a dry area, or vacuum, in between, which is numerically difficult to reproduce. All of the 

boundary conditions are set to be transmissive. Simulations are carried out on different 

computational grids with N = 20, 40, 80, 160 and 320 cells, respectively, up to t = 4s. The 

snapshots of flow profiles are presented in Fig. 4 (for N = 320) for t = 1, 2, 3 and 4s in the 

reach [-100m; 300m] of the computational domain. The RKDG2-LL predictions (plotted 

using markers) are observed to accurately follow the evolution of the wet/dry process and the 

two depression waves suggested by the analytical solutions. Table 1 and Table 2 list the 

errors and order of convergence evaluated at t = 1s and t = 4s, which confirms the overall 

second-order accuracy of the predictions. Despite the overall accurate predictions obtained by 

RKDG2-LL, apparent numerical oscillations are also detected around the downstream 
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propagating discontinuous kink. Fortunately, these less accurate predictions are essentially 

local and do not propagate with time. Furthermore, their existence is not actually related to 

the proposed wetting and drying algorithm, but links to the fact that Krivodonova et al. [29] 

detector sometimes tends to overlook a weak discontinuity. In contrast, the upstream 

propagating discontinuity kink is much better handled. Also in Fig. 4, the RKDG2-GL 

calculations are plotted using a thin dashed line to reveal the much less accurate results 

produced by the GL when modelling this vacuum-type flow. 

Table 1a: L1
�Error and order of accuracy at t = 1s. Sub-case 1: vacuum-type flow. 

No. of cells (N)  

 h + z (m) q (m2/s) 
L1

�Errors L1
�Rate L1

�Errors L1
�Rate

20 3.9106E-003 -- 4.2281E-003 -- 
40 8.4408E-004 2.212 9.9476E-004 2.087

80 2.8752E-004 1.553 2.6866E-004 1.888

160 5.0896E-005 2.498 5.6545E-005 2.248

320 1.7604E-005 1.5316 1.6520E-005 1.775

 

Table 1b: L �Error and order of accuracy at t = 1s. Sub-case 1: vacuum-type flow. 
No. of cells (N)  

 h + z (m) q (m2/s) 
L �Errors L �Rate L �Errors L �Rate

20 2.5319E-002 -- 1.7463E-002 -- 
40 5.1808E-003 2.289 7.6968E-003 1.182

80 3.2781E-003 0.660 1.6315E-003 2.238

160 6.8847E-004 2.251 9.8002E-004 0.735

320 2.8285E-004 1.283 2.3324E-004 2.071

 

Table 2a: L1
�Error and order of accuracy at t = 4s. Sub-case 1: vacuum-type flow. 

No. of cells (N)  

 h + z (m) q (m2/s) 
L1

�Errors L1
�Rate L1

�Errors L1
�Rate

20 5.9992E-003 -- 9.2080E-003 -- 
40 1.1034E-003 2.442 1.9128E-003 2.2672

80 3.8948E-004 1.502 5.6008E-004 1.7720

160 7.0103E-005 2.474 1.2164E-004 2.2030

320 2.3644E-005 1.568 3.4844E-005 1.8037

 

Table 2b: L �Errors and order of accuracy at t = 4s. Sub-case 1: vacuum-type flow. 
No. of cells (N)  
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 h + z (m) q (m2/s) 
L �Errors L �Rate L �Errors L �Rate

20 1.3397E-002 -- 9.2080E-002 -- 
40 2.8979E-003 2.208 3.9090E-003 1.236

80 1.1412E-003 1.344 9.2667E-004 2.076

160 2.5398E-004 2.167 1.2164E-004 2.929

320 9.6087E-005 1.402 1.0321E-004 0.237

 

Fig. 5: RKDG2 solutions to the Riemann problem at different output times (N = 320). Sub-case 2: 

dam-break flow. 

 

 The second sub-case can be viewed as an idealized dam-break flow in a 200m long 

channel. The dam is initially located at x = 100m and splits the domain into an upstream 

reservoir with h = 20m and q = 0m
2
/s and a downstream dry zone. The dam is removed at t = 

0s to produce a wet/dry front propagating towards the downstream and a depression wave 

moving upstream. Simulation is run on a uniform grid with 320 cells with transmissive 

boundary conditions imposed at both ends. Fig. 5 compares the RKDG2 profiles with the 

exact solutions at t = 1, 2 and 3s. The RKDG2-LL is found to trail correctly the moving 

wet/dry front and provide superior results than the RKDG2-GL. The GL tends to develop 

numerical discrepancies around the wet/dry front and a small amount of artificial viscosity at 

the point of transcritical flow. Furthermore, inaccurate prediction near the wet/dry front 

seems to grow in time and the scheme clearly fails at t = 3s as seen from the zoom-in graph 

for depth profiles and from the discharge plots in Fig. 5. 
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Fig. 6: Oscillatory lake with friction effects: RKDG2-LL flow profiles at t = T / 2 and T. 

 

4.3. Oscillatory lake with friction effects

This is a numerically challenging test as it involves constantly moving wet/dry interfaces and 

non-uniform bed topography. It consists of an oscillatory frictional flow taking place in a 

parabolic bowl [46]. The topography follows 2

0( ) ( / )z x h x a  with 0h  and a  being constants. 

Sampson [43] derived an analytical solution for this case by assuming a friction source term 

that is proportional to the discharge, i.e. Sf = �  q (  is a constant friction factor). The resulting 

analytical solution is provided as follows 

2 2 2
2 2

0 2

0

2

( , ) sin 2 ( 4 )cos 2
8 4

cos sin
2

t t

t

a B e B e
x t h s st s st

g h g

e B
Bs st st x

g

   (56) 

/ 2( , ) sin 2tu x t Be st       (57) 

where B  is a constant and 2

0
8 / 2s gh a . 

 

Table 3a: L1
�Error and order of accuracy at t = T/2: Oscillatory lake with friction effects. 

No. of cells (N)  

 h + z (m) q (m2/s) 
L1

�Errors L1
�Rate L1

�Errors L1
�Rate

20 4.8864E-003 -- 1.7465E-002 -- 
40 1.2299E-003 1.990 6.2412E-003 1.484 
80 3.0233E-004 2.024 1.0300E-003 2.599 
160 7.2931E-005 2.051 2.7507E-004 1.904 
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320 1.7099E-005 2.092 6.5803E-005 2.063 

 

Table 3b: L �Error and order of accuracy at t = T/2: Oscillatory lake with friction effects. 
No. of cells (N)  

 h + z (m) q (m2/s) 
L �Errors L �Rate L �Errors L �Rate

20 4.8055E-003 -- 2.8261E-002 -- 
40 1.2011E-003 2.000 1.0329E-002 1.452 
80 3.0209E-004 1.991 1.2123E-003 3.090 
160 7.3878E-005 2.031 3.1901E-004 1.926 
320 1.7371E-005 2.088 7.1725E-005 2.153 

 

Table 4a: L1
�Error and order of accuracy at t = T: Oscillatory lake with friction effects. 

No. of cells (N)  

 h + z (m) q (m2/s) 
L1

�Errors L1
�Rate L1

�Errors L1
�Rate

20 3.7959E-003 -- 2.4616E-002 -- 

40 9.5017E-004 1.998 7.1438E-003 1.784 
80 2.3856E-004 1.993 1.6605E-003 2.105 
160 5.8005E-005 2.040 3.9117E-004 2.085 
320 1.3592E-005 2.093 9.5121E-005 2.040 

 

Table 4b: L �Error and order of accuracy at t = T: Oscillatory lake with friction effects. 
No. of cells (N)  

 h + z (m) q (m2/s) 
L �Errors L �Rate L �Errors L �Rate

20 4.8012E-003 -- 2.9146E-002 -- 
40 1.2011E-003 2.002 7.4763E-003 1.962 
80 3.0222E-004 1.990 1.8397E-003 2.022 
160 7.3878E-005 2.032 4.6471E-004 1.985 
320 1.7371E-005 2.088 1.1504E-005 2.014 

 

 The computational domain is chosen to be [�7000m; 7000m] and the constants are set 

so that a = 4000m, h0 = 11m, and B = 9m/s. If  = 0, the flow is frictionless and oscillates 

indefinitely in the domain with a period of T = 1711s [46]. By setting  = 0.0015s
-1

, the 

oscillatory flow decays with time until the motionless steady state is reached (i.e. 

0( , )x h  and ( , ) 0q x ). With transmissive boundary conditions, the flow is simulated 

for 18 oscillating periods on a uniform grid of 80 cells. Fig. 6 illustrates the initial flow 

conditions and the RKDG2-LL numerical results at t = T/2 and t = T. The final motionless 

steady state at t = 18T is presented separately in Fig. 7. At all of the output times, the 

numerical predictions agree excellently with the analytical solutions. As seen clearly from 
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Fig. 6 and Fig. 7, the present method ensures better momentum conservation where the time 

evolving discharge profile follows closely the analytical solution. The mass error has also 

been recorded for the entire simulation until t = 18T. Its magnitude maintains at a scale 

equivalent to the machine precision error and so it is not illustrated herein. In this case, 

RKDG2-GL predicts similar results as RKDG2-LL does because the flow does not contain 

solution with sharp gradients. Therefore, the RKDG2-GL predictions are not presented. 

 

Fig. 7: Oscillatory lake with friction effects: RKDG2-LL predicted motionless steady state at t = 

18T. 

 

Table 3 and 4 list the error and order of accuracy computed at t = T/2 and t = T that 

are obtained by running a series of simulations on different grids as in the pervious test. It is 

evident from Table 3 and Table 4 that the present RKDG2-LL scheme is again able to reach 

second-order accuracy for both flow variables. Specifically, this test involves wetting and 

drying as well as non-zero source terms for both topography and friction. This indicates that 

the proposed splitting implicit discretization approach for friction terms and the wetting and 

drying treatment do not affect the overall second-order accuracy of the numerical scheme as 

well as the momentum conservation. 



30 

 

30 

 

Fig. 8: Experimental setup for the frictional dam-break flow over two humps. 

 

4.4. Dam break flow over two frictional humps

The dam-break experimental benchmark provided by Aureli et al. [5] is employed herein to 

further demonstrate the performance of the current RKDG2 models. This test case 

simultaneously includes most of the challenging features that a numerical scheme may 

encounter when coping with a real-world flood simulation, e.g. propagating bores and 

reflection waves, surface curvatures, repeatedly wetting and drying, non-differentiable 

topography, high roughness value and steady-state equilibrium. 

 

Fig. 9: RKDG2-LL predicted flow profiles at different output times for the dam-break flow over two 

humps with friction effects. 

 



31 

 

31 

 

The domain is 7m long and involves two humps (hump A and hump B) as indicated in 

Fig. 8. The dam is built on the top of hump A and hump B is located right before the 

downstream end of domain. Upstream of the dam, the still water level is 0.342m and the 

downstream floodplain is initially dry. A constant Manning coefficient of 0.01 is assumed. 

The upstream boundary is closed while a free outflow is assumed at the downstream end. The 

simulation is first run on a grid with N = 300 cells and for t = 300s after the dam fails. Fig. 9 

provides flow profiles in terms of free-surface elevation and discharge predicted by RKDG2-

LL at t = 0s, 1s, 5s, 10s, and 300s. The wet/dry front and the flood wave interactions with the 

two obstacles are reasonably well-modelled and the expected steady state is nearly reached at 

t = 300s. 

(a) (b) 

(c)
Fig. 10: RKDG2-LL and RKDG2-GL predicted time histories of the water depth at x = 1.4m, 2.25m 

and 4.5m, compared with the experimental data.
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A second simulation is then launched up to 15s and in line with the grid used in [5] 

(i.e. N = 144 cells). Fig. 10 presents the time evolution of water depth at three gauge points 

located at x  = 1.4m, 2.25m and 4.5m and compares the numerical predictions with the 

experimental data. At all of the gauges, the results computed by both RKDG2-LL and 

RKDG2-GL compare reasonably well with the experimental data. However, the RKDG2-GL 

is observed to slightly delay the arrival time of the flood wave. Compared further with the 

alternative finite volume results available in [5], the RKDG2-LL seems to predict arrival 

times closer to the experimental data. 

5. Summary and conclusions

A new well-balanced RKDG2 numerical model has been developed to include wetting and 

drying over irregular topography. An FV non-negative reconstruction technique has been 

used to rebuild the Riemann states for calculating the HLL inter-cell fluxes. New 

amendments have been proposed to regenerate the coefficients defining the local approximate 

linear solution and topography in accordance with the positivity-preserving Riemann states 

for flux and source term calculations. These measures do not impose any additional 

restriction on the time step and are found to essentially maintain the well-balanced property, 

non-negativity of water depth and conservation of mass and momentum in the context of an 

RKDG2 scheme. The friction terms are separately discretized by a splitting implicit 

approach, which also accounts for the RKDG2 local slope coefficients. 

Another focus of this work is to resolve the issue related to slope limiting. For this 

purpose, both global and local slope limiting processes have been implemented in the 

proposed RKDG2 model (RKDG2-GL and RKDG2-LL). Intensive numerical experiments 

have been carried out to reveal the advantages and drawbacks of the limiters. Overall, the 

RKDG2-GL scheme tends to produce less accurate or even misleading numerical solutions 
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for certain test cases, especially those tests involving sharp gradients of flow variables. In 

contrast, the RKDG2-LL scheme delivers more accurate and reliable predictions for most of 

the complicated flow patterns relevant to realistic flood simulations. The RKDG2-LL scheme 

is also observed to better maintain momentum conservation and therefore has better potential 

in practical simulations. 
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