
This is a repository copy of Investment strategies and compensation of a mean-variance 
optimizing fund manager.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79157/

Version: Accepted Version

Article:

Aivaliotis, G and Palczewski, J (2014) Investment strategies and compensation of a 
mean-variance optimizing fund manager. European Journal of Operational Research, 234 
(2). 561 - 570. ISSN 0377-2217 

https://doi.org/10.1016/j.ejor.2013.04.038

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Investment strategies and compensation of a mean-varianceoptimizing fund
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Georgios Aivaliotis
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Abstract

This paper introduces a general continuous-time mathematical framework for solution of dynamic
mean-variance control problems. We obtain theoretical results for two classes of functionals: the
first one depends on the whole trajectory of the controlled process and the second one is based on its
terminal-time value. These results enable the developmentof numerical methods for mean-variance
problems for a pre-determined risk-aversion coefficient. We apply them to study optimal trading
strategies pursued by fund managers in response to various types of compensation schemes. In partic-
ular, we examine the effects of continuous monitoring and scheme’s symmetry on trading behaviour
and fund performance.

Keywords: mean-variance, continuous-time stochastic control, viscosity solutions, investment
strategy, managerial compensation

1. Introduction

Markowitz’s seminal paper [32] introduced the mean-variance criterion into portfolio optimiza-

tion. Single-period problems, which are mathematically tractable, have enjoyed popularity both in the

academia to model investor preferences and behavior (see, e.g., Epstein [17], Ormiston and Schlee

[33], Tobin [38]) and among practitioners (see, e.g., Bodieet al. [13], Litterman [31]). An extension

of this theory to continuous-time models proved to be difficult due to fundamental problems intro-

duced by the variance term. A natural approach to continuous-time optimization is to use dynamic

programming, which relies on markovianity of functionals.The variance is, however, not markovian.

There are three main alternatives. The first involves the study of risk-sensitive functionals (see, e.g.,
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Bielecki et al. [11]), whose second order Taylor expansion has the form of a mean-variance functional

E(H) − γ
2

Var(H), (1)

whereH is a random outcome of the investment andγ is the risk-aversion coefficient. The second

alternative to dynamic programming hinges on the use of martingale methods (see, e.g., Bielecki et

al. [10]). Although these methods can be used to obtain closed-form solutions for a class of mean-

variance problems, they turned out to be unsuitable as a basis for efficient numerical algorithms for

general mean-variance problems.

A substantial progress in the theory for mean-variance functionals was due to a third approach,

closely related to the one we employ in this paper. This approach, introduced by Li and Ng [29] in

a discrete-time setting, embeds the mean-variance probleminto a class of auxiliary stochastic control

problems that can be solved by dynamic programming methods (see also Leippold et al. [28]). An

extension of this method to a continuous-time framework is presented in Zhou and Li [41], and further

employed by Fu et al. [19] and Lim [30]. These papers put several constraints on the optimization

problem in order to obtain auxiliary control problems in a linear-quadratic form. In particular, the

random variableH in the mean-variance functional (1) is assumed to be a linearfunction of the port-

folio wealth process. Wang and Forsyth [40] design numerical schemes for auxiliary linear-quadratic

problems formulated in [41] and construct an efficient frontier.

In this paper we present a mathematical framework for the solution of general mean-variance

stochastic control problems in continuous time. This framework extends the continuous-time theory

of Zhou and Li [41] in two aspects. First, we allow the random variable H in the mean-variance

functional (1) to be specified either as a continuous function of the portfolio wealth at a terminal

time (in general, the value of the controlled process) or as an integral of a continuous function of the

portfolio wealth (in general, the value of the controlled process) over time. A particular case when

H depends linearly on the portfolio wealth at terminal time iscovered theoretically in Zhou and Li

[41] and numerically in Wang and Forsyth [40]. Second, we relax assumptions on the dynamics of

the controlled process to cover non-homogeneous degenerate diffusions with Lipschitz coefficients of

linear growth.

To the best of our knowledge, mean-variance optimization problems based on the integral of a

function of the value of the controlled process over time have not been widely studied. A closely re-

lated paper by Aivaliotis and Veretennikov [4] provides theoretical approximation results via regular-

ization; their solution leads to randomized strategies. Inour paper, the optimization problem is solved
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directly using the theory of viscosity solutions to Hamilton-Jacobi-Bellman equations (see Fleming

and Soner [18], Pham [36]). In particular, our results enable computation of (non-randomized) op-

timal strategies in a feedback form. The justification of their optimality – the verification theorem –

requires very restrictive assumptions (for the latest results see Gozzi et al. [22]) that our control prob-

lem does not satisfy. We, therefore, resort to numerically testing the optimality of strategies extracted

from numerical solutions of the HJB equations.

Our theoretical results are used to develop numerical algorithms to maximize functional (1) for

a given (pre-determined) risk-aversion coefficientγ. Wang and Forsyth [40] solve auxiliary marko-

vian optimisation problems which are parametrised neitherby risk-aversion nor by the expectation of

terminal value. Once the optimal strategy is known, they cancompute the risk-aversion, the expec-

tation and the variance. This proves to be sufficient if one aims at graphing an efficient frontier. Our

approach is different as we endeavour to find an optimal strategy for a pre-determined risk-aversion

coefficient. We reformulate the mean-variance problem as a superposition of a static and a dynamic

optimization problem, which is equivalent to solving a set of parametrized HJB equations and maxi-

mizing the resulting value functions over a compact interval valued parameter. We demonstrate that,

for practical applications, our approach leads to an efficient numerical algorithm.

Recently, Basak and Chabakauri [8] and [9] proposed anotherview on mean-variance optimi-

sation. They introduced a notion of optimality in an intra-personal game theoretic sense. This has

the advantage of turning the optimisation problem markovian. It should, however, be noticed that

strategies optimal in a game-theoretic sense might not be optimal in a classical sense; and vice versa.

Theoretical results of this paper are applied to a study of a delegated portfolio management prob-

lem. It is a common practice in the asset management industryto use mean-variance preferences for

choosing portfolios (see Bodie et al. [13] and Littermann [31]). We assume that fund managers apply

the same type of preferences to their compensation and tend to follow trading strategies that maximize

their satisfaction from compensation. The mathematical framework introduced in this paper allows

us to study trading strategies pursued by fund managers in response to various types of compensation

(incentive) schemes. We also analyze implications of complex schemes on distributional properties of

the fund’s wealth process. We consider symmetric (e.g., co-ownership) and asymmetric (with a hurdle

rate provision) schemes based on the terminal wealth and on the continuously monitored wealth.

Incentives have been proven to be a significant factor influencing the behavior and performance

of fund managers. Agarwal et al. [2] examine, in an empiricalstudy, the influence of incentives and
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managerial discretion on the performance of hedge funds. They find that managers with performance-

related incentives – the inclusion of hurdle rate provisions, or co-ownership – are associated with a

better performance. We study numerically the implicationsof the above incentives on trading deci-

sions of fund managers. Managers with symmetric (co-ownership) compensation schemes show a

superior performance over those remunerated by schemes with hurdle-rate provisions: the resulting

Sharpe ratio of the terminal wealth is higher.

Incentives also influence the riskiness of trading strategies pursued by fund managers. Elton et

al. [16] find that managers with asymmetric incentive contracts tend to follow riskier strategies than

those with symmetric compensation schemes.1 In particular, they observe that asymmetric schemes

encourage large variations in the riskiness of portfolios over time: a poor performance at any time

triggers a sharp increase in the risk taking. Our numerical results show that such behavior is optimal

for a fund manager with mean-variance preferences.

Our numerical study contributes also to the discussion about the frequency of portfolio monitoring

(see, e.g., Agarwal et al. [2] and Goetzmann et al. [21]). We analyze trading strategies and portfolio

performance when the manager’s compensation is based on herperformance sampled continuously

over the whole investment period. We observe a fall in Sharperatios for symmetric and asymmetric

schemes. This agrees with the empirical findings of Agarwal et al. [2]. A continuous examination of

the fund’s wealth diminishes managerial discretion, which, according to [2], impacts on the fund per-

formace. One would, however, expect that the closer scrutiny offered by such compensation schemes

lowers the riskiness of investment decisions. We demonstrate that the opposite is true: the variance of

excess returns increases.

A classical but more challenging problem is the design of compensation schemes that align pref-

erences of an investor and a fund manager. Existing literature offers results in the case of preferences

represented by utility functions (see, e.g., Carpenter [14] and Ou-Yang [34]). Mean-variance optimal-

ity criterion has only been used in a static (single-period)framework (Baptista [6] and Carlier et al.

[15]).

The outline of the remaining part of the paper is as follows. Section 2 introduces a general math-

ematical framework for the solution of mean-variance stochastic control problems and prepares the

ground for design of efficient numerical schemes. The problem of managerial compensation in a

1The fixed fee in the paper by Elton et al. [16] can be represented in our framework as a symmetric compensation
contract.
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continuous-time market model alongside with various typesof compensation schemes and discussion

of numerical methods used for computation of optimal investment strategies is presented in Section

3. Analysis of the trading strategies is performed in Section 4. Section 5 concludes. In the Elec-

tronic Supplement, Section A introduces numerical schemesand verifies their convergence, Section

B collects proofs.

2. Theoretical framework and results

In this section we present a general framework for the solution of mean-variance dynamic opti-

mization problems. Subsection 2.1 studies functionals depending on the value of controlled process at

the terminal time. In Subsection 2.2, these ideas are extended to functionals based on the whole trajec-

tory of the controlled process. Our exposition is geared towards numerical computations, necessary

for practical applications.

The state is described by ad-dimensional non-homogeneous stochastic differential equation (SDE)

driven by ad1-dimensional Wiener process (Wt)

dXt = b(αt, t, Xt) dt + σ(αt, t, Xt) dWt, Xt0 = x, (2)

whereb : A × [0,∞) × Rd → R
d andσ : A × [0,∞) × Rd → R

d×d1. The process (αt, t0 ≤ t ≤ T ) is

from the classA of all progressively measurable processes (with respect tothe filtration generated by

the Wiener process (Wt)) with values in a compact setA ⊂ R
ℓ. Its role is to control the dynamics of

the diffusion (Xt). Equation (2) has a pathwise unique (weak) solution if the following conditions are

satisfied (see, e.g., Gikhman and Skorokhod [20, Section 6.7] or Fleming and Soner [18, Appendix

D]):2

(A0) The functionsσ, b are Borel with respect to (a, t, x) and continuous with respect to (a, x) for

everyt; moreover, there exists a constantK such that

‖σ(a, t1, x) − σ(a, t2, z)‖ ≤ K (‖x − z‖ + |t1 − t2|)

‖b(a, t1, x) − b(a, t2, z)‖ ≤ K (‖x − z‖ + |t1 − t2|)
(Lipschitz condition)

and
‖b(a, t, x)‖ ≤ K

(

1+ ‖x‖
)

‖σ(a, t, x)‖ ≤ K
(

1+ ‖x‖
)

(linear growth condition)

2These conditions are superficial for the uniqueness of solutions. We will, however, need them later in the study of the
value function of the mean-variance optimization problem.
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The solution (Xt) depends on the initial conditionx, time t0, and the control (αt); to simplify

notation we indicate this dependence in the expectationEα
t0,x and the varianceVarαt0,x. When this is

not sufficient we shall writeXα,t0,x
t .

2.1. Mean-variance optimization for terminal-time functionals

Consider a (Markowitz-type)mean-variance control problem

u(t0, x) := sup
α∈A

{

Eα
t0,xh(XT ) − θVarαt0,xh(XT )

}

, (3)

whereh : Rd → R is a continuous function satisfying a polynomial growth condition:

|h(x)| ≤ K1(1+ ‖x‖m)

for some constantsK1 > 0 andm ≥ 1.

A major obstacle in solving this type of control problems is the non-markovianity. The value func-

tion u does not satisfy the Bellman principle as a strategy that is optimal for somet0 does not have

to be optimal for investment starting att > t0 (this property is also called time-inconsistency). We

show that the optimization problem (3) can be represented asa superposition of a dynamic markovian

control problem and a static optimization problem. Our approach has the advantage of leading to nu-

merical methods solving the original Markowitz problem fora pre-determined risk aversion parameter

θ. Related literature focuses mostly on graphing of an efficient frontier.

Using a dual representationx2
= supψ∈R{−ψ2 − 2ψx} (as in Aivaliotis and Veretennikov [4]), we

rewrite the variance term:

Varαt0,xh(XT ) = Eα
t0,x(h(XT ))2 −

(

Eα
t0,xh(XT )

)2
= Eα

t0,x(h(XT ))2 − sup
ψ∈R

{

− ψ2 − 2ψEα
t0,xh(XT )

}

.

Inserting this into (3) yields the following representation of the value function:

u(t0, x) = sup
ψ∈R

{

U(t0, x, ψ) − θψ2}, (4)

where, for a fixedψ ∈ R, U(t0, x, ψ) is the value function of a markovian control problem

U(t0, x, ψ) = sup
α∈A

Eα
t0,x

{

(1− 2θψ)h(XT ) − θ
(

h(XT )
)2
}

.

Notice that ifψ∗ is the maximizer in (4) andα∗ is an optimal strategy forU(t0, x, ψ∗), thenψ∗ =

−Eα∗
t0,x {h(XT )}. This follows from the fact that in the dual representation of the square function,x2

=

supψ{−ψ2 − 2ψx}, the supremum is attained forψ = −x.
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The following theorem provides a representation of the value functionU as a viscosity solution

to an appropriate Hamilton-Jacobi-Bellman (HJB) equation.3 The proofs of this and the following

theorems are in Section B of the Electronic Supplement. Recall that h is assumed to be continuous

and of polynomial growth; these conditions will not be reiterated in the coming theorems.

THEOREM 2.1. Under assumption (A0) for every ψ ∈ R the value function U is the unique contin-

uous polynomially growing viscosity solution to the HJB equation


















Ut0 + supa∈A

{

b(a, t0, x)T Ux +
1
2tr

(

σσT (a, t0, x)Uxx
)

}

= 0,

U(T, x, ψ) = (1− 2θψ)h(x) − θ
(

h(x)
)2
,

(5)

where Ut0 denotes the partial derivative with respect to time t0, Ux is a gradient vector arising in the

differentiation with respect to the state x, and Uxx is a matrix of the second derivatives.

The value functionu is related toU via the formula (4). This is not a simple quadratic relation with

respect toψ, since the functionU depends onψ in a non-linear way (due to the supremum operator).

The following theorem explores the dependence ofU onψ.

THEOREM 2.2.

i) The function U is convex and continuous in ψ.

ii) The value function u is given by

u(t0, x) = sup
ψmin≤ψ≤ψmax

{

U(t0, x, ψ) − θψ2},

where

ψmin = − sup
α∈A

Eα
t0,xh(XT ) and ψmax = − inf

α∈A
Eα

t0,xh(XT ). (6)

The above theorem shows that the supremum in (4) can be computed over a compact interval

[ψmin, ψmax]. This, together with the continuity ofU with respect toψ, ensures that the optimalψ

exists. In applications to managerial compensation discussed in this paper, this interval is very small

and the optimalψ can be found efficiently (see Subsection 3.3).

The function under supremum in (4) is a difference of two convex functions. Although the numer-

ical maximization of such functions is not as fast as the maximization of concave functions, one has

at one’s disposal advanced numerical techniques, see, e.g., Horst and Hoang [23, Chapter 10].

3Cf. Fleming and Soner [18], Pham [36] and Aivaliotis and Palczewski [3] for the exposition of the theory of viscosity
solutions to Hamilton-Jacobi-Bellman equations and theirrelation to value functions of optimal stochastic control problems.
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Let us summarize the findings of this section. The mean-variance problem (3) can be solved using

a family of auxiliary HJB equations (5). Formula (4) provides the relation between the value function

U, being the unique viscosity solution to the equation (5), and the value functionu. For a given (t0, x)

the algorithm of finding the value ofu is as follows:

Step 1 Compute the functiong(ψ) = U(t0, x, ψ) − θψ2 for ψmin ≤ ψ ≤ ψmax.

Step 2 Find the maximum ofg on the interval [ψmin, ψmax]. Sinceg is continuous there isψ∗ for

which the maximum is attained.

An optimal strategy forU(t0, x, ψ∗) is also optimal for the original mean-variance problemu(t0, x).

The value functionU is characterized as a viscosity solution to an HJB equation;it might not be a

classical solution due to a possible degeneracy of the controlled diffusion (Xt). The computation of an

optimal strategy from a viscosity solution to the HJB equation – the verification theorem – requires

very restrictive assumptions; the latest results can be found in Gozzi et al. [22]. These assumptions

are not satisfied by our managerial compensation example based on the Black-Scholes model. We,

therefore, propose to rely on a numerical verification of optimality of a strategy extracted from the

HJB equation.

2.2. Mean-Variance Optimization for Integral Functionals

In this subsection we extend the above theory to mean-variance functionals with an integral term:

v(t0, x) := sup
α∈A

{

Eα
t0,x

(∫ T

t0
f (αs, s, Xs) ds

)

− θ Varαt0,x

(∫ T

t0
f (αs, s, Xs) ds

)}

. (7)

Proceeding as in the previous subsection we reformulate thevariance term and obtain

v(t0, x) = sup
ψ

{

V(t0, x, ψ) − θψ2}, (8)

where

V(t0, x, ψ) = sup
α∈A

Eα
t0,x

{

(1− 2θψ)
∫ T

t0
f (αs, s, Xs) ds − θ

(

∫ T

t0
f (αs, s, Xs) ds

)2
}

.

The auxiliary optimization problem forV is still not markovian due to the term involving the square

of an integral. Following Aivaliotis and Veretennikov [4] we propose an approach to reformulate this

quadratic term. Fubini’s theorem implies

Eα
t0,x

(

(

∫ T

t0
f (αs, s, Xs) ds

) (

∫ T

t0
f (αt, t, Xt) dt

)

)

= 2Eα
t0,x

(

∫ T

t0
f (αt, t, Xt)

(

∫ t

t0
f (αs, s, Xs) ds

)

dt
)

.
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Define a new state process (Xt, Yt) by the following stochastic differential equation

dXt = b(αt, t, Xt) dt + σ(αt, t, Xt) dWt,

dYt = f (αt, t, Xt) dt.
(9)

If we assume a polynomial growth off , then under (A0) this equation has a pathwise unique (weak)

solution for any initial value (t0, x0, y0) ∈ [0, T ] × R
d × R (see, as before, Gikhman and Skorokhod

[20, Section 6.7] or Fleming and Soner [18, Appendix D]). Using this extended state process we have

V(t0, x, ψ) = V̂(t0, x, 0, ψ), where

V̂(t0, x, y, ψ) = sup
α∈A

Eα
t0,x,y

{

(1− 2θψ)
∫ T

t0
f (αt, t, Xt) dt − 2θ

∫ T

t0
f (αt, t, Xt)Yt dt

}

= sup
α∈A

Eα
t0,x,y

{

∫ T

t0
f (αt, t, Xt)[1 − 2θψ − 2θYt] dt

}

.

The functional definingV̂ is of markovian type. Since the functionf steers the dynamics of the

extended state process, we impose on it analogous assumptions as onb andσ:

(A1) The function f is Borel with respect to (a, t, x) and continuous with respect to (a, x); moreover,

there exists a constantK2 such that

| f (a, t1, x) − f (a, t2, z)| ≤ K2 (‖x − z‖ + |t1 − t2|) ,

| f (a, t, x)| ≤ K2
(

1+ ‖x‖
)

.

The following theorem states the HJB equation for the value functionV̂. This result is used in the

design of a numerical scheme approximatingV̂.

THEOREM 2.3. Under assumptions (A0)-(A1), for every ψ ∈ R the value function V̂(·, ψ) is the

unique continuous polynomially growing viscosity solution to the following HJB equation:






























V̂t0(t0, x, y, ψ)

+ supa∈A

{

b(a, t0, x)T V̂x +
1
2tr

(

σσT (a, t0, x)V̂xx
)

+ (1− 2θψ − 2θy + V̂y) f (a, t0, x)
}

= 0,

V̂(T, x, y, ψ) = 0.

(10)

Note that even if we had assumed uniform non-degeneracy of the process (Xt) (which we did not

do), equation (10) would be degenerate asYt is degenerate. Standard methods are, therefore, insuffi-

cient to prove existence and uniqueness of classical or weaksolutions. In Aivaliotis and Veretennikov

[4], this obstacle is overcome by a regularization of the processYt; an independent diffusion part is

added with a small constant diffusion coefficient. Subsequently, it is shown that the regularized value

function converges to the actual one uniformly when this artificial diffusion coefficient vanishes.

9



In Theorem 2.3 we apply methods of viscosity solutions to show that equation (10) has a unique

solution which corresponds to the value functionV̂. The reason for this development is three-fold.

First, an optimal markovian strategy can be extracted from (10) (see the discussion of the verification

theorem and optimal strategies at the end of Subsection 2.1). In contrast, solutions to regularized

problems offer only a possibility of extracting a randomized markovianε-optimal strategy for the

original problem. Second, the representation of the value function as a solution to an HJB equation

allows for the construction of an approximating numerical scheme. Third, we do not have to assume

the uniform non-degeneracy ofσ. Yet another reason is the elegance of the theory which can embrace

both the original and the regularized equation in the same framework.

Another feature that sets apart this paper from the earlier work by Aivaliotis and Veretennikov [4]

is the unboundedness of the diffusion coefficients and of thefunction f . This is a crucial feature that

enables the study of the compensation schemes described in Section 3.

The extension of the state space (9) allows us to consider thestochastic control problem (7) as

a special case (3) withh(x, y) = y. This, however, leads to an inefficient numerical scheme. Our

formulation of the value function̂V with an integral-type functional and the integrand depending on

Xt as well as onYt smooths out errors induced by numerical approximations of the processYt.

The following theorem explores the dependence ofV̂ onψ.

THEOREM 2.4.

i) The function V̂ is continuous and convex in ψ. If f is non-negative, V̂ is decreasing in ψ.

ii) There exists a constant C such that

|V̂(t0, x, y, ψ) − V̂(t0, x, y, ψ′)| ≤ C (1+ ‖x‖) |ψ − ψ′|.

iii) The value function v is given by

v(t0, x) = sup
ψmin≤ψ≤ψmax

{

V̂(t0, x, 0, ψ) − θψ2},

where

ψmin = − sup
α∈A

Eα
t0,x

∫ T

t0
f (αs, s, Xs) ds, and ψmax = − inf

α∈A
Eα

t0,x

∫ T

t0
f (αs, s, Xs) ds.

Thanks to the properties stated in the above theorem the computation ofv(t0, x) can be performed

by a similar algorithm to the one presented at the end of Subsection 2.1.
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3. The manager’s compensation problem

In this section we introduce a delegated portfolio management problem in a framework of a finan-

cial market with one risk-free asset with a continuously compounded returnr and a stock (risky asset)

whose price follows a geometric diffusion with a constant drift µ and a constant volatilityσ:

dS t = µS tdt + σS tdWt.

The manager invests clients’ money in the two available assets. Her strategy is described by a

progressively measurable process (πt) which represents the proportion of the total wealth at timet

invested in the stock. The dynamics of the total wealthX̂t are, therefore, given by the following

equation:

dX̂t = X̂t
(

r dt + πt(µ − r) dt + πtσ dWt
)

. (11)

We constrain the stock investmentπt to a bounded interval which represents restrictions on short-

selling and borrowing; this puts limits on leverage levels.The bound on the leverage is imposed by

regulators on many financial institutions (for example, theFSA in the UK requires that firms set their

leverage limits according to the risk-management regulatory requirements [1]). In the simplest case,

when no borrowing and short-selling is allowed,πt ∈ [0, 1].

The manager is remunerated according to the performance of the fund under her supervision. The

amount of compensation depends on the market evolution, thestrategy (πt) she implements and the

compensation contract (hereafter also called the compensation scheme) agreed between investors and

the manager. We assume that the fund manager applies mean-variance preferences to her compensa-

tion and follows trading strategies that are optimal for her, i.e., that maximize her satisfaction from

compensation. This choice of preferences is in line with thecommon practice in asset management

industry (Bodie et al. [13] and Littermann [31]).

Given a compensation contract the manager endeavors to find astrategy (πt) that maximizes the

mean-variance criterion

E(Hπ) −
γ

2
Var(Hπ), (12)

whereγ > 0 is her risk-aversion coefficient andHπ is a random variable representing the amount of

compensation the manager receives if she follows a trading strategy (πt).

In this paper we focus on two approaches to constructing managers’ compensation schemes. The

first one, which is based on continuous (over the whole investment period) performance monitor-
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ing, requires novel results presented in the previous section. The second one depends on a well-

documented terminal time (e.g., end-of-year) performancemeasurement. Our theoretical findings

facilitate numerical solution of the resulting optimization problems for both approaches.

3.1. Compensation schemes based on continuously monitored performance

Empirical evidence suggests that frequent monitoring has anegative effect on the fund perfor-

mance (see, e.g., Agarwal et al [2] and Hunton et al. [25]). Wewill show that this phenomenon

can arise in a fully rational setting, i.e., without psychological/behavioral factors that might influence

decision-making in a real-life environment. In the modelling framework of this section, we compare

optimal responses to contracts based on a terminal-time andcontinuous monitoring of funds wealth.

Continuous monitoring can be regarded as a limit case, when inter-observation intervals become in-

finitesimally small.

Another aspect of compensation schemes explored in this paper is their symmetry. Investment

Company Amendments Act of 1970 ruled that all performance based compensation schemes em-

ployed by US investment companies (such as mutual or pensionfunds) have to be symmetric. A

symmetric compensation contract pays out premiums to the manager when she outperforms a tar-

get, but imposes a penalty for under-performance. This can be viewed as a means of risk sharing or

co-ownership by the manager.

In a symmetric scheme with continuous monitoring, the manager’s compensation is proportional

to the cumulative future value of the difference between theportfolio return and the benchmark return:

Hπ
= C

∫ T

0

( X̂π
t

X̂0
− eβt

)

er(T−t)dt, (13)

whereβ is the benchmark growth rate,X̂π
t denotes the value of the portfolioπ at the timet andC > 0

is the factor translating accumulated returns into manager’s compensation. Notice that the coefficient

er(T−t) ensures that the performance measure takes into account thetime-value of money.

An intuition would suggest that the compensation scheme (13) encourages close tracking of the

benchmark. This is however not true as the manager’s optimization problem can be written in the

12



following equivalent form:4

E
(

∫ T

0

(er(T−t)X̂π
t

X̂0
− 1

)

dt
)

− θVar
(

∫ T

0

(er(T−t)X̂π
t

X̂0
− 1

)

dt
)

, (14)

whereθ = Cγ
2 . This separates the portfolio choice from the benchmark rateβ and relates it only to the

future value of the cumulative returns in a clear analogy to the standard Markowitz problem.

Although the regulation banning the use of asymmetric incentive plans in mutual or pension funds

holds, asymmetric schemes are still popular with hedge funds which are characterized by strong per-

formance incentives to their managers. Typically, there isa small annual management fee and a

performance-based bonus payment. The latter, for most funds, is paid if the return exceeds a hurdle

rate (the benchmark rate) or a high-water mark (the previousmaximum). The manager’s incentive

payment with the hardle-rate provision is given by

Hπ
= C

∫ T

0

( X̂π
t

X̂0
− eβt

)+

er(T−t)dt, (15)

whereβ is the hurdle rate and (x)+ = max(x, 0) is the positive part ofx. Since compensation schemes

with high-water mark provision can be placed, in terms of thestrength of incentives, between the

symmetric and hurdle-rate schemes, they will not be part of the analysis presented in this paper.

However, they can be accomondated by our mathematical framework and numerical methods.

The dynamics of portfolio wealth (11) is multiplicative, i.e., for any trading strategy (πt) the return

X̂π
t /X̂0 is independent of̂X0. The initial wealth,X̂0, can, therefore, be fixed to 1. Under the assumption

that short-selling is not allowed, the compensation schemes (13) and (15) can be written in a unified

way:

Hπ
= C

∫ T

0

(

X̂π
t − Keβt

)+

er(T−t)dt. (16)

For a symmetric scheme, one takesK = 0. The hurdle rate payoff is obtained whenK = 1.

The corresponding manager’s optimization problem takes the form

E
(

∫ T

0

(

X̂π
t − Keβt

)+

er(T−t)dt
)

− θVar
(

∫ T

0

(

X̂π
t − Keβt

)+

er(T−t)dt
)

→ max, (17)

4We call optimization problems equivalent if their optimal strategies are identical and their functionals are related in a
deterministic way. Manager’s optimization problem takes the following form

CE
(

∫ T

0
(
X̂π

t

X̂0

− eβt)er(T−t)dt
)

−
γC2

2
Var

(

∫ T

0
(
X̂π

t

X̂0

− eβt)er(T−t)dt
)

.

We divide this functional byC and notice thatVar
( ∫ T

0
(

X̂πt
X̂0
− eβt)er(T−t)dt

)

= Var
( ∫ T

0
(

er(T−t) X̂πt
X̂0

− 1)dt
)

. ChangingE
( ∫ T

0
(

X̂πt
X̂0
−

eβt)er(T−t)dt
)

into E
( ∫ T

0
(

er(T−t)X̂πt
X̂0

− 1)
)

shifts the value of the functional by a constant but does not affect the optimal strategy.
This proves equivalence of (14) and the original manager’s optimization problem (12) with the compensation scheme (13).
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whereθ = Cγ
2 .

3.2. Compensation schemes based on terminal-time performance

Compensation schemes introduced in the previous subsection have their counterparts based on the

fund’s wealth at the terminal time. In a symmetric scheme, the manager’s compensation is propor-

tional to the difference between the portfolio return and the benchmark return:

Hπ
= C

( X̂π
T

X̂0
− eβT

)

. (18)

As in the case of the continuous monitoring, the trading strategy maximizing manager’s satisfaction

does not depend on the benchmark rate. Takingβ = 0 simplifies manager’s optimization problem to

E
( X̂π

T

X̂0
− 1

)

− θVar
( X̂π

T

X̂0
− 1

)

(19)

with θ =
Cγ
2 . Since the quantity

X̂π
T

X̂0
− 1 is the return of the portfolio, the optimization problem (19)

is consistent with a standard Markowitz portfolio optimization approach. Hence, by an appropriate

selection ofC a mean-variance investor can align their risk aversion withthe risk aversion of the

fund manager (see Starks [37] for similar results). This also implies that the symmetric compensation

scheme (18) is equivalent with manager’s co-ownership of the fund.

A remuneration scheme with a hurdle-rate provision resultsin the payoff

Hπ
= C

( X̂π
T

X̂0
− eβT

)+

,

whereβ is the hurdle rate.

Similar to the case of continuous monitoring, above two schemes can be represented in a unified

form:

Hπ
= C

(

X̂π
T − KeβT

)+

, (20)

where the choiceK = 0 leads to a symmetric scheme whereasK = 1 corresponds to a scheme with the

hurdle-rate provision. An optimization problem faced by a manager with mean-variance preferences

and the risk aversion coefficientγ is

E
((

X̂π
T − KeβT

)+)

− θVar
((

X̂π
T − KeβT

)+)

→ max. (21)
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3.3. Numerical approach

Optimization problems (17) and (21) are solved numerically. We apply explicit-implicit scheme

to the discretized Hamilton-Jacobi-Bellman equations (10) and (5) for the auxiliary optimal control

problems. Maximization with respect toψ is constrained to a closed interval (see Theorems 2.2 and

2.4) which is found by solving appropriate optimal control problems (see Column 3 in Table 1). In

the case with continuous monitoring, this has to be done numerically. When compensation scheme is

based on the terminal value of the fund, the interval forψ is given analytically:

LEMMA 3.1. Assume that πt ∈ [0, πmax] for some πmax > 0 and µ > r. For any t0 < T, we have

ψmax = −
(

erT x − eβT K
)+
,

ψmin = −xeπmax(µ−r)T+rT
Φ(d1) + eβT KΦ(d2),

where Φ is the cumulative distribution function of the standard normal distribution and

d1 =
log(x/K) + πmax(µ − r)(T − t0) + 1

2π
2
maxσ

2(T − t0) − (β − r)T

πmaxσ
√

T − t0
,

d2 = d1 − πmaxσ
√

T − t0.

The proof of the above lemma (see the Electronic Supplement)is surprisingly difficult. First, the

optimization problems (6) with the payoff (20) are of a non-standard form: the objective function is not

concave which prevents the use of the well-developed theoryof continuous-time utility optimization.

Another difficulty stems from the fact that the objective function is not differentiable.

Numerical solution of HJB equations requires trimming of the state space (to a bounded region:

interval or rectangle) as well as discretizing it. The trimming of the state space and the choice of

discretization grid in time and space is usually guided by experience. Existing mathematical results

explore the speed of convergence as the bounded region expands and the number of discretization

points tend to infinity; such results do not allow to assess the precision of a given computation. More-

over, the verification theorem for viscosity solutions to HJB equations (see [22]) is not applicable

in our setting. Hence, it is not known whether the strategy extracted from the discretized HJB ap-

proximates the optimal strategy. We propose an approach that fills these gaps. We store the strategy

obtained while solving the discretized HJB for the optimalψ∗ and use it to run a Monte Carlo simula-

tion. In each Monte Carlo run we generate a trajectory of the stock prices and invest according to the

computed optimal strategy. The collection of samples of manager’s compensation is stored and used

to approximate the value of their mean-variance functional. Table 1 displays results for a selection
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T K [ψmin, ψmax] ψ∗ PDE value Monte Carlo

Terminal-time performance

5 1 [ -0.441503, -0] -0.222016 0.156465 (0.154375, 0.157366)
5 0 [-1.65037, -1.28531] -1.34597 1.31546 (1.31516, 1.31706)

Continuous monitoring

5 1 [-1.2517742, -0.0000004] -0.8463702 0.6296674 (0.590237, 0.636558)
5 0 [ -7.3013320, -6.4201271] -6.6405067 6.5496516 (6.53762, 6.56716)

Table 1: Numerical approximations of the value functionu (equation (3)) and the value functionv (equation (7)) at the
initial time t0 = 0 and the initial wealthx = 1. Column 3 displays the interval in which the search ofψ takes place. Column
4 shows the optimum. An approximation ofu(0, 1), computed using this optimalψ, is given in Column 5. Last column
displays a 98% confidence interval for the value of the functional (3) computed by a Monte Carlo simulation with 100000
runs using the strategy extracted from the discretization of the Hamilton-Jacobi-Bellman equations (5) and (10). In the
computation we user = 0.05,µ = 0.1,σ = 0.2, C = 1 andβ = 0.06. The risk aversion coefficientγ = 6. Trading strategies
are constrained to the interval [0,1] (πmax = 1). For terminal-time performance: time [0, T ] is divided into 300 steps; the
state space grid (in terms of log(x)) contains 2000 points spread evenly over [−2,3]. For continuous monitoring: time is
divided into 5000 steps forT = 5; the state space grid is two-dimensional; one dimension (in terms of log(x)) contains 200
points spread evenly over [−2,3]; the other (in terms ofy) has 500 points located uniformly on [−1,10].

of compensation schemes and model parameters. They hint that the approach presented in this paper

with an auxiliary variableψ performs well. It is also efficient; in the case of terminal value functional,

all the computation of the value function , i.e., the maximization overψ and solution of auxiliary opti-

mization problems required around 5 seconds.5. In comparison, each Monte Carlo computation took

90 seconds. Understandably, computational intensity of numerical scheme solving the problem with

the continuous monitoring increases dramatically due to the introduction of another state variabley.

In addition, the functional is based on an integral over time. Its computation requires a dense time

grid, which has a further impact on the computation time. It is still, however, practical taking a few

minutes with most of the time used for the determination ofψ∗. This can be sped up by doing pre-runs

with rougher grids.

Interested reader is referred to Section A of the ElectronicSupplement for a more detailed presen-

tation of numerical methods and proofs of their convergence.

4. Trading strategies

In this section we analyze optimal trading strategies for the various managerial compensation

schemes presented in Section 3. Specifically, we look at

(SC) symmetric compensation scheme (K = 0),

5All computations were performed on a Dell Lattitude E6400 laptop with Intel Core2 Duo 2.54GHz processor.
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scheme K β C utility

Terminal time
SC 0 0 1 1.314
HR 1 0.06 41 1.303

Continuous monitoring
SC 0 0 0.2 1.309
HR 1 0.06 15 1.385

Table 2: Results for the calibration of four models: two for terminal-time performance and two for continuous-monitoring
of performance. Time horizon isT = 5. The last column displays the values of the mean-variance objective function for
calibrated proportionality factorsC. Due to computational complexity (fine discretization of the state space is required for
large values ofθ) the utility value in the last row is not as well fitted as for other functionals.

(HR) asymmetric compensation scheme with a hard hurdle rateprovision (K = 1, β = 0.6),

based on the continuously monitored performance (see (16))and on the terminal value (see (20)). We

fix the market parameters at:µ = 0.1, σ = 0.2, andr = 0.05. The manager’s risk aversion isγ = 6.6

We assume that borrowing is not allowed, i.e., the maximum investment in the stock is 100% of the

wealth (πmax = 1). Relaxation of this assumption is discussed in Subsection 4.4. We constrain the

analysis to the investment horizonT = 5.7

4.1. Consistent comparison of strategies for different functionals

The risk-adjusted expected payoff to the manager heavily depends on the choice of compensation

scheme (see Table 1). Indeed, for terminal-wealth based schemes andC = 1, the symmetric risk-

adjusted payoff is 1.315 whereas the asymmetric one with the hurdle rate provision is 0.156. To ensure

the level playing field, we propose to choose the compensation scaling factorC for each scheme in

such a way that the manager is indifferent to the choice of hisremuneration scheme, i.e., such that the

value

E(Hπ) −
γ

2
Var(Hπ)

is independent of the choice of the scheme. This sets our approach apart from the majority of the

literature analyzing relations between investment strategies and fund manager’s compensation con-

tracts; these studies rarely take into account that different incentives imply different levels of payoff

to managers, see, e.g., Carpenter [14], Kouwenberg and Ziemba [26], Panageas and Westerfield [35].

Table 2 shows the results of the calibration of four compensation schemes to be studied in this

section.
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(d) Continuous monitoring HR

Figure 1: Compensation schemes based on terminal-time performance and continuously monitored performance. Plots of
realized portfolio positions along simulated trajectories of stock price. The horizontal axis displays time in years.The
vertial axis is the portfolio position – the proportion of the wealth invested in the stock. The circles are the averages of
portfolio positions at any given time. The length of the bar above/below the mean represents the standard deviation of the
portfolio positions. Trading strategies were constrainedto the interval [0, 1] (πmax = 1). Model parameters (C, K andβ) are
collected in Table 2. The manager’s risk aversion isγ = 6. The market parameters areµ = 0.1, σ = 0.2, andr = 0.05. These
plots are obtained from a Monte Carlo simulation with 10000 realizations of stock prices.

4.2. Trading strategies for terminal value based compensation

Figure 1 displays realized portfolio positions along simulated trajectories of the stock price. Cir-

cles represent the average stock position at each time. The length of the bar above/below the mean

shows the standard deviation. Optimal strategy for the asymmetric scheme (Panel (c)) is more volatile

and tends to invest more in the risky asset than the one for thesymmetric scheme (Panel (a)). This

gives support to the findings of Elton et al. [16] who demonstrate that stronger incentives encour-

6Risk-aversion between 4 and 6 is commonly shown to be typicalfor the stock market investments, see, e.g., [12, 31].
7Results for other investment horizons are similar. We choose the investment horizon longer than a year because differ-

ences between compensation schemes are more pronounced forlonger horizons and graphs are easier to analyze.
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Terminal time Continuous monitoring

Compensation scheme SC HR SC HR

Sharpe ratio 0.98 0.63 0.57 0.52

Expected annualized excess return 1.91% 1.89% 3.50% 1.72%

Standard deviation of annualized
excess return

1.95% 3.00% 6.15% 3.35%

Table 3: Sharpe ratios for returns over 5 years obtained by following optimal strategies. These numbers were computed via
Monte Carlo simulation with 10000 realizations of stock prices.

age higher riskiness of trading strategies (higher investment in the risky asset); in our setting the HR

scheme offers stronger incentives. The explanation of thisphenomenon is however more complicated.

Managers remunerated with any of the schemes increase the risky investment after a period of poor

performace in order to recoup the losses. However, comparedto the symmetric scheme, the optimal

strategy for the asymmetric scheme prescribes higher stockinvestment for small values of wealth and

smaller stock investment for large values. This is rather unintuitive; one would expect managers paid

according to the asymmetric schemes to hold larger stock positions in all cases. It seems that the

primary goal of managers with HR schemes is to beat the benchmark. Their optimal strategy shows

strong reactions to the values of the wealth below the benchmark with this behavior becoming even

more pronounced towards the end of the investment period. This agrees with results obtained by other

authors in various frameworks, see Carpenter [14], and Kouwenberg and Ziemba [26].

Above results suggest that asymmetric schemes induce benchmark tracking behavior. Recall that

symmetric schemes cannot enforce benchmark tracking. Investors willing to include the benchmark

into manager’s compensation should therefore consider including an asymmetric scheme as part of

the compensation contract.

Arya and Mittendorf [5] associate stronger incentives withhigher abilities of portfolio managers.

In our setting, the asymmetric scheme induces strategies that react quickly to market changes resulting

in a much larger variation compared to symmetric schemes (see Figure 1(a) and (c)). Therefore, fund

managers with asymmetric compensation schemes have to makequicker and more precise trading

decisions, which requires more skills than strategies prescribed by the symmetric scheme.

Distributional properties of the annualized fund returns obtained by following optimal strategies

are presented in Table 3. Agarwal et al. [2] and Arya and Mittendorf [5] suggest that stronger in-

centives encourage better performance. Our findings demonstrate that it is not necessarily true. The

Sharpe ratio as well as the expected return of a fund whose manager is remunerated by a scheme with
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a hurdle-rate provision is lower than those for the fund witha symmetric compensation. It is not the

strength but an appropriate choice of incentives that leadsto a better performance, see Kouwenberg

and Ziemba [26] for detailed analysis of the interplay between the symmetric (co-ownership) and

asymmetric incentives in the fund management.

4.3. Continuously monitored performance

Figure 1, Panels (b) and (d), shows realized portfolio positions obtained via a Monte Carlo simula-

tion. A common feature of both strategies is the increase of the stock investment when time approaches

the investment horizonT .8 Such behavior was also observed by Panageas and Westerfield [35] in a

different modeling framework in which they studied the impact of high-water marks and investment

horizon on portfolio positions. Their conclusion was that it is not the asymmetry of the compensation

scheme but the finiteness of the investment horizon that encourages fund managers to opt for large

stakes in the stock towards the end of the investment period.Our findings for terminal-value based

compensation schemes contradict their conclusions: trading strategies for all types of compensation

do not show any tendencies of increasing stock positions when time approachesT . In our opinion

the integral form of the functional, the feature that is shared by Panageas and Westerfield’s model

and our compensation schemes based on continuously monitored performance, contributes mostly to

this behavior. It results from the interaction between the risk aversion and the ability to accumulate

performance over time. High proportion of risky investmentat the beginning of the investment period

increases the probability of a substancial decrease in the portfolio value. Such drop means that no

compensation is accumulated until the loss is recouped increasing the riskiness of the compensation

earned by the manager. On the other hand, a big loss closer to the terminal time has disproportionately

smaller consequences.

Compensation schemes based on continuous monitoring of portfolio value lead to inferior prop-

erties of the terminal time wealth distributions compared to the terminal-value based schemes (see

Table 3). This is in agreement with the findings of Agarwal et al. [2] who notice that the discretion

of fund managers impacts the returns: the larger the flexibility that managers enjoy the better their

investment results. Our results show that this phenomenon is not caused by psychological reaction to

close scrutiny but is rather an optimal behavior. Continuous monitoring of portfolio wealth prevents

managers from implementing strategies with long-term goals (and possible short-term losses) since

8This behavior persists when changing model parameters, investment horizonT and the maximal stock holdingπmax.
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Compensation scheme SC HR

Sharpe ratio 0.98 0.57

Expected annualized excess return 1.89% 2.13%

Standard deviation of annualized
excess return

1.94% 3.72%

Table 4: Sharpe ratios for returns over 5 years obtained by following optimal strategies for terminal-wealth based functionals
and the upper bound on the stock positionπmax = 2. These numbers were computed via Monte Carlo simulation with 10000
realizations of stock prices.

the short-term performance impacts their compensation in the same way as the long-term does. This

not only lowers the Sharpe ratio compared to the terminal-wealth based schemes, but also boosts the

riskiness of the excess returns. This comes as a surprise since continuous monitoring (closer scrutiny

of managers’ decisions) should, intuitively, encourage better management.

4.4. Relaxation of the borrowing constraint

In this subsection we relax the borrowing constraint; we allow the leverage of up to 2 (πmax = 2).

We restrict our attention to terminal-wealth based schemesfor two reasons as we have already shown

the superiority of terminal-wealth based schemes over the continuously monitored schemes. This

behavior is further amplified by the relaxation of the borrowing constraint.

Table 4 displays properties of the annualized excess returns. The relaxation of the borrowing

constraint results in the decrease of the Sharpe ratio for the asymmetric scheme; bigger investment

flexibility benefits the manager (via higher risk-adjusted expected payoff) but worsens the Sharpe ratio

for the fund. The returns implied by an optimal strategy for the symmetric scheme are unchanged.

Indeed, this strategy is unaffected by the relaxation of theborrowing constraint. This finding lends

support to the claims of supremacy of symmetric schemes overthe asymmetric ones.

The relaxation of the restriction on the borrowing yields anincrease of the expected excess return

for the HR scheme; the corresponding quantity for the symmetric scheme remains unchanged. A

manager with an asymmetric scheme exploits an increased investment flexibility available on the

market to boost the returns; the expected excess return for the HR scheme are substantially higher

than for the SC scheme. This supports the view, which we sharewith Arya and Mittendorf [5], that

asymmetric compensation schemes should only be awarded to highly skilled managers.

5. Conclusions

In this paper, we presented theoretical and numerical results for the optimization of a mean-

variance functional based on the terminal-time value or on the whole trajectory of the underlying
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process. An optimization problem of this form cannot be studied directly by employing dynamic

programming methods. We reformulated it as a superpositionof a static and a dynamic optimization

problem, where the latter is feasible for dynamic programming methods. We characterized its value

function as the unique continuous, polynomially growing, viscosity solution to an appropriate degen-

erate Hamilton-Jacobi-Bellman equation. Our reformulation of the mean-variance problem allowed us

to numerically calculate the value function and an optimal strategy for a pre-determined risk-aversion

coefficient.

We applied this theory to the delegated portfolio management problem: given a compensation

contract, a mean-variance optimizing fund manager seeks a trading strategy that maximizes her (risk-

adjusted) compensation. Our mathematical and numerical framework can accomodate optimization

problems induced by complex (real-world) contracts. In particular, we were able to study the relatively

unexplored relations between strategies pursued by managers remunerated according to schemes

based on the terminal wealth and on the continuously monitored wealth. Surprisingly, terminal-wealth

based schemes turned out to induce more prudent investment behavior and superior performance than

the schemes that rely on the continuously monitored wealth.

Goetzmann et al. [21] show, in a discrete-time setting, an advantage of frequent monitoring of

portfolio value. Our continuous-time results contradict this finding.9 Future research will aim at

explaining this paradox. We will also try to design compensation schemes that benefit from the con-

tinuous monitoring of the portfolio value and lead to trading strategies outperforming those induced

by terminal-time based schemes.
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Electronic supplement

A. Numerical schemes for manager’s compensation problems

In this section we design numerical schemes for the solutionof the manager’s optimization prob-

lems introduced in Section 3. In the first part we discuss numerical schemes for functionals depending

on the terminal value of the wealth process. The second part is devoted to functionals based on the

continuously monitored performance. We follow the same order of presentation as in Section 2 to

introduce our numerical methodology in the simpler terminal-wealth case.

To simplify the notation, we introduce a discounted wealth processXt = e−rtX̂t.10 This process

satisfies the following stochastic differential equation:

dXt = πtXt
(

(µ − r) dt + σ dWt
)

. (A.1)

Notice that (Xt) stays positive provided that the initial value is positive.

In this section we assume that short-selling is not allowed and the leverage is bounded, i.e.,

(B1) πt ∈ A := [0, πmax].

This assumption allows us to simplify numerical schemes andshorten proofs. Results of this section

can be extended, with some effort, to strategies with a bounded leverage (πt ∈ [πmin, πmax] with

arbitraryπmin ∈ R). The bound on the leverage is imposed by regulators on many financial institutions

(see, e.g., [1]).

We also assume (rather naturally) that the rate of return of the risky stock is not smaller that the

riskless interest rate:

(B2) µ ≥ r.

Finally, we assume that

(B3) πmax ≤ 2(µ−r)
σ2 .

The above assumptions can also be relaxed at the cost of a morecomplicated numerical scheme.11

10We suppress the dependence of both processes on the control (πt) in order to simplify the notation. This dependence is
signalled by the expectation and variance operators.

11Under (B2)-(B3) we can always approximate the first derivative with respectto x with a forward difference. Relaxation
of these assumptions requires an adaptive numerical schemethat ensures the use of forward and backward differences as
appropriate, see [39].
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A.1. Numerical solution for the case of terminal wealth-based compensation

In the notation of Subsection 2.1 and using the discounted wealth process, the value function

corresponding to the functional (21) has the following form: for t0 ≤ T

u(t0, x) = sup
π∈A

{

Eπ
t0,xh(XT ) − θVarπt0,xh(XT )

}

, (A.2)

whereA is the set of all progressively measurable processes with values in [0, πmax] and

h(x) =
(

xerT − KeβT )+
. (A.3)

Recall thatv(0, 1) corresponds to the optimal utility for a fund manager. Theresulting strategies are

analyzed in Section 4.

A.1.1. Markovian reparametrization

As (A.2) is not suitable for markovian optimization methods, we rewrite it in the following way

(see Section 2):

u(t0, x) = sup
ψ∈R

{

U(t0, x, ψ) − θψ2},

whereU is the value function corresponding to an auxiliary optimization problem that fits the marko-

vian optimization framework:

U(t0, x, ψ) = sup
π∈A

Eπ
t0,x

{

(1− 2θψ)h(XT ) − θ
(

h(XT )
)2
}

.

For fixed (t0, x) the above supremum can be restricted to a compact intervalψ ∈ [ψmin, ψmax] (see

Theorem 2.2), where

ψmin = − sup
π∈A

Eπ
t0,xh(XT ), ψmax = − inf

π∈A
Eπ

t0,xh(XT ). (A.4)

Sinceh is non-negative, both numbers are non-positive. We will usethis property in a number of

places later in this subsection. Lemma 3.1 provides analytical expressions forψmin andψmax.

A.1.2. Localization and change of variables

By virtue of Theorem 2.1 for any fixedψ the functionU(·, ψ) is the unique continuous polynomi-

ally growing viscosity solution to the following HJB equation:


















Ut0 + supa∈[0,πmax]

{

a(µ − r)xUx +
1
2a2x2σ2Uxx

}

= 0,

U(T, x, ψ) = (1− 2θψ)h(x) − θ
(

h(x)
)2
.

(A.5)

The state space of this equation is infinite:x ∈ R. A common approach used for numerical solution

of such problems is to localize the equation, i.e., to restrict the state space to a compact interval
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[xmin, xmax] and set appropriate Dirichlet boundary conditions inxmin andxmax (see Barles, Daher and

Romano [7], Wang and Forsyth [39]). We can only state approximate boundary conditions since we

do not know the solutionU, but this is not a serious limitation. In [7] authors justifythat the error

incurred by these approximate boundary conditions is smallfor x far from the boundaries. They study

in detail the case when the boundary conditions are equal to the terminal value

U(t0, xmin, ψ) = U(T, xmin, ψ), U(t0, xmax, ψ) = U(T, xmax, ψ), t0 ∈ [0, T ).

Using their approach, a localized version of (A.5) reads as follows: for x ∈ [xmin, xmax]











































Ut0 + supa∈[0,πmax]

{

a(µ − r)xUx +
1
2a2x2σ2Uxx

}

= 0,

U(t0, xmin, ψ) = (1− 2θψ)h(xmin) − θ
(

h(xmin)
)2
,

U(t0, xmax, ψ) = (1− 2θψ)h(xmax) − θ
(

h(xmax)
)2
,

U(T, x, ψ) = (1− 2θψ)h(x) − θ
(

h(x)
)2
.

(A.6)

Notice thatU(t0, x, ψ) equals 0 forx ∈ (−∞, 0]. It suffices to restrict our attention to the remaining

part of the state space and considerxmin > 0. This is further justified by the fact that the set (0,∞) is

invariant for the dynamics of (Xt)12.

The process (Xt) is a controlled geometric Brownian motion and its increments are proportional

to the value of the process. Equidistant discretization of the state space of (A.5) would, therefore,

be inappropriate. A common solution is a change of variables: z = log(x). With a slight abuse of

notation a new value function with the changed variable is still denoted byU. Equation (A.6) takes

the following form:











































Ut0 + supa∈[0,πmax]

{

[

a(µ − r) − 1
2a2σ2]Uz +

1
2a2σ2Uzz

}

= 0,

U(t0, zmin, ψ) = (1− 2θψ)h(ezmin ) − θ
(

h(ezmin )
)2
,

U(t0, zmax, ψ) = (1− 2θψ)h(ezmax ) − θ
(

h(ezmax )
)2
,

U(T, z, ψ) = (1− 2θψ)h(ez) − θ
(

h(ez)
)2
,

(A.7)

for z ∈ [zmin, zmax], wherezmin = log(xmin) andzmax = log(xmax).

A.1.3. Implicit numerical scheme

Fix ψ ≤ 0. Equation (A.7) satisfies the strong comparison property for viscosity solutions and,

hence, has a unique continuous viscosity solutionU (see, e.g., Fleming and Soner [18, Remark V.8.1]

or Wang and Forsyth [39, Remark 2.1]). Define an equidistant space gridz0, . . . , zM , wherez0 = zmin

12The process (Xt) starting from a positive initial value stays positive.
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andzM = zmax, and an equidistant time gridτ0, . . . , τN , whereτ0 = 0 andτN = T . Let δz = z1 − z0 be

the space discretization step andδτ = τ1 − τ0 be the time discretization step. Denote byUn
i a discrete

approximation toU(tn, zi, ψ) and putUn
= (Un

1, . . . ,U
n
M)T .

Under (B1)-(B3) the coefficient byUz in (A.7) is non-negative. To ensure monotonicity13 of a

numerical scheme for equation (A.7), we approximateUz with a forward difference, i.e., by (U(t0, z+

δz, ψ) − U(t0, z, ψ))/δz. For a vector of controlsa = (a1, . . . , aM) ∈ [0, πmax]M we define a controlled

discrete differential operator:

(LaUn)i =
2ai(µ − r)δz + (1− δz)(ai)2σ2

2δ2
z

Un
i+1 +

−2ai(µ − r)δz − (2− δz)(ai)2σ2

δ2
z

Un
i

+
(ai)2σ2

2δ2
z

Un
i−1.

Fully implicit discretization of (A.7) takes the followingform:














































Un+1
i −Un

i
δτ

+ supa∈[0,πmax]M (LaUn) = 0, i = 1, . . . , M − 1, n = 0, . . . ,N − 1

Un
0 = (1− 2θψ)h(ez0) − θ

(

h(ez0)
)2
, n = 0, . . . ,N − 1

Un
M = (1− 2θψ)h(ezM ) − θ

(

h(ezM )
)2
, n = 0, . . . ,N − 1

UN
i = (1− 2θψ)h(ezi ) − θ

(

h(ezi )
)2
, i = 0, . . . , M.

(A.8)

The following theorem ensures the convergence of the above numerical approximation.

THEOREM A.1. Under assumptions (B1)-(B3) the solution of the above discrete Hamilton-Jacobi-

Bellman equation converges uniformly to the solution of (A.7) as N, M → ∞.

A.1.4. Algorithm

We can now present an algorithm for the solution of the original mean-variance problem (A.2).

Without loss of generality we assume that the initial time equals 0. Fix an initial capitalx > 0.

1. Fix a space gridz0, . . . , zM in such a way that log(x) ≈ (z0 + zM)/2, and the stepδz is appropri-

ately small. We will comment on the selection of the grid later in this section.

2. Fix a time gridτ0, . . . , τN . We will comment on the selection of the grid later in this section.

3. Computeψmin andψmax using formulas derived in Lemma 3.1.

4. Find a maximum ofg(ψ) = U(0, x, ψ) − θψ2 over ψ ∈ [ψmin, ψmax]. For each candidateψ

solve (A.5) as discussed above. The search might be performed either by maximization over a

13For the definition of monotonicity see, e.g., [18, Section IX.4].
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discrete grid in [ψmin, ψmax] or via DC programming methods.14 In the examples discussed in

this section we use the first approach as in practice the interval [ψmin, ψmax] is fairly small.

5. After finding the optimalψ∗ perform another computation ofU(0, x, ψ∗) and store the resulting

strategy.

A.1.5. Convergence

Outcomes of the above numerical computations might heavilydepend on a few crucial parameters

that set the grid on which the discretization of the HJB equation is based: the number of space grid

pointsM and the number of time stepsN.

K = 0 K = 1

N ψ value ψ value

10 -1.0619387 1.0565641 -0.0838146 0.0646984
100 -1.0619612 1.0565812 -0.0882061 0.0693725
200 -1.0619612 1.0565820 -0.0884347 0.0696070
300 -1.0619612 1.0565823 -0.0885697 0.0696854
400 -1.0619612 1.0565824 -0.0886154 0.0697234

Table A.1: Numerical approximations of the value functionu at the initial timet0 = 0 and the initial wealthx = 1 with
varying number of time stepsN. The bounds forψ are [−1.1051709, −1.0512711] forK = 0 and [−0.1096888, −0] when
K = 1. In the computation we useT = 1, r = 0.05,µ = 0.1,σ = 0.2, β = 0.06 andθ = 3. Trading strategies are constrained
to the interval [0,1] (πmax = 1). The state space grid isz0 = −2, zM = 3 with M = 2000.

Table A.1 summarizes our experiments with varying number oftime steps. For the two cases, the

symmetric one (K = 0) and the asymmetric one (K = 1), we report the optimal value ofψ and the

computed approximation to the value function for the initial value x = 1. The results forK = 0 are

surprisingly good: it suffices to takeN = 10 time steps to obtain a very good precision (the relative

difference between the first and the last row is of the order 10−5). Due to this quality of results the

optimalψ is identical for all choices ofN (with a small difference forN = 10). This property is not

shared by the outcomes of simulations for the asymmetric case, where reliable results are obtained

for N greater or equal to 100. This difference, in our opinion, is caused by properties of optimal

strategies. As we show later, an optimal strategy for the symmetric case is less sensitive to small

changes in wealth and in time to maturityT . Indeed, the asymmetric functional requires an optimal

strategy to keep the wealth above the benchmark at the same time reducing the risk. This results in

frequent adjustments to the portfolio.

14The mappingg(ψ) is a difference of two convex functions. There are efficientnumerical methods for maximization of
such functions (called the DC programming), see, e.g., Horst and Hoang [23, Chapter 10].

5



K = 0 K = 1

M ψ value ψ value

50 -1.0597145 1.0541610 -0.0927347 0.0657653
100 -1.0610219 1.0553888 -0.0885261 0.0696073
1000 -1.0619387 1.0565197 -0.0886611 0.0697280
2000 -1.0619612 1.0565823 -0.0885697 0.0696854
3000 -1.0619837 1.0566032 -0.0887068 0.0696687

Table A.2: Numerical approximations of the value functionu at the initial timet0 = 0 and the initial wealthx = 1 with
varying number of space stepsM. The extreme points of the state space grid arez0 = −2, zM = 3. The bounds forψ are
[−1.1051709, −1.0512711] forK = 0 and [−0.1096888, −0] whenK = 1. In the computation we useT = 1, r = 0.05,
µ = 0.1,σ = 0.2, β = 0.06 andθ = 3. Trading strategies are constrained to the interval [0,1] (πmax = 1). The time interval
T is divided intoN = 300 steps.

The results for varying number of space steps are collected in Table A.2. The speed of convergence

is similar for both functionals.

We repeated the above convergence experiments for various model parameters and the results

were consistent with those presented here.

A.2. Numerical solution for the case of continuously monitored performance

In this subsection we concentrate our efforts on the numerical solution of the optimization problem

(17). In terms of the discounted wealth process, the value function takes the following form: fort0 ≤ T

v(t0, x) = sup
π∈A

{

Eπ
t0,x

(

∫ T

0
f (t, Xt)dt

)

− θVarπt0,x
(

∫ T

0
f (t, Xt)dt

)

}

, (A.9)

whereA is the set of all progressively measurable processes with values in [0, πmax] and

f (t, x) =
(

xerT − Keβt+r(T−t))+.

The presentation of the remaining part of this subsection follows a similar pattern as that of Sub-

section A.1 but differs in important details due to an additional dimension in the controlled process

and the type of functionals involved.

A.2.1. Markovian reparametrization

We rewrite (A.9) as follows

v(t0, x) = sup
ψ∈R
{V(t0, x, 0, ψ) − θψ2},

whereV is the value function of an auxiliary markovian optimization problem with an extended state

space (Xt, Yt):

V(t0, x, y, ψ) = sup
π∈A

Eπ
x,y

{

∫ T

t0
f (t, Xt)[1 − 2θψ − 2θYt] dt

}

. (A.10)
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The dynamics of (Yt) is given by a differential equation

dYt = f (t, Xt)dt, Yt0 = y.

Theorem 2.4 implies that the supremum overψ can be restricted to a compact interval [ψmin, ψmax]

with

ψmin = − sup
α∈A

Eα
x

∫ T

t
f (s, Xs) ds, ψmax = − inf

α∈A
Eα

x

∫ T

t
f (s, Xs) ds.

Notice that both of these numbers are non-positive sincef is non-negative. As previously, this prop-

erty will be used in the derivation and convergence of the numerical scheme.

Computation ofψmin andψmax requires numerical solution of stochastic optimization problems:

we use an implicit scheme with policy iteration. We omit details as these problems are of a standard

form.

A.2.2. Localization and change of variables

For a fixedψ the value functionV(·, ψ) is the unique continuous polynomially growing viscosity

solution to the following HJB equation (see Theorem 2.3):















Vt + supa∈[0,πmax]

[

a(µ − r)xVx +
1
2a2σ2x2Vxx + f (t, x)Vy + f (t, x)(1− 2θψ − 2θy)

]

= 0,

V(T, x, y, ψ) = 0.
(A.11)

Notice thatV(t0, x, y, ψ) = 0 for x ≤ 0 so we restrict numerical computations to (x, y) ∈ (0,∞) × R

(this is also an invariant set for the dynamics of the process(Xt, Yt)). We localize equation (A.11)

by choosing a rectangular region [xmin, xmax] × [ymin, ymax] ⊆ (0,∞) × R. As in Subsection A.1, the

value ofV at the terminal time may be used as a boundary condition at times t < T . This seems

counterintuitive sinceV is zero at timeT , but it is strictly positive (and growing whent decreases)

for y ≥ 0 andt < T . We expected that choosing zero boundary conditions for thelocalized equation

would lead to a smaller value ofV than required. We tested this hypothesis in two ways. First we

doubled the length of the intervals [xmin, xmax] and [ymin, ymax] and noticed that this leads to no change

of the computed value function forx, y in the middle of the rectangle. Second, we applied boundary

conditions derived from asymptotic behavior of the value function asx→ 0,∞ andy→ ±∞. Results

were again identical.
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After a change of variables,z = log(x), a localized version of (A.11) takes the form:






















































Vt + f (t, ez)Vy + f (t, ez)(1− 2θψ − 2θy)

+ supa∈[0,πmax]

[

[a(µ − r) − 1
2a2σ2]Vz +

1
2a2σ2Vzz

]

= 0,

V(t0, zmin, y) = V(t0, zmax, y) = 0,

V(t0, z, ymin) = V(t0, z, ymax) = 0,

V(T, z, y, ψ) = 0.

(A.12)

A.2.3. Implicit numerical scheme

Fix ψ ≤ 0. Using standard arguments ([18, Remark V.8.1], [39, Remark 2.1]) we show that (A.12)

satisfies the strong comparison property for viscosity solutions and, hence, has a unique continuous

viscosity solutionV(·, ψ). Define uniform space gridsz0, . . . , zM , wherez0 = zmin, zM = zmax, and

y0, . . . , yL, wherey0 = ymin, yL = ymax, and a uniform time gridτ0, . . . , τN , whereτ0 = 0, τN = T . Let

δz = z1 − z0, δy = y1 − y0 be the space discretization steps andδτ = τ1 − τ0 be the time discretization

step. Denote byVn
i, j a discrete approximation toV(tn, zi, y j, ψ) and putVn

= (Vn
i, j).

Under (B1)-(B3) the coefficients standing byVz andVy in (A.12) are non-negative. DerivativesVz

andVy are, therefore, approximated with a forward difference to ensure monotonicity of a numerical

scheme. For a matrix of controls (ai, j) ∈ [0, πmax]M×M define a controlled discrete differential operator

(LaVn)i, j =
2ai, j(µ − r)δz + (1− δz)(ai, j)2σ2

2δ2
z

Vn
i+1, j

+
−2ai, j(µ − r)δz − (2− δz)(ai, j)2σ2

2δ2
z

Vn
i, j

+
(ai, j)2σ2

2δ2
z

Vn
i−1, j.

Fully implicit discretization of (A.12) takes the following form:

Vn+1
i, j − Vn

i, j

δτ
+ f (tn, e

zi )
(Vn

i, j+1 − Vn
i, j

δy
+ (1− 2θψ − 2θy j)

)

+ sup
a∈[0,πmax]M×M

(LaVn) = 0 (A.13)

with boundary conditions

Vn
0, j = Vn

M, j = Vn
i,0 = Vn

i,L = VN
i, j = 0

for i = 1, . . . , M, j = 1, . . . , L, andn = 1, . . . ,N. In a similar way as in Theorem A.1 we prove

convergence of the above scheme.

THEOREM A.2. Under assumptions (B1)-(B3) the solution of the above discrete Hamilton-Jacobi-

Bellman equation converges uniformly to the solution of (A.12) as L,N, M → ∞.
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K = 0 K = 1

N [ψmin, ψmax] ψ value [ψmin, ψmax] ψ value

10 -1.08131, -1.05193 -1.0528690 0.6833594-0.07332, -0.00263 -0.0608738 0.0488927
50 -1.07877, -1.05129 -1.0580779 0.9883867-0.06959, -0.00015 -0.0626881 0.0515996
100 -1.07848, -1.05128 -1.0591700 1.0231266-0.06917, -0.00004 -0.0622946 0.0518549
200 -1.07834, -1.05127 -1.0596893 1.0402415-0.06896, -0.00001 -0.0621028 0.0519749
500 -1.07826, -1.05127 -1.0599647 1.0504315-0.06883, -0.00000 -0.0619895 0.0520443
1000 -1.07823, -1.05127 -1.0601576 1.0538152-0.06879, -0.00000 -0.0619520 0.0520671
2000 -1.07822, -1.05127 -1.0599977 1.0565555-0.06877, -0.00000 -0.0619333 0.0520784

Table A.3: Numerical approximations of the value functionu at the initial timet0 = 0 and the initial wealthx = 1 with
varying number of time stepsN. In the computation we useT = 1, r = 0.05, µ = 0.1, σ = 0.2, β = 0.06 andθ = 3.
Trading strategies are constrained to the interval [0,1] (πmax = 1). The state space grid isz0 = −2, zM = 3 with M = 200
andy0 = −1, yL = 3 with L = 100.

K = 0 K = 1

L ψ value ψ value

50 -1.0580075 0.8039931 -0.0619333 0.0376220
100 -1.0599977 1.0565555 -0.0619333 0.0520784
200 -1.0613756 1.0555008 -0.0619333 0.0519358
400 -1.0613756 1.0549085 -0.0619333 0.0518711
800 -1.0613756 1.0545861 -0.0619333 0.0518389

Table A.4: Numerical approximations of the value functionu at the initial timet0 = 0 and the initial wealthx = 1 with
varying number of space stepsL in variabley. The bounds forψ are independent ofL and equal to [−1.07822, −1.05127]
for K = 0 and [−0.06877, 0] for K = 1. In the computation we useT = 1, r = 0.05,µ = 0.1,σ = 0.2, β = 0.06 andθ = 3.
Trading strategies are constrained to the interval [0,1] (πmax = 1). The state space grid isz0 = −2, zM = 3 with M = 200
andy0 = −1, yL = 3. The number of time steps isN = 2000.

A.2.4. Algorithm and convergence

The algorithm for the solution of the above equation is analogous to that in Subsection A.1.

Our experiments show that numerical results for the mean-variance functional with the integral

term (A.9) exhibit large errors for small number of timesteps N, see Table A.3. This is clearly at

odds with our findings for the terminal-time based functional – good precision is obtained for the

number of time stepsN as low as 10. It can be explained by the fact that the functional studied in

this subsection is based on the integral over time – a dense time grid is crucial for the precision of

its computation. Another observation lends support to thisclaim. The results are fairly precise for

N as low as 50 ifK = 1 (the asymmetric functional), but the caseK = 0 requires at leastN = 500

for acceptable precision. This is contrary to our findings for the terminal-time functionals, where the

symmetric case (K = 0) requires fewer timesteps. This difference might be caused by the fact that

the integrand is smaller forK = 1 (it might be even equal to 0 when the wealth of portfolio doesnot

exceed the benchmark) than forK = 0 and integration errors are hence less pronounced.

9



K = 0 K = 1

M [ψmin, ψmax] ψ value [ψmin, ψmax] ψ value

50 -1.07886, -1.05127 -1.0595801 1.0558601-0.06683, -0.00000 -0.0601739 0.0478990
100 -1.07843, -1.05127 -1.0600660 1.0563309-0.06866, -0.00000 -0.0618301 0.0514420
200 -1.07822, -1.05127 -1.0599977 1.0565555-0.06877, -0.00000 -0.0619333 0.0520784
400 -1.07811, -1.05127 -1.0599642 1.0566644-0.06860, -0.00000 -0.0617795 0.0521047
800 -1.07806, -1.05127 -1.0599475 1.0567180-0.06847, -0.00000 -0.0616580 0.0520548

Table A.5: Numerical approximations of the value functionu at the initial timet0 = 0 and the initial wealthx = 1 with
varying number of space stepsM in variablez. In the computation we useT = 1, r = 0.05, µ = 0.1, σ = 0.2, β = 0.06
andθ = 3. Trading strategies are constrained to the interval [0,1] (πmax = 1). The state space grid isz0 = −2, zM = 3 and
y0 = −1, yL = 3 with L = 100. The number of time steps isN = 2000.

Table A.4 shows that there is little benefit from increasing the number of grid points in the variable

y above 100. A similar observation can be made with respect to the number of grid points in the

variablez (see Table A.5). Our experiments showed that there is an optimal ratio of the grid step

sizes in variablesz andy. The decrease of the grid step in one dimension brings littleimprovement if

not accompanied by an adjustment in the other. We discoveredthat, in the example studied here, the

length ofy-step should be around twice the length of thez-step.

B. Proofs

Proof of Theorem 2.1. Fix ψ ∈ R. Define a Hamiltonian corresponding to equation (5) (see [36,

Section 3.4] or [3, Section 1.4] for the notation)

Hψ : [0, T ) × Rd × Rd × Sd → R ∪ {∞},

whereSd is the set of symmetricd × d matrices, by the formula

Hψ(t, x, p, M) = sup
a∈A

{

b(a, t, x)T p +
1
2

tr
(

σσT (a, t, x)M
)

}

.

The PDE (5) can now be written as:


















Ut0(t0, x, ψ) + Hψ(t, x,Ux(t0, x, ψ),Uxx(t0, x, ψ)
)

= 0,

U(T, x, ψ) = (1− 2θψ)h(x) − θ
(

h(x)
)2
,

(B.14)

whereUt0 denotes the partial derivative with respect to timet0 andUx, Uxx denote the first and second

derivative with respect tox.

The domain of the HamiltonianHψ is defined as

dom(Hψ) = {(t, x, p, M) ∈ [0, T ) × Rd × Rd × Sd : Hψ(t, x, p, M) < ∞}.
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For any fixed (t, x, p, M) ∈ [0, T ) × Rd × Rd × Sd and due to the continuity ofb andσ with respect to

a ∈ A and the compactness of the setA, we have that supa∈A

{

b(a, t, x)T p + 1
2tr

(

σσT (a, t, x)M
)

}

< ∞.

Therefore the domain ofHψ is the whole space. By Assumption (A0), the coefficientsb andσ are

Lipschitz continuous with respect tox andt uniformly in a. This together with the continuity ifb and

σ with respect toa and the fact that the set of controlsA is compact implies thatHψ is continuous.

By [36, Proposition 4.3.2] or [3, Theorem 3.6]U(·, ψ) is a viscosity subsolution to (5). The value

function U(·, ψ) is of polynomial growth under Assumption (A0) and due to the polynomial growth

for the cost functionh (see [3, Lemma 3.3]). By [36, Proposition 4.3.1] or [3, Theorem 3.4],U(·, ψ)

is a viscosity supersolution to (5). SinceU(·, ψ) is both a viscosity subsolution and supersolution then

it is a viscosity solution to equation (5).

We shall now prove the uniqueness and continuity of solutions to (5). The value functionU(t0, x, ψ)

is continuous att0 = T due to the continuity and polynomial growth ofh and the estimate (D.4) in [18,

Appendix D]. The comparison theorem ([36, Theorem 4.4.5] or[3, Corollary 4.7]) yield the continu-

ity of U(·, ψ) in the whole of its domain [0, T ] × R
d and assure thatU(·, ψ) is a unique polynomially

growing continuous viscosity solution to (5).

Proof of Theorem 2.2. (i): Takeψ1, ψ2 ∈ R. By the definition ofU we have

1
2

U(t0, x, ψ1) +
1
2

U(t0, x, ψ2)

≥ sup
α∈A

Eα
t0,x,y

{1
2

(

(1− 2θψ1)h(XT ) − θ
(

h(XT )
)2
)

+
1
2

(

(1− 2θψ2)h(XT ) − θ
(

h(XT )
)2
)

}

= U
(

t0, x, (ψ1 + ψ2)/2
)

.

This proves convexity, which implies continuity with respect toψ.

(ii): One can see thatU grows at most linearly, which implies that the mappingg(ψ) = U(t0, x, ψ)−

θψ2 attains its maximum in a compact interval. By convexity,U has well-defined directional deriva-

tives. Hence,g also has well-defined directional derivatives and in a pointwhere the maximum is at-

tained the left-hand side derivative is non-negative whilethe right-hand side derivative is non-positive.

We shall show that∂+g(ψ) > 0 for ψ < ψmin and∂−g(ψ) < 0 for ψ > ψmax. This will imply that the

conditions for maximum can only be satisfied in the interval [ψmin, ψmax].
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For the right-hand side differential ofU we obtain the following lower bound:

∂+ψU(t0, x, ψ) = lim
δ↓0

U(t0, x, ψ + δ) − U(t0, x, ψ)
δ

= − lim
δ↓0

U(t0, x, ψ) − U(t0, x, ψ + δ)
δ

≥ − lim
δ↓0

supα∈A Eα
t0,x

{(

− 2θψ + 2θ(ψ + δ)
)

h(XT )
}

δ

= − sup
α∈A

Eα
t0,x

{

2θh(XT )
}

= 2θψmin.

Therefore,∂+g(ψ) ≥ 2θψmin − 2θψ = 2θ(ψmin − ψ), and∂+g(ψ) > 0 whenψ < ψmin.

The left-hand side differential ofU is bounded from above in a similar fashion:

∂−ψU(t0, x, ψ) = lim
δ↓0

U(t0, x, ψ) − U(t0, x, ψ − δ)
δ

≤ lim
δ↓0

supα∈A Eα
t0,x

{(

− 2θψ + 2θ(ψ − δ)
)

h(XT )
}

δ

= sup
α∈A

Eα
t0,x

{

− 2θh(XT )
}

= 2θψmax.

This implies∂−g(ψ) ≤ 2θψmax − 2θψ = 2θ(ψmax − ψ) and∂−g(ψ) < 0 whenψ > ψmax.

Remark to the proof of Theorem 2.2. Formulas forψmin andψmax can be obtained directly from the

duality relationship (4) provided that for eachψ there exists an optimal strategy maximizingU(t0, x, ψ).

Indeed, ifψ∗ maximizes (4) andα∗ is an optimal strategy forU(t0, x, ψ∗) then

ψ∗ = −Eα∗
t0,x {h(XT )} ∈

[

− sup
α∈A

Eα
t0,x

{

h(XT )
}

,− inf
α∈A

Eα
t0,x

{

h(XT )
}

]

.

The original proof of Theorem 2.2 does not require the existence of optimal strategies.

Proof of Theorem 2.3. Fix ψ ∈ R. We rewrite (10) in a canonical form:















−V̂t0(t0, x̃, ψ) − Hψ
(

t, x̃, V̂x̃(t0, x̃, ψ), V̂x̃x̃(t0, x̃, ψ)
)

= 0,

V̂(T, x̃, ψ) = 0,

wherex̃ = (x, y), the HamiltonianHψ is given by

Hψ
(

t, (x, y), p̃, M̃
)

= sup
u∈A

[

b(u, t, x)T p +
1
2

tr
(

σσT (u, t, x)M
)

,

+ (1− 2θψ − 2θy + py) f (u, t, x)
]

,
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with p̃ = (p, py) ∈ R
d × R and M is obtained fromM̃ by removing the last row and column. The

domain of the Hamiltonian is defined as

dom(Hψ) = {(t, x̃, p̃, M̃) ∈ [0, T ) × Rd+1 × Rd+1 × Sd+1 : Hψ(t, x̃, p̃, M̃) < ∞}.

The assumptions of Lipschitz continuity and linear growth for the drift coefficients (b and f ) of the

extended process (9) and diffusion coefficientσ (Assumptions (A0) and (A1)) implies thatHψ is

continuous and its domain is the whole space. [36, Proposition 4.3.2] or [3, Theorem 3.6] imply that

V̂(·, ψ) is a viscosity subsolution to (10). By virtue of [3, Lemma 3.3] the value functionV̂(·, ψ) is

of polynomial growth because of Assumption (A0) and the linear growth of the running cost function

f . By [36, Proposition 4.3.1] or [3, Theorem 3.4]V̂(·, ψ) is a viscosity supersolution to (10). Since

V̂(·, ψ) is both a viscosity subsolution and supersolution then it is a viscosity solution to equation (10).

In order to show uniqueness, we need continuity of the value functionV̂(t0, x, y, ψ) at the terminal

time t0 = T . Indeed, function̂V(·, ψ) is continuous att0 = T due to the Lipschitz continuity int, x and

linear growth inx of f , b andσ. The comparison theorem [36, Theorem 4.4.5] or [3, Corollary 4.7]

yield the continuity ofV̂(·, ψ) in the whole of its domain [0, T ] × R
d × R and assure that̂V(·, ψ) is a

unique polynomially growing continuous viscosity solution to (10).

Proof of Theorem 2.4. Stochastic control problem (7) is a special case of the problem (3) with the

state space (9) andh(x, y) = y. Theorem 2.2 implies assertion (iii) and the first part of assertion (i).

Monotonicity ofV̂ with respect toψ is immediate.

(ii): We have

V̂(t0, x, y, ψ1) − V̂(t0, x, y, ψ2) ≤ sup
α∈A

{

2θ(ψ2 − ψ1)Eα
t0,x,y

{

∫ T

t0
f (αt, t, Xt) dt

}

}

≤ 2θ|ψ2 − ψ1| sup
α∈A

Eα
t0,x,y

{

∫ T

t0
| f (αt, t, Xt)|dt

}

.

Under assumption (A0), formula (D.5) in Fleming and Soner [18] implies that thereexist a constant

C1 such that for anyα ∈ A

Eα
t0,x{ sup

t∈[t0,T ]
‖Xt‖2} ≤ C1(1+ ‖x‖2). (B.15)
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Linear growth off allows us to write

Eα
t0,x,y

{

∫ T

t0
| f (αt, t, Xt)|dt

}

≤ Eα
t0,x,y

{

∫ T

t0
K2(1+ ‖Xt‖)dt

}

≤ K2(T − t0) Eα
t0,x,y

{

1+ sup
t∈[t0,T ]

‖Xt‖
}

≤ K2(T − t0)
(

1+
(

Eα
t0,x,y

{

sup
t∈[t0,T ]

‖Xt‖2
})1/2)

≤ K2(T − t0)
(

1+
(

C1 +C1‖x‖2
)1/2)

≤ C2(1+ ‖x‖)

for some constantC2. In the above derivation, the third inequality follows formthe Hölder inequality,

and the fourth – from (B.15). Hence,

V̂(t0, x, y, ψ1) − V̂(t0, x, y, ψ2) ≤ 2θ|ψ2 − ψ1|C2(1+ ‖x‖).

The corresponding lower bound follows similarly. This proves (ii) withC = 2θC2.

Proof of Lemma 3.1. The valuesψmin andψmax are determined by the following value functions

v̄(t0, x) = sup
π∈A

Eπ
t0,x(XT erT − KeβT )+, v(t0, x) = inf

π∈A
Eπ

t0,x(XT erT − KeβT )+.

Standard theory of optimal control (see, e.g., Fleming and Soner [18]) implies that the value

function v(t0, x) is a unique continuous viscosity solution with polynomialgrowth to the following

HJB equation:


















vt0
+ infa∈[0,πmax]

{

a(µ − r)xvx +
1
2a2x2σ2vxx

}

= 0,

v(T, x) = (xerT − KeβT )+.

A direct verification shows that

v(t0, x) =
(

erT x − eβT K
)+ (B.16)

solves this equation (it is then easy to check that an optimalcontrol isπ ≡ 0). Indeed, fort0 ∈ [0, T ],

x > 0 andx , x∗ := e(β−r)T K the functionv is of the classC1,2. The HJB equation is satisfied then in

a classical sense and, hence, in the viscosity sense. The verification of the viscosity solution property

at (t0, x∗) is more involved. The functionv is a viscosity subsolution at (t0, x∗) because the set of test

functions is empty at this point (see [36, Definition 4.2.1] or [3, Definition 2.1]). For the proof thatv

is a viscosity supersolution take a test functionφ ∈ C1,2 such thatφ(t0, x∗) = v(t0, x∗) andφ ≤ v. We

have to show that

φt0(t0, x∗) + inf
a∈[0,πmax]

{

a(µ − r)xφx(t0, x∗) +
1
2

a2x2σ2φxx(t0, x∗)
}

≤ 0.
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The mappingt 7→ φ(t, x∗) has a local maximum att0 since the functionv is independent of the first

argument,t0 (see (B.16)). This implies thatφt0(t0, x∗) = 0. The second term is non-positive because

the expression under infimum equals 0 fora = 0. This completes the proof of the supersolution

property ofv.

Determination of the optimal strategy for ¯v is more complicated. Lethε : R → R, ε > 0, be a

family of twice continuously differentiable non-decreasing convex functions approximatingh in the

supremum norm, i.e.,‖h − hε‖∞ < ε.15 Define

ûε(t, x) = Eπmax
t0,x {h

ε(XT )}, x > 0, t ∈ [0, T ],

where byπmax we denote the control equal identically toπmax. Equivalently,

ûε(t, x) = E{hε
(

xξT−t0)},

where (ξt) satisfies the following stochastic differential equation

dξt = ξt πmax
(

(µ − r) dt + σ dWt
)

, ξ0 = 1.

This reformulation implies that ˆuε is non-decreasing inx. To prove convexity of ˆuε in x, takex1, x2 >

0:

ûε(t0, x1) + ûε(t0, x2)
2

= E
{1
2

hε(x1ξT−t0) +
1
2

hε(x2ξT−t0)
}

≥ E
{

hε
( x1 + x2

2
ξT−t0

)}

= ûε
(

t0,
x1 + x2

2

)

,

where the inequality follows from the convexity ofhε and the positivity ofξT−t0.

Theorem 2.9.10 in Krylov [27] implies that ˆuε is aC1,2 solution with a linear growth of the fol-

lowing PDE problem:


















ûεt0 + πmax(µ − r)xûεx +
1
2π

2
maxx

2σ2ûεxx = 0,

ûε(T, x) = hε(x).
(B.17)

We shall prove that

sup
a∈[0,πmax]

{

a(µ − r)xûεx +
1
2

a2x2σ2ûεxx

}

= πmax(µ − r)xûεx +
1
2
π2

maxx
2σ2ûεxx.

15For a continuous functionf , the supremum norm‖ f ‖∞ is defined in the following way

‖ f ‖∞ = sup{ f (x) : x ∈ R}.
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The derivative, with respect toa, of the mapping under supremum equals

(µ − r)xûεx + ax2σ2ûεxx.

This derivative is non-negative fora ≥ 0. Indeed, the convexity of ˆuε implies ûεxx ≥ 0. Since ˆuε is

non-decreasing inx, we have ˆuεx ≥ 0. Assumption (B2) givesµ − r ≥ 0. Recall also thatx > 0. Thus,

the supremum is realized ata = πmax.16

Using above observation we conclude that ˆuε satisfies



















ûεt0 + supa∈[0,πmax]

{

a(µ − r)xûεx +
1
2a2x2σ2ûεxx

}

= 0,

ûε(T, x) = hε(x).
(B.18)

Theorem 3.5.2 in Pham [36] implies that ˆuε is the value function corresponding to the following

optimal control problem

[0, T ] × (0,∞) ∋ (t0, x) 7→ sup
π∈A

Eπ
t0,x hε(XT )

and the optimal control isπ ≡ πmax.

Take a controlπ ∈ A. For anyε > 0 we have

Eπ
t0,x h(XT ) ≤ Eπ

t0,x hε(XT ) + ε ≤ ûε(t0, x) + ε = Eπmax
t0,x hε(XT ) + ε ≤ Eπmax

t0,x h(XT ) + 2ε.

The arbitrariness ofε implies that

Eπ
t0,x h(XT ) ≤ Eπmax

t0,x h(XT ).

Hence

v̄(t0, x) = sup
π∈A

Eπ
t0,x h(XT ) = Eπmax

t0,x h(XT ).

We infer that an optimal strategy is, therefore, constant,π ≡ πmax, and

v̄(t0, x) = E
(

xeπmax(µ−r)(T−t0)− π
2
maxσ

2

2 (T−t0)+πmaxσ(WT−Wt0)erT − KeβT
)+

.

This last expression can be computed in a similar way as the price of a call option in the Black-Scholes

model (see, e.g., Appendix to Chapter 13 in Hull [24]).

16If ûεx = ûεxx = 0 or ûεxx = µ − r = 0 then the supremum is attained at any point of the interval [0, πmax] so, in particular,
atπmax. Otherwise, the derivative of the mapping under supremum isgreater than zero, which implies that the maximum is
realized ata = πmax.
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Proof of Theorem A.1. It is easy to verify that assumptions (2.1)-(2.2) of [39] aresatisfied. Assump-

tion (3.1) of [39] follows from the monotonicity of the scheme which is ensured by the use of forward

differencing and assumptions (B1)-(B3). We conclude by applying [39, Theorem 4.1].

Proof of Theorem A.2. The proof follows similar lines as the proof of Theorem A.1.
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