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Spectral Induced Polarization (SIP) phase anomalies in field surveys at contaminated sites have 

previously been shown to correlate with the occurrence of chemically reducing conditions and/or 

semiconductive minerals, but the reasons for this are not fully understood. We report a systematic 

laboratory investigation of the role of the semiconductive mineral magnetite and its interaction with redox�

active versus redox�inactive ions in producing such phase anomalies. The SIP responses of quartz sand 

with 5% magnetite in solutions containing redox�inactive Ca2+, and Ni2+, versus redox�active Fe2+ were 

measured across the pH ranges corresponding to adsorption of these metals to magnetite. With redox 

inactive ions Ca2+ and Ni2+, SIP phase response showed no changes across the pH range 4 to10, 

corresponding to their adsorption, showing ~30 mrad anomalies peaking at ~59 to 74 Hz. These large 

phase anomalies are probably caused by polarization of the magnetite�solution interfaces. With the 

redox�active ion Fe2+, frequency of peak phase response decreased progressively from ~46 to ~3 Hz as 

effluent pH increased from 4 to 7, corresponding to progressive adsorption of Fe2+ to the magnetite 

surface. The latter frequency (3 Hz) corresponds approximately with those of phase anomalies detected 

in field surveys reported elsewhere. We conclude that pH sensitivity arises from redox reactions between 

Fe2+ and magnetite surfaces, with transfer of electrical charge through the bulk mineral, as reported in 

other laboratory investigations. Our results confirm that SIP measurements are sensitive to redox 

reactions involving charge transfers between adsorbed ions and semiconductive minerals. Phase 

anomalies seen in field surveys of groundwater contamination and biostimulation may therefore be 

indicative of iron�reducing conditions, when semiconductive iron minerals such as magnetite are present.�

� �
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Geophysical approaches are proving increasingly useful for monitoring changes in subsurface 

geochemistry. Over recent decades, non�invasive geophysical techniques that can be used from the 

ground surface such as resistivity, (spectral) induced polarization (SIP), electromagnetic and self�potential 

surveys have been developed for locating and characterizing contaminant plumes (Sauk et al., 1998; 

Naudet et al., 2003) and monitoring in�situ remediation schemes (Hubbard et al., 2008; Atekwana and 

Slater, 2009). This is particularly relevant to some nuclear legacy sites such as areas of Hanford 

(Washington), Oak Ridge (Tennessee), and Rifle (Colorado) in the USA and Sellafield in the UK (Hunter, 

2004; Catalano et al., 2006; Kelly et al., 2008; Williams et al., 2009), where invasive surveys may be very 

difficult due to radiotoxicity of contaminant plumes and the possibility of compromising the hydraulic 

integrity of the subsurface. The need for monitoring subsurface geochemistry such as redox conditions at 

contaminated sites has been recognized, because they play a vital role in controlling the mobility of key 

redox�active contaminants such as Cr, U, Tc and As (Finneran et al., 2002; Islam et al., 2004; Burke et 

al., 2005; Hubbard et al., 2008). Thus, remote sensing of redox indicators, such as the presence of Fe(II) 

in groundwater or the formation of sulfide minerals (Ntarlagiannis et al., 2005, 2010a; Personna et al., 

2008), would be a highly valuable complementary approach to conventional sampling and geochemical 

analysis of groundwater. 

An example of non�invasive monitoring of subsurface geochemical redox�state and hence 

contaminant mobility at a radionuclide contaminated site via complex resistivity/induced polarization was 

undertaken at the Rifle site in Colorado, USA. Here, acetate was injected into groundwater to create 

(bio)reducing conditions for uranium immobilization (Williams et al., 2009; Flores Orozco et al., 2011; 

Chen et al., 2012). Flores Orozco et al. (2011) correlated the largest phase anomalies seen at the site 

(~40 mrad) with geochemical conditions where aqueous Fe(II) was present in the pore fluid at locations 

that had previously undergone sulfate reduction. They concluded that these large phase signals arose 

from the interaction of electroactive Fe(II) and semiconductive sulfide minerals (e.g. pyrite, FeS2). Another 

semiconductive mineral phase, detrital magnetite (Fe3O4), has also been reported in the Rifle sediment 

(Campbell et al., 2012). The importance of magnetite in geophysical investigations of contaminated sites 

has been highlighted by recent surveys at the Bemidji site (Minnesota, USA). Here geophysical 

Page 3 of 31 Geophysics Manuscript, Accepted Pending: For Review Not Production



4 

 

anomalies are spatially correlated with the presence of magnetite located in the zone of water table 

fluctuation above a degrading hydrocarbon plume originating from a crude oil spill (Mewafy et al., 2011).  

In this study, we follow�up on the field results outlined in the previous paragraph by performing a 

systematic laboratory investigation of the spectral induced polarization (SIP) responses of dispersed 

semiconductive mineral particles – in this case magnetite – with both redox active (Fe2+) and inactive 

(Ca2+ and Ni2+) ions and pH. The rationale for our study lies in the need to better constrain the 

fundamental mechanisms responsible for the large phase responses associated with dispersed 

semiconductive minerals and the degree of dependence of these responses on the geochemical 

conditions (e.g. pH). It is believed that SIP phase responses for semiconductive particles arise both 

because the particles themselves polarize strongly, owing to high mobility of charges within them, but 

also from redox reactions at semiconductive particle surfaces that allow charge transfer to and from the 

pore fluid (Wong, 1979; Slater et al., 2005; Wu et al., 2005; Slater et al., 2006; Williams et al., 2009; 

Ntarlagiannis et al., 2010a,b). Ambiguity in the interpretation of SIP phase responses arises partly from 

the difficulty in distinguishing between these mechanisms. In this laboratory study, we use chemical 

control on surface electrochemical reactions in order to identify the origin of the SIP responses for 

magnetite in various geochemical conditions. Our study takes advantage of the pH dependence of 

surface redox reactions between Fe2+ and Fe (oxyhydr)oxides such as magnetite to distinguish between 

possible mechanisms. These reactions can only occur where adsorption of Fe2+ allows sufficient proximity 

to the mineral surface. Before outlining the methodology and presenting the results of this study, we 

therefore first review current knowledge of (i) magnetite electron transfer and surface charge, (ii) SIP 

response of (semi)conductive particles. 

 

��	
��������*������	��+���������,��,�������
��������������
��

Magnetite (Fe3O4) is a spinel group mixed ferrous�ferric iron oxide mineral formed in a wide 

variety of environments, from low�temperature near�surface to hydrothermal conditions. It is an n and p 

type small band gap semiconductor at room temperature with the highest electrical conductivity of any 

oxide, of 1 – 10 ��1m�1 (Cornell and Schwertmann, 2003). Mobile charges within the magnetite lattice may 

be either electron or hole polarons situated on lattice sites occupied by Fe atoms, which migrate by 
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electron hopping (Tsuda et al., 2000; Skomurski et al., 2010), or mobile Fe2+ ions hopping between 

unoccupied lattice sites (Gorski et al., 2012). The rapid movement of such charges within the magnetite 

lattice gives rise to its high electrical conductivity (Skomurski et al., 2010; Gorski et al., 2012). 

The magnetite�solution interface is terminated by iron oxide and hydroxyl groups (e.g. 

>FeOH2
+1/2) with pH�dependent charge, and can be represented most simply with a 1�pK protonation 

model (Wesolowski et al., 2000). As pH increases from below the point of zero charge (pzc) for magnetite 

(pH 6.3�7.1; Marmier et al., 1999) to above it, the >FeOH2
+1/2 surface functional groups become 

progressively deprotonated to >FeOH�1/2 and the net surface charge changes from positive to negative. 

The adsorption of metal ions (such as Ca2+, Ni2+ and Fe2+ used in our study) to the surface of magnetite is 

also controlled by pH. At pH ~4 Ca2+, Ni2+ and Fe2+ ions do not adsorb to the mineral surface. With 

increasing pH, metal ion adsorption increases until the limit of surface adsorption is reached. This zone of 

increasing adsorption (‘the adsorption edge’) often occurs over a narrow pH range, with the range varying 

according to the metal ion, solution composition and the mineral substrate. Both Ni2+ and Fe2+ adsorb to 

the surface of magnetite via inner sphere complexes, with increasing adsorption over the pH range 5 to 8 

(Marmier et al., 1999; Vikesland and Valentine, 2002), whereas Ca2+ adsorption to iron (oxyhydr)oxides 

has been modeled via both inner and outer sphere complexation, with the adsorption edge near or above 

the mineral pzc (Rahnemaie et al., 2006). 

Charge transfers from adsorbed redox�active ions such as Fe2+ to semiconductive iron minerals 

have been observed in abiotic laboratory studies. Yanina and Rosso (2008) observed a chemically 

induced electrical potential gradient between different faces of hematite (α�Fe2O3) crystals in solutions 

containing Fe(II). This potential resulted in electron transfer reactions between adsorbed Fe(II) and Fe(III) 

within the hematite structure, inducing current flow through the crystal, involving conversion of adsorbed 

Fe2+ to lattice�bound Fe3+ on the 001 crystal face and corresponding dissolution of hematite to form 

aqueous Fe2+ on the hk0 crystal face, with electron transfer via semiconductive hematite, i.e.,  

Fe2+
(ads)→ Fe3+

(s) + e�,       (1) 

Fe3+
(s) + e�

→ Fe2+
(aq),        (2) 

Near�complete isotopic exchange between 57Fe2+
(aq) and bulk goethite (α�FeOOH) was observed at pH 

7.5 by Handler et al. (2009). They proposed a mechanism of Fe2+
(aq) adsorption, electron transfer through 
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the bulk mineral and simultaneous mineral growth and dissolution on separate crystal faces, similar to 

that proposed by Yanina and Rosso (2008) for hematite. Gorski et al. (2012) used a similar isotopic 

approach to investigate magnetite surface reactions. They confirmed isotopic exchange between 

aqueous Fe2+ and magnetite at ~pH 6.0, which is consistent with surface redox reactions such as (1) and 

(2) above.   

The abovementioned studies indicate that, due to the ubiquitous nature of iron (oxyhydr)oxide 

semiconductors such as magnetite, charge transfers between aqueous Fe2+ and these minerals are likely 

to be common within anaerobic subsurface environments. The documented ability of the SIP technique to 

detect such semiconductive minerals and the potential for SIP to also detect charge transfer reactions at 

these mineral surfaces (Marshall and Madden, 1959; Wong et al, 1979) is therefore of great practical 

significance. SIP responses are briefly reviewed in more detail in the following section. 

 

�,�����*�
������,�*��-���
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������.���/��
����0��,����*���

Spectral Induced Polarization (SIP) measures impedance magnitude and phase response over a 

range of frequencies, typically 0.1 to 1000 Hz. In field surveys, practical considerations such as 

electromagnetic coupling have historically limited the maximum frequency that could be measured to <10 

Hz (Williams et al., 2009), although efforts are currently being made to extend this range to higher 

frequencies through improved instrumentation and methods for removing high�frequency noise (e.g. 

Ingeman�Nielsen and Baumgartner 2006; Ghorbani et al., 2009). SIP impedance magnitude depends 

mainly on the d.c. electrical conductivity, which is in turn dependent on the electrolytic conductivity of the 

fluid in interconnected fluid�filled pores and electrical double layer (EDL), provided that any conductive or 

semiconductive minerals present do not form continuous current pathways. Like traditional IP current�

decay times, SIP phase responses are related to polarization phenomena, i.e. movement of electrical 

charges that are spatially limited, for example due to polarization of interfaces between minerals and pore 

solution (Wong, 1979; Vaudelet et al., 2011). 

SIP phase responses have been attributed to several different types of polarization phenomena 

including those associated with microbial cells and biofilms (Davis et al., 2006), non�conductive minerals 

such as silica (Vaudelet et al., 2011; Zhang et al., 2012), and (semi)conductive particles such as sulfides 
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(Ntarlagiannis et al., 2005, 2010a, 2010b), magnetite and Fe(0) particles (Slater et al., 2005). Microbes 

and biofilms produce relatively small phase responses of typically <2 mrad (Ntarlagiannis and Ferguson, 

2009). Detection of such responses in field surveys is likely to be very difficult. Non�conductive minerals 

also typically produce small SIP phase responses arising from ion migration within the electrical double 

layer (EDL) at the mineral�water interface (typically <<10 mrad at frequencies <1000 Hz; Vaudelet et al., 

2011; Zhang et al., 2012). In contrast, semiconductive minerals dispersed in a matrix of non�conducting 

minerals, including natural authigenic minerals such as magnetite, secondary precipitates and metallic 

particles may give larger phase responses, typically of the order of several tens to hundreds of mrad 

(Slater et al., 2005; Personna et al, 2008; Ntarlagiannis et al., 2010a). These strong polarization 

responses associated with semiconductive minerals have been interpreted in terms of two phenomena: 

(i) polarization of the interface between the semiconductive particle and the pore fluid, facilitated 

by movement of mobile charges within the semiconductive mineral particles, balanced by build�up 

of oppositely charged ions in the pore fluid adjacent to the particle surface and  

(ii) electrochemical redox reactions at the particle surface which allow charge to be transferred 

across these interfaces (for example such as reactions (1) and (2) above).   

Mechanism (i) is supported by the dependence of the peak phase frequency on semiconductive mineral 

particle size, with peak frequency reducing as polarizable particle size increases (Pelton et al., 1978; 

Wong, 1979; Olhoeft, 1985). For mechanism (ii), Wong (1979) modeled the occurrence of electrochemical 

reactions at the interface between semiconductive minerals and the pore fluid, and showed that such 

reactions will reduce the frequency of the peak phase response. 

Recent laboratory investigations of such large SIP phase responses have focused specifically on 

those associated with biostimulation efforts. They found secondary minerals such as sulfide precipitates 

produced phase anomalies of up to 60 mrad associated with both abiotic and microbial precipitation of 

iron and zinc sulfides (Ntarlagiannis et al., 2005, 2010a, 2010b; Williams et al., 2005; Slater et al., 2007; 

Personna et al., 2008). Laboratory experiments on sediments from the biostimulation field site at Rifle, 

CO, agreed with field results suggesting that redox�active ions may play an important role in the observed 

SIP signals (Williams et al., 2009) but highlighted that more controlled experiments were needed 

(Ntarlagiannis et al., 2010b). In this study we therefore sought to clarify the role of pore fluid pH, Fe2+ 
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adsorption and associated surface redox reactions with semiconductive Fe�minerals, such as (1) and (2) 

above, in the generation of SIP phase anomalies. 

 

�1%2(�� 

Two separate experiments were conducted on 5 wt% magnetite � 95 wt% sand mixtures using the 

apparatus illustrated in Figure 1. The aim of experiment A was to compare the SIP response for redox�

inactive Ca2+ with redox�active Fe2+, as pH was adjusted from ~4 where all the metal ions were in solution 

to between 7 and 10, thereby resulting in progressive adsorption of each metal to the surface of 

magnetite (Cornell and Schwertmann, 2003). Experiment B was conducted in a similar fashion on a 

separately packed magnetite�sand mixture using solutions of CaCl2 and NiCl2. The objective of this 

subsequent experiment was to measure the SIP response for a cation (Ni2+) with similar inner�sphere 

adsorption behavior to Fe2+ but which is redox�inactive. The use of CaCl2 in experiment B was to repeat 

the first phase of experiment A on a separately packed but otherwise identical magnetite�sand mixture. 

This allowed the effects of any variations in specimen packing to be identified and distinguished from 

those of fluid chemistry. 

The sample holder used was similar to previously published cells (e.g. Vinegar and Waxman, 

1984; Binley et al., 2005), consisting of a vertically�oriented cylinder (length = 5 cm, diameter = 3 cm), 

with Ag�AgCl ring electrodes for current injection, mounted in fluid�filled end caps above and below the 

sample (Figure 1). Ag�AgCl potential electrodes were mounted in fluid�filled side chambers attached to 

these end�caps, such that the potential electrodes did not protrude into the current pathway. Rubber o�

rings were located between the sample holder and end�packs, and valves were fitted at the influent and 

effluent ports. This allowed for testing of the sample holder to ensure it was air�tight in order to prevent 

sample oxidation during the experiments. As an extra precaution, we used PFA and PVC tubing with low 

gas permeability. Solutions of 2.5 mM redox�active FeCl2 and redox�inactive CaCl2 and NiCl2 were 

prepared using deoxygenated water. These solutions were constantly purged with N2 to keep them 

anaerobic throughout the experiment – ferrous iron analyses (Fe2+ = 2.53 ± 0.08 mM, mean ± 1σ, n=12) 

showed that this was sufficient to maintain reduced conditions. Solutions were constantly recirculated 

upwards through the vertically�oriented sample column, from a 2 L reservoir at 24 mL/min (2 pore 
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volumes/min), as shown in Figure 1. The samples themselves consisted of a mix of 5 wt% magnetite 

(Excalibur Mineral Corp., NY; crushed single crystals sieved to 1�2 mm with a flaky and angular 

morphology) and 95 wt% Ottawa sand (Fisher Scientific; 590–840 Tm, well rounded quartz sand), mixed 

together when dry before being wet packed into the sample holder with regular gentle tapping to ensure 

packing homogeneity. Sample porosity was ~0.35, determined from the weight of mix used, mineral 

specific gravities (2.65 g cm�3 for quartz; 5.15 g cm�3 for magnetite) and sample holder dimensions.   

Spectral induced polarization (SIP) measurements of the impedance magnitude and phase 

response of the sample were made relative to a reference resistor using a National Instruments 4461 

Dynamic Signal Analyzer at 40 logarithmic intervals from 0.1 to 1000 Hz (Ntarlagiannis et al., 2005) and 

corrected for the geometry of the sample holder. Capacitive coupling effects at high frequencies in this 

set�up are associated with both (i) the reference resistor and (ii) the sample holder components of the 

circuit; these were minimized by first performing calibrations with solutions of known conductivity that 

allowed the reference resistor to be set at a value such that (i) and (ii) cancelled out.   

In detail, the sample for experiment A was first packed and saturated with 2.5 mM CaCl2 that had 

been adjusted to pH 4.5 with HCl. After measuring the SIP response as described in the previous 

paragraph, pH was adjusted sequentially up to pH ~10 in the solution reservoir using small volumes of 

NaOH and HCl (1, 10 and 100 mM as needed, to a maximum concentration of 0.6 mM Na+ in the final 

solution). SIP response was measured after each pH increment. The sample was then flushed through 

with >50 pore volumes of 2.5 mM FeCl2 at pH ~4, to thoroughly exchange the pore fluid and allow for 

calcium desorption (pH 4 is below the adsorption edge for Ca2+ adsorption onto iron (oxyhydr)oxides; 

Rahnemaie et al., 2006). The FeCl2 solution was then allowed to recirculate through the sample and the 

influent reservoir (Figure 1), where pH was increased sequentially up to pH ~8 with NaOH and the SIP 

response was measured at each pH increment. Experiment B was subsequently conducted in a similar 

fashion on a separately packed 5 wt% magnetite � 95 wt% sand mixture using solutions of (i) 2.5 mM 

CaCl2 and (ii) 2.5 mM NiCl2. After adjusting the pH in the influent reservoir, the solution was typically 

recirculated for ~100 pore volumes before measuring the SIP response together with the influent and 

effluent pH, fluid conductivity and temperature. In total, 5 � 6 measurements were taken across the pH 

range for CaCl2 and NiCl2 solutions, whereas 13 measurements were taken for the FeCl2 solution as the 
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SIP response showed greater variation. Note that the final 5 FeCl2 measurements for FeCl2 were 

replicates of the pH trend, to test for reproducibility of the phase response – the influent pH was reduced 

down to ~5 before being increased sequentially up to pH ~8. For the FeCl2 experiment, Fe2+ analyses of 

influent and effluent samples were also performed following the spectrophotometric method of Stookey 

(1970). The pH was not adjusted to below 4 or above 10 as this would significantly change the fluid 

conductivity of the solution; maintaining fluid conductivity approximately constant facilitates interpretation 

of SIP phase responses (Slater et al., 2005). Note that the maximum pH in the experiments with Fe2+ and 

Ni2+ was constrained to ~pH 7 to 8 by the solubility of their hydroxides: modeling using the PHREEQC 

geochemical speciation code (Parkhurst, 1995)  indicated that the metal hydroxide would precipitate at 

higher pH. 

Phenomenological models are often used to describe SIP data; we use a single dispersion Cole�

Cole model (Cole and Cole, 1941; Pelton et al., 1978) as outlined below in equation (3), where ρ*(ω) is 

the complex resistivity (Vm) at angular frequency ω, ρ0 is the DC resistivity (Vm), m is the chargeability 

(dimensionless), i is √�1, τ is the mean relaxation time (secs), and c is a shape exponent (dimensionless). 

SIP data are inverted with the Bayesian model of Chen et al. (2008) using Markov�chain Monte Carlo 

sampling methods. 

�∗��� � 	�	 	 
1 �  �1 � 1
1 � �������� 																																																									�3� 

The attraction of this modeling approach is that it can simply capture the frequency�dependence of the 

conduction and charge storage/polarization characteristics. The limitations are that it is inherently non�

mechanistic and that the derived parameters are interdependent. Previous investigators have therefore 

normalized Cole�Cole parameters to account for this interdependence (e.g. mn = m / ρ0; τ n = τ / ρ0) and 

have attempted to systematically relate changes in these parameters with variations in physical and 

chemical properties. For example, Slater et al. (2005, 2006) showed linear relationships between mn and 

polarizable surface area per unit pore volume for magnetite and zero�valent iron particles dispersed in a 

sand matrix. Multiple studies (Pelton et al., 1978; Wong, 1979; Olhoeft, 1985; Slater et al., 2005) have 

also highlighted how relaxation time is controlled by both the polarizable mineral size and the solution 

ionic strength – note that these are two parameters which we have kept invariant in this study. We 

present both basic and normalized Cole�Cole parameters to enable comparison with previous studies.�
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 The spectral induced polarization data from our 5 wt% magnetite in quartz sand experiments are 

shown in Figure 2. The graphs show the data for three different pore fluids: 2.5 mM CaCl2 (Figure 2 a,b), 

2.5 mM NiCl2 (Figure 2c,d) and 2.5 mM FeCl2 (Figure 2e,f) from the two different experiments (A and B) 

conducted on separately packed magnetite�sand mixtures as outlined in the methods section. The three 

graphs on the left hand side (Figure 2a,c,e) show the phase response (mrad) as a function of frequency 

(Hz) and pH, while the three graphs on the right hand side (Figure 2b,d,f) show the measured resistivity 

magnitude (Vm). Note that the resistivity axis has been greatly expanded to highlight the frequency�

dependence; with the exception of one sample (the highest pH sample [pH 9.9] for CaCl2 in experiment A, 

with the greatest NaOH addition), all resistivity magnitude and fluid conductivity measurements show less 

than 4% deviation from the start of each pH manipulation. These small fluid conductivity (and resistivity 

magnitude) changes with pH largely reflect the addition of acid/base. Figure 2a shows that experiment A 

exhibited very little variation in phase response over effluent pH 4.5 � 9.9 with CaCl2 pore fluid, with a 

peak phase of 30.0 ± 0.3 mrad (mean ± 1σ, n=5) at 59�74 Hz. The repeat with CaCl2 pore fluid in 

experiment B (a separate magnetite�sand mix) showed good reproducibility when compared with 

experiment A, with a similar peak phase of 31.9 ± 0.3 mrad (mean ± 1σ, n=6) at 59 Hz (Figure 2a). The 

minor variations in response between specimens A and B with CaCl2 pore fluid are believed to arise from 

slight variations in packing of the sand�magnetite mix. The resistivity response (Figure 2b) was also 

similar for both experiments (CaCl2 (A) = 77.2 ± 1.8 Vm at 0.1 Hz; CaCl2 (B) = 80.5 ± 0.4 Vm at 0.1 Hz), 

with a characteristic decrease of ~7 % from 0.1 Hz to 1000 Hz and steepest gradient (i.e. inflection point) 

at the frequency of the peak phase response. NiCl2 pore fluid experiment gave the same phase response 

as CaCl2 (specimen B, Figure 2c), with a phase peak of 31.7 ± 0.4 mrad (mean ± 1σ, n=6) at 59 Hz over 

pH 4.3 � 7.4; resistivity (Figure 2d) was slightly higher (84.6 ± 0.8 Vm) because the fluid conductivity was 

slightly lower (535 ± 5 µS/cm at 19.7 ± 0.1 ºC) than with CaCl2 pore fluid (567 ± 5 µS/cm at 19.9 ± 0.1 ºC).  

For FeCl2 pore fluid, the frequency of the peak phase was highly dependent on effluent pH, 

decreasing from 46 Hz at pH 4.0, to 16 Hz at pH 5.8 and 2.7 Hz at pH 7.0 (Figure 2e). The peak phase 

magnitude was slightly smaller and also showed more variability than in the CaCl2 and NiCl2 experiments, 
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ranging from 28.4 mrad at pH 4.0, to 24.6 mrad at pH 6.3 and 25.8 mrad at pH 7.0. The resistivity (79.8 ± 

1.1 Vm at 0.1 Hz; Figure 2f) and the fluid conductivity (581 ± 3 µS/cm at 22.1 ± 0.6 ºC) showed only 

minor variations with pH; the inflection point in the frequency dependent resistivity response varied 

systematically with pH, as expected from the variation in phase response. 

Figure 3 shows the frequency of the peak phase versus effluent pH for all pore fluids, highlighting 

minimal variation with pH for CaCl2 and NiCl2 but decreasing peak frequency for FeCl2 as effluent pH 

increases from 4 to 7. Note that peak frequencies of the replicate FeCl2 data points are coincident with 

those from the initial experiment indicating that the change in frequency with pH in this system is 

reproducible. A range of published adsorption curves for Fe2+ on iron (oxyhydr)oxides, including 

magnetite, are also shown for comparison (Vikesland and Valentine, 2002 and references therein). It can 

be seen that in the FeCl2 experiment, the peak phase frequency reduces over a similar pH range to which 

Fe2+ adsorption to iron (oxyhydr)oxide phases occurs. This shows that as the amount of Fe2+ adsorbed to 

the surface of the magnetite increases (pH 4 to 7), the peak phase frequency decreases. However, based 

on the quantity of magnetite relative to the concentration and volume of dissolved Fe2+ used in our 

experiments, the total proportion of adsorbed Fe2+ in our experiments is likely to be small relative to the 

Fe2+
(aq) concentration in solution, indicating that the ionic strength of the solution will remain relatively 

constant throughout. Note that, effluent pH was below that of the influent, most noticeably in the FeCl2 

experiment, especially at circumneutral pH (see horizontal ‘error’ bars in Figure 3). The solutions used in 

this experiment were unbuffered and N2�purged in order to keep data interpretation as simple as possible, 

so any net release of even µM concentrations of protons (e.g. by metal adsorption) will have reduced pH 

(the flow�rate of the experiments was kept high to try and minimize this effect). Despite significant pH 

variations between influent and effluent as shown in Figure 3, it is clear that the change in peak phase 

frequency for the FeCl2 pore fluid occurred over the pH range corresponding to progressive Fe2+ 

adsorption to magnetite. No similar trend was observed for redox�inactive ions Ca2+ and Ni2+ despite the 

fact that the adsorption of these ions to the magnetite surface increases from zero to maximum surface 

coverage over the measured pH range (Marmier et al, 1999; Rahnemaie et al., 2006). 

Cole�Cole modeling shows reasonable fits to the data (Figure 4). Note that modeling was 

performed for the frequency range 0.1 to 94 Hz as this gave the best fits to the position of the phase peak 
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for the FeCl2 data i.e. the measured parameter that varied most significantly in this study. Consequently, 

the greatest deviation between modeled and measured data is seen when extrapolating this fit to 

frequencies >94 Hz (dashed lines, Figure 4). This is the frequency range where instrument errors 

(capacitive coupling) commonly become most significant for the instrument used in this study, despite 

efforts for error minimization (e.g. Binley et al., 2005). Table 1 summarizes the Cole�Cole data – it can 

clearly be seen that (i) the FeCl2 data shows the most variation, and (ii) the time constants τ and τ n are 

the parameters that change the most with pH, showing a 17x increase as (effluent) pH increases from 4 

to 7. A comparison with previous studies highlights that Slater et al (2005) also showed an approximately 

10�20x increase in normalized relaxation time (τ n) when pH was increased from 3 to 10.5 for experiments 

with 5 % zero�valent iron dispersed in a sand matrix, although their experiments were not designed to 

investigate the mechanisms behind this. Furthermore, normalized chargeability values (mn) in our study 

are similar to those reported by Slater et al. (2005, 2006) for low percentage mixtures of magnetite or 

zero�valent iron with sand. Indeed, the 5 % magnetite sample (mean radius = 0.43 mm) of Slater et al. 

(2006) gives a mn value of ~3 mS/m, compared with ~1 mS/m in our study. However, as has been noted 

previously in multiple studies (e.g. Slater et al., 2005; Zhang et al., 2012), Cole�Cole parameters suffer 

from non�uniqueness, may be correlated and their physical significance is unknown. We therefore prefer 

to focus on the measured parameters (resistivity magnitude, phase shift and the frequency of peak phase 

shift) in our following discussion of the data. 

 

���&)���('�

Our results illustrate that SIP measurements are sensitive to the adsorption of the redox�active 

ion Fe2+ on magnetite, but insensitive to the adsorption of redox�inactive ions Ni2+ and Ca2+. We observed 

a strong correlation between peak phase frequency and pH and hence by inference the amount of Fe2+ 

adsorption to magnetite, which increases across the pH range of 5 to 7 (Figure 3). No such correlation 

was observed for redox�inactive species Ca2+ and Ni2+ despite the fact that they also adsorb to the 

magnetite surface over the measured pH range. We note that Ca2+, Ni2+, and Fe2+ will also have 

adsorbed to the surface of silica grains within our samples � however, the phase responses associated 

with silica grains are typically very much smaller than those seen in our study (e.g. Leroy et al., 2008; 
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Zhang et al., 2012), which we thus attribute to the semiconductive magnetite particles. An interpretation of 

our data based on the responses of magnetite particles is illustrated by the conceptual model shown in 

Figure 5. At pH ~4 (Figure 5a) the magnetite surface is positively charged owing to protonation of surface 

iron hydroxyl groups, therefore the electrical double layer (EDL) consists mainly of negatively charged 

ions. Most metals ions Me2+ including Ca2+, Ni2+ or Fe2+, do not interact with the magnetite surface at this 

pH (Langmuir, 1997). The application of electric field E during SIP measurement creates a polarized 

interface at the magnetite surface owing to migration of mobile charges within the magnetite lattice, and 

corresponding build�up of counter�ions in the adjacent pore solution; however, because there is no 

adsorption of redox�active ions, no charge can be transferred across this interface. Note that interface 

polarization will be in opposite directions at opposite ends of the magnetite particle, as shown in Figure 

5a.   

Under the applied electrical field, charge builds up on either side of each interface (ions in the 

pore solution and electronic charges in the magnetite) until electrostatic repulsion between like charge 

carriers prevents further accumulation (Wong, 1979). The characteristic charging (or relaxation) time and 

hence frequency of the peak phase response depends on the ionic strength of the pore solution (Slater et 

al., 2005), with more dilute solutions producing longer characteristic times and hence lower peak 

frequencies; this is because interface charging takes longer when there are fewer ions in the pore 

solution. In our experiments, the large ~30 mrad magnitude polarizations with peak frequencies at ~59 – 

74 Hz are thought to have arisen from this mechanism; these are seen for Ca2+ and Ni2+ ions across the 

pH range tested. Similarly, the ~46 Hz peak response for Fe2+ ions at pH <5 is thought to arisen from this 

mechanism, because at this pH the interaction of Fe2+ with the magnetite surface is likely to be minimal. 

The fact that the peak response frequencies seen for Ca2+ and Ni2+ are insensitive to pH (see Figures 2 

and 3) suggests that the polarization mechanism is insensitive to the surface charge on magnetite, which 

will reverse across the pH range tested. We therefore infer that under an applied electrical field, the 

polarization contribution due to the migration of mobile charges within the magnetite particle itself 

dominates over the contribution from magnetite surface hydroxyl groups. This essentially alters the 

distribution and quantity of charged ions within the EDL to balance the polarized mobile charges in the 

magnetite, rather than the charged surface hydroxyl groups. We propose that this hypothesis could be 
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tested by measuring the SIP response of different iron (oxyhydr)oxide minerals e.g. hematite and 

goethite, as both have similar surface functional groups to magnetite that exhibit similar changes in 

protonation with pH. However, hematite is much more conductive than goethite, so whereas hematite is 

likely to exhibit similar SIP behavior to magnetite, we predict that goethite will have a much smaller phase 

response that predominantly reflects pH�dependent surface charge from iron hydroxyl groups, rather than 

the migration of mobile charges within the mineral itself. This dominant SIP polarization mechanism 

(related to polarization of an EDL defined by pH�dependent surface charge) has previously been 

demonstrated by Skold et al. (2011) for silica. We also note that surface charges might however be more 

important in field SIP measurements, where smaller iron (oxyhydr)oxide mineral particles and smaller 

applied voltage gradients than those used in this study may be present. 

Between pH 5 – 8 the magnetite passes through its pzc (at pH 6.3 – 7.1); the magnetite surface 

has both positively and negatively charged hydroxyl groups and becomes progressively more negative as 

pH increases above the pzc. The adsorption of Ca2+, Ni2+ and Fe2+ to the magnetite surface progressively 

increases across this pH range (Vikesland and Valetine, 2002),. In the case of Fe2+, previous work on iron 

(oxyhydr)oxides including magnetite (Yanina and Rosso, 2008; Handler et al., 2009; Gorski et al., 2012) 

suggests that provided Fe2+ can interact with the mineral surface, charge transfer can occur to the mineral 

lattice (see Figure 5b). We therefore infer that the influence of Fe2+ adsorption on the phase response is 

likely to arise from redox reactions or charge transfer between adsorbed Fe2+ and magnetite (such as 

reactions (1) and (2) described previously); the strong sensitivity of the phase peak frequency to 

increasing pH results from charge transfer via increasing amounts of adsorbed Fe2+ ions. The lack of 

sensitivity to pH for the CaCl2 and NiCl2 experiments arises because there are no corresponding ��������	


�������
 ���
 ��
 ����
 ���
 ����������
Where charge transfer occurs in the Fe2+ case, it must be in 

opposite directions simultaneously on different faces of the magnetite particle in order to maintain 

electroneutrality, with growth and dissolution of  the particle surface (and in opposite directions on either 

side of the particle, Figure 5). It may involve conversion of adsorbed Fe2+ to lattice�bound Fe3+, and 

corresponding dissolution of magnetite to form aqueous Fe2+, with electron transfer via semiconductive 

magnetite. Such a charge transfer mechanism is similar to those observed for hematite in the presence of 

chemically�induced potential gradients, which resulted in simultaneous growth and dissolution on different 
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crystal planes (Yanina and Rosso, 2008). The difference here is that the charge transfer is the result of an 

applied electric field (E) during SIP measurement rather than potential gradients arising from differential 

adsorption of organic molecules (i.e. oxalate used by Yanina and Rosso, 2008) on different crystal faces. 

Notably, the redox inactive ions Ca2+ and Ni2+ will also have progressively adsorbed to the magnetite 

surface as pH increased, but in these cases there is no corresponding influence on the SIP response 

(see Figure 3); this suggests that the sensitivity of phase response arises from the redox reaction of Fe2+ 

with magnetite, rather than simply from its adsorption. The occurrence of redox reactions reduces the 

peak phase frequency (in our experiments to around ~3 Hz at pH ~7); this is consistent with the modeling 

results of Wong (1979) which show the occurrence of redox reactions at semiconductive mineral surfaces 

will reduce peak phase frequency, because interfacial charging takes longer where there is leakage of 

charge across the interface. 

 It is appropriate to consider the potential implications for interpretation for field scale SIP 

responses seen at contaminated sites (Williams et al., 2009; Flores Orozco et al., 2011). A key recent 

result (Flores Orozco et al., 2011) is that the largest phase anomalies seen at the Rifle site (~40 mrad at 

around ~1 Hz) are seen only where Fe2+ is present in the pore fluid in locations that have previously 

undergone sulfate reduction. Our findings are consistent with their interpretation that this response arises 

from the interaction between Fe2+ and semiconductive minerals present. According to our experimental 

results, such an interaction is more likely to produce SIP phase responses at the low frequencies (<10 

Hz) that were measured in their field surveys. Note that improvements in instrumentation and data 

processing offer the potential to measure field responses at higher frequencies, so it may now be possible 

to monitor changes in both phase magnitude and frequency associated with any changes in pH or Fe2+ 

concentration that may occur at a field site containing semiconductive minerals, such as magnetite. 

Similarly, our results suggest that (S)IP could be used in combination with magnetic susceptibility 

(Mewafy et al., 2011) to not only prospect for ore minerals and geoarchaeological deposits (e.g. 

Oldenburg et al., 1997; Florsch et al., 2011) but also to locate subsurface geochemical zones containing 

both magnetite and pore�water Fe2+, although further work is required to confirm this hypothesis. Further 

work is also required to confirm whether semiconductive sulfide minerals (rather than magnetite) and 

other redox�active species can interact to produce similar responses; also whether biogeochemically�
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produced nanoparticulate mineral aggregates behave similarly to the highly�crystalline magnetite particles 

tested here. Modeling simulations of the interaction of the EM field with the magnetite�solution interface, 

are also desirable in order to confirm that the magnitude and direction of peak frequency changes are 

consistent with the redox�reaction mechanism proposed, and to investigate how the responses seen in 

the lab may scale�up to typical field geometries and applied voltages. 

�

&('&3)��('��

We report a laboratory investigation into the role of redox�active versus redox�inactive ions in 

generating Spectral Induced Polarization phase anomalies associated with a semiconductive iron mineral 

(magnetite). This study combines controlled geochemical laboratory experiments with SIP measurements 

to gain a fundamental understanding of the redox reactions at the mineral/solution interface which control 

SIP responses, and therefore represents a significant step forward.  As has previously been suggested 

on the basis of field and laboratory studies, our results strongly suggest that interaction between 

semiconductive minerals such as magnetite and redox�active ions such as Fe2+ play a key role in 

generating such responses; furthermore we identify the key role of pH in controlling such responses. 

Using mixtures of quartz sand and 5% magnetite, phase anomalies of ~30 mrad peaking at ~59 – 74 Hz 

were insensitive to pH in the presence of redox�inactive Ca2+ and Ni2+ ions. As these ions are 

progressively adsorbed to magnetite as pH increases, we infer that their adsorption does not significantly 

alter the phase response. In contrast, for Fe2+ pore fluid, the frequency of the peak response decreased 

progressively from ~46 to ~3 Hz as pH was increased from 4 to 7, which we infer corresponds to 

progressive adsorption of Fe2+ to the mineral surface. We suggest from the difference in pH sensitivity 

here, compared with redox�inactive Ca2+ and Ni2+ ions, that these changes in response frequency are 

diagnostic of progressively increasing charge transfer between adsorbed Fe2+ and magnetite as 

adsorption increases; such charge transfers have been confirmed in several previous studies of the 

surface chemistry of iron (oxyhydr)oxide minerals. We note that the ~3 Hz peak response measured here 

for the case of redox�reaction with adsorbed Fe2+  is similar to low frequency responses detected in 

recent field surveys where Fe�reducing conditions were present. It thus seems likely that the SIP phase 

anomalies detected in field surveys of chemically�reducing groundwater are associated with the presence 
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of Fe2+ or other redox�active ions at pH conditions allowing adsorption to semiconductive minerals such 

as magnetite or sulfides, i.e. the anomalies are suggestive of biogeochemically�induced Fe�reducing 

subsurface conditions.  
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�	����!��Schematic of laboratory apparatus (not to scale)  

�

�	������  Spectral induced polarization data from 5 % magnetite in quartz sand experiments. a), b) 

phase and resistivity magnitude respectively for CaCl2 pore fluid in experiments A and B; c), d) NiCl2 and 

CaCl2 in experiment B; e), f) CaCl2 and FeCl2 in experiment A.   

�

�	����"� Peak phase frequency versus pH for all experiments (left axis); Fe2+ adsorption (right axis; 

Vikesland and Valentine (2002) and references therein). CaCl2 data shown for experiments (A) and (B). 

Symbols represent effluent pH; error bars represent difference between influent and effluent pH. Note 

adsorption will vary with available surface area, solution chemistry and mineral purity; shaded area shows 

range published for Fe (oxyhydr)oxides, including magnetite (dashed line).  

 

�	����7� Example Cole�Cole model fits for FeCl2 data, Solid symbols are phase data, open symbols are 

resistivity magnitude. Solid lines are model fits to the data for 0.1�94 Hz, dashed lines are extrapolations 

of these fits to 1000 Hz. Note that the Cole�Cole parameters for these fits are given in Table 1.   

�

�	����;�  Conceptual model of magnetite response in SIP experiments: a) pH~4, Me2+ represents Ca2+, 

Ni2+ or Fe2+, magnetite surface is positively charged >FeOH2
+1/2  b) pH 5 � 8, magnetite surface has 

increasing amount of  >FeOH�1/2  functional groups and progressive Fe2+ adsorption; charge transfer 

reactions (1) and (2) with charge transport through magnetite shown schematically, see text for details. 

Note that EDL thickness is vastly exaggerated, and magnetite particles shown as spheres, for illustration 

purposes; E represents applied electrical field that induces charge excess and deficit in magnetite lattice 

shown by � and + symbols. Adapted from Slater et al. (2005). 

 

%��*��!� Summary of the Cole�Cole parameters from the modeled fits to the SIP spectra for the different 

pore fluids from experiments A and B: ρ0 is the DC resistivity, m is the chargeability (dimensionless), τ is 

the mean relaxation time, c is a shape exponent (dimensionless), mn is the chargeability normalized to ρ0, 
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and τ	n is the mean relaxation time normalized to ρ0. The two specific pH fits for FeCl2 correspond to the 

examples shown in Figure 4. 

Page 25 of 31 Geophysics Manuscript, Accepted Pending: For Review Not Production



 

 ρ0 (�m) m x 10
	3

 τ (msecs) c 
mn x 10

	3
 

(S/m) 
τn (secs 

S/m x 10
	6

) 

CaCl2 (A) 74.6	79.6 95.9	98.3 1.94	2.14 0.690	0.707 1.25	1.29 24.4	27.7 

CaCl2 (B) 80.4	81.3 99.8	103 2.26	2.45 0.695	0.703 1.23	1.27 26.7	30.4 

NiCl2 83.4	85.5 97.2	101 2.26	2.56 0.700	0.713 1.15	1.19 26.5	30.7 

FeCl2 77.7	81.9 82.7	97.9 3.05	51.9 0.578	0.729 1.03	1.21 37.9	634 

FeCl2 (pH 4.7) 81.6 90.5 3.72 0.670 1.11 45.6 

FeCl2 (pH 6.3) 81.4 94.0 20.0 0.589 1.16 246 
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